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Abstract: Aiming at maximizing waveform diversity gain when designing a phase-coded multiple-
input multiple-output (MIMO) radar waveform set, it is desirable that all waveforms are orthogonal
to each other. Hence, the lowest possible peak cross-correlation ratio (PCCR) is expected. Meanwhile,
low peak auto-correlation side-lobe ratio (PASR) is needed for good detection performance. However,
it is difficult to obtain a closed form solution to the waveform set from the expected values of the PASR
and PCCR. In this paper, the waveform set design problem is modeled as a multi-objective, NP-hard
constrained optimization problem. Unlike conventional approaches that design the waveform set
through optimizing a weighted sum objective function, the proposed optimization model evaluates
the performance of multi-objective functions based on Pareto level and obtains a set of Pareto
non-dominated solutions. That means that the MIMO radar system can trade off each objective
function for different requirements. To solve this problem, this paper presents a multi-objective
quantum genetic algorithm (MoQGA) based on the framework of quantum genetic algorithm. A new
population update strategy for the MoQGA is designed based on the proposed model. Compared to
the state-of-the-art methods, like BiST and Multi-CAN, the PASR and PCCR metrics of the waveform
set are 0.95–3.91 dB lower with the parameters of the numerical simulation. The MoQGA is able to
minimize PASR and PCCR of the MIMO radar waveform set simultaneously.

Keywords: MIMO radar; correlation function; multi-objective optimization; orthogonal waveform
set design; quantum genetic algorithm

1. Introduction

Radar transmits electromagnetic waves [1–3] and receives echoes to get information
about the targets. Radar waveforms determine the modulation of electromagnetic waves
transmitted by radar systems. Strictly speaking, designing a radar waveform should properly
consider the electromagnetic wave Doppler effects, propagation effects, clutters, etc. However,
sometimes the actual electromagnetic environment is complex and changeable [4–6]. Consid-
ering all of these factors makes waveform design complicated in the case of MIMO radar.
Appropriate MIMO radar waveform models and designing methods are worth studying.

MIMO radar transmits a set of waveforms at multiple transmitters and processes the
echo signals received at multiple receivers using a bank of matched filters. The input signal
to each matched filter is the superimposed echoes of all transmit signals. Except for the
echo of the associated transmit signal that matches the filter, the echoes of the remaining
transmit signals are considered as clutters. The essence of pulse radar matched filtering is
aperiodic correlation operation. If any two transmit signals are ideally orthogonal, the peak
amplitude of the cross-correlation function is zero. Consequently, the waveforms after the
matched filtering are perfectly separated, and the MIMO radar waveform diversity gain
is maximized. Otherwise, the matched filter bank will not be able to completely separate
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the waveforms, which will decrease the MIMO radar waveform diversity gain. The ideal
orthogonality of the waveform set cannot be realized since the pulse length and bandwidth
of an actual radar system are limited [7,8]. Another important performance metric of
a MIMO radar waveform set is the peak of auto-correlation function side-lobe, which
measures the radar detection performance and is critical for low probability of intercept
(LPI) [9–11]. In short, a good MIMO radar waveform set design should have the lowest
possible auto-correlation side-lobe peak and cross-correlation peak [12–14].

The transmit signals modulated by constant modulus phase code sequences are the
most suitable waveforms for MIMO radar applications. Sarwate [15] and Welch [16]
proposed the lower bounds of its correlation functions. Current research on MIMO radar
phase-coded waveform design focuses on meeting the lower bounds [17]. Although it
is impossible to solve the reverse problem of MIMO waveform design directly from the
required correlation functions, many studies have constructed code sequence sets that are
close to the lower bound of the periodic cross-correlation peak, which are called CAZAC
(Constant Amplitude Zero Auto-correlation Code). However, the sequence sets meeting
the lower bound of the aperiodic cross-correlation peak have not been found thus far. Some
researchers evaluate aperiodic correlation functions of the CAZAC sequence set [18,19]
with the results showing that the performance of the aperiodic cross-correlation function of
the CAZAC sequence set is relatively good but it is also far from the bound.

Aiming at achieving good LPI performance and high MIMO diversity gain simulta-
neously, the peak auto-correlation side-lobe ratio (PASR), the peak cross-correlation ratio
(PCCR), and the integrated side-lobe level (ISL) should be minimized. Meanwhile, due to
the conflict between PASR, PCCR and ISL, the MIMO radar waveform set design problem
is modeled as a Pareto optimization problem involving multiple objective functions. The
problem is difficult because it is NP-hard with non-convex multiple objective functions.

There are lot of works on designing phase code sequence set for MIMO radar using
specially designed numerical optimization algorithms [20–26], including the popular Multi-
CAN [20], MM-Corr [21], and ISL-New [22] algorithms. These algorithms in general
reformulate the original multi-objective optimization problem into relaxed single objective
problem with good local convergence properties that are easily solvable via iterative
algorithms. Those iterative algorithms almost all reach the lower bound of the ISL. However,
none of them could reach the lower bound of PASR and PCCR. The new BiST [27] algorithm
outstrips all the above algorithms under some sequence lengths and set sizes, but its
performance is also not good enough when optimizing the PCCR. In particular, the BiST
algorithm models its objective function as an adjustable weighted sum of the multi-objective
functions, which cannot decrease the values of each objective function strictly.

In contrast to the abovementioned methods, evolutionary algorithms are highly robust
and widely applicable to global search problems [28–32]. They are capable of solving high-
dimensional optimization problems [33–35] and have been applied to waveform design
problems [36–40]. There are few works on MIMO radar waveform set design using a multi-
objective evolutionary model. QGA can converge faster while ensuring good population
diversity, improving the search efficiency. However, there is no universal multi-objective
QGA algorithm framework, which is different for different applications [41–44]. Quantum
chromosome encoding, quantum rotation and the population update strategy of the QGA
are not suitable for multi-objective optimization problems because the optimal solution at
the end of each generation is replaced by a set of non-dominated solutions.

This paper develops a multi-objective quantum genetic algorithm (MoQGA), based
on the framework of quantum genetic algorithm (QGA) [31], to solve the above-mentioned
Pareto optimization problem. In this paper, a quantum chromosome encoding and decoding
for the waveform set is constructed. This paper designs a quantum rotation targets selection
strategy based on Pareto dominance. After designing all the sub-steps of the MoQGA
properly, the population update strategy is constructed.

The values of the PASR and PCCR metrics obtained by the proposed method are
0.95–3.91 dB lower than the state-of-the-art methods like Multi-CAN [20] and BiST [27].
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The obtained ISL metric values are close to the lower bound. Furthermore, a large number
of trials prove that the stability of the MoQGA is good. The MoQGA is able to design a
MIMO radar phase-coded waveform set with low correlation functions stably.

The rest of this paper is organized as follows. Section 2 states the MIMO radar wave-
form set design problem. Section 3 shows the implementation of the MoQGA. Section 4
shows some numerical results. Finally, Section 5 concludes the paper.

2. Problem Statement
2.1. MIMO Radar Phase-Coded Waveform Set

Consider a MIMO radar waveform set with M transmit signals showed in Figure 1.
The transmitted waveform set S(t) can be expressed as

S(t) = [s1(t), s2(t), . . . , sM(t)] (1)

where sm(t), m = 1, 2, . . . , M is the m-th transmit signal.
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Figure 1. MIMO radar with M transmit signals.

In this paper, only phase-coded waveform set is discussed. Phase-coded waveform
has constant amplitude and RF frequency in the pulse duration, and the signal within the
pulse duration is modulated by a phase code sequence. The sequence length N represent
the number of sub-pulses (chips). The pulse length is τ and sub-pluses length is τc. They
satisfy the condition τ = Nτc. The analog signal of the waveform can be expressed as

sm(t) =
N−1

∑
n=0

xm
n (t− nτc) ·U(t), 0 ≤ t ≤ τ (2)

xm
n (t) =

{
xm[n] = exp(jφm[n]), 0 ≤ t ≤ τc

0, others
(3)

where φm[n] ∈ [0, 2π], n = 1, 2, . . . , N. xm[n] is the phase code sequence and U(t) is the
radio frequency carrier signal. Normally, the phase value is set to one of K constant values
between 0 and 2π. Then the phase values set Ψ can be defined as

Ψ = {0, 2π/K, 4π/K, . . . , 2π(K− 1)/K}
= {φ|φ = 2π(k− 1)/K}, k = 1, 2, 3, . . . , K

(4)

where K is a positive integer no smaller than 2. The phase code matrix X can be defined as
follow, which is made up by M phase code sequences.

X =


x11 x12 · · · x1N
x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN

 (5)

where xmn = xm[n]. X is exactly the decision variable for the MIMO radar phase-coded
waveform set optimization design problem. The solution space is the set of all possible
phase code matrix X. So, the solution space Ω can be described as
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{
X ∈ Ω, xij = exp(jϕij), i, j ∈ {1, 2, . . . , M}
ϕij ∈ {φ|φ = 2π(k− 1)/K , k = 1, 2, . . . , K} (6)

2.2. Performance Evaluation Metrics

According to the signal model of the waveform set S(t), the phase-coded waveform set
S(t) is jointly determined by the phase code matrix X mentioned above, carrier frequency,
pulse length, etc. Compared to carrier frequency, pulse length and other hardware parame-
ters, phase code matrix X is the key factor that determines the performance of correlation
functions of MIMO waveform set [45]. Specifically, the aperiodic auto- and cross-correlation
function between the phase-coded sequences are defined as

rAP
i [k] =

N−k

∑
n=1

xi[n]x∗i [n + k] i ∈ {1, 2, . . . , M} (7)

rAP
ij [k] =

N−k

∑
n=1

xi[n]x∗j [n + k] i, j ∈ {1, 2, . . . , M} (8)

where k is an integer with −N < k < N, (·)* is complex conjugate. When k = 0, the
aperiodic auto-correlation function takes the peak value, which is also called the main-lobe
peak. Since the amplitude of the phase code sequences is a constant, it is obvious that∣∣rAP

i [0]
∣∣ = N, i ∈ {1, 2, . . . , M}. When k 6= 0, the rest part of the auto-correlation function

is called the side-lobe. The following three metrics are defined to evaluate the performance
of the auto- and cross-correlation function.

PCCR =
1

N2 max
i, j

i 6= j

{
max

k

∣∣rij[k]
∣∣2} (9)

PASR =
1

N2 max
i

{
max
k,k 6=0
|ri[k]|2

}
(10)

ISL =
1

N2


M

∑
i, j = 1
i 6= j

N−1

∑
k=−N+1

∣∣rij[k]
∣∣2 + M

∑
i=1

N−1

∑
k = −N + 1

k 6= 0

|ri[k]|2

 (11)

where PCCR means peak cross-correlation ratio, PASR means peak auto-correlation side-
lobe ratio and ISL means integrated side-lobe level. Since this paper does not discuss
the periodic correlation functions, rij[k] is regarded as rAP

ij [k]. PCCR measures the degree
of mutual interference between the different transmit signals. PASR measures the ratio
between the side-lobe peak and the main-lobe after the pulse compression. ISL measures
the summation of the auto-correlation function side-lobe and the cross-correlation func-
tion. The lower the values of these three metrics, the better the MIMO radar waveform
set performance.

Because of the limited pulse length and bandwidth, these metrics cannot be infinitely
small. Sarwate [15] and Welch [16] deduced the lower bounds for PCCR, PASR and ISL.
In their derivation, PCCR and PASR were combined into one metric called peak side-lobe
level, PSL = max{PCCR, PASR}. The lower bounds of the PSL and ISL under periodic
and aperiodic conditions are shown as follows.

PSLP ≥ BoundP
PSL =

M− 1
NM− 1

(12)

PSLAP ≥ BoundAP
PSL =

M− 1
2NM−M− 1

(13)
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ISLP, ISLAP ≥ BoundISL = M(M− 1) (14)

2.3. Multi-Objective Optimization Model

PSL is the most widely used metric for the MIMO radar waveform set design. However,
when PSL reach the optimal value, there is no guarantee that PASR and PCCR will reach
the optimal values. Actually, PASR and PCCR are two conflicting metrics. Moreover, the
ISL measures the overall performance of the auto- and cross-correlation functions. Hence,
modeling the MIMO radar phase-coded waveform set design problem as a multi-objective
Pareto optimization problem is a more rigorous way. Based on the definition of the solution
space Ω in (6), the multi-objective functions are shown as follows.

f1(X) = PCCR(X) =
1

N2 max
i, j

i 6= j

max
k

∣∣∣∣∣N−l

∑
n=1

xi,nx∗j,n+k

∣∣∣∣∣
2
 (15)

f2(X) = PASR(X) =
1

N2 max
i

max
k,k 6=0

∣∣∣∣∣N−l

∑
n=1

xi,nx∗i,n+k

∣∣∣∣∣
2
 (16)

f3(X) = ISL(X) =
1

N2


M

∑
i, j = 1
i 6= j

N−1

∑
k=−N+1

∣∣∣∣∣N−l

∑
n=1

xi,nx∗j,n+k

∣∣∣∣∣
2

+
M

∑
i=1

N−1

∑
k = −N + 1

k 6= 0

∣∣∣∣∣N−l

∑
n=1

xi,nx∗i,n+k

∣∣∣∣∣
2

 (17)

In summary, the MIMO phase-coded waveform set design problem can be modeled as
a multi-objective optimization problem. According to the definition of the solution space
and three objective functions, the optimization problem can be formulated as

min
X
F (X) = ( f1(X), f2(X), f3(X))

s.t.X =


x11 x12 · · · x1N
x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN

 ∈ Ω

xij = exp
(

jϕij
)

ϕij ∈ {φ | φ = 2π(k− 1)/K, k = 1, 2, . . . , K}

(18)

where fk(X) (k = 1, 2, 3) are the objective functions, X the decision variable, Ω the solution
space of X, and K represents the phase-coded waveform set is modulated by sequences
with K phases.

3. Multi-Objective Quantum Genetic Algorithm

Observing the multi-objective optimization problem model described in (15)–(18),
the matrix dimension of X is large. For the parameters M, N, K, there are a total of KMN

different phase code matrices, and it is impossible to traverse all the possible solutions.
According to the expressions of the three objective functions, it is not difficult to discover
that every objective function is non-convex. Hence, designing the phase-coded waveform
set is a NP-hard non-convex optimization problem. Current mature convex optimization
algorithms are difficult to be applied to this problem. From another point of view, the
problem can also be seen as a minimax problem. However, due to the complexity and
non-linear characteristics of the objective functions, the existing algorithms against the
minimax problem do not work well either [46].

Consider the nature of this multi-objective optimization problem, using evolutionary
algorithms is a straightforward yet effective way to solve it. Evolutionary algorithms
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such as particle swarm optimization (PSO) [47] and genetic algorithm have no special
requirements for the objective function. The randomness and diversity of the population
reduce the possibility of the algorithm falling into a local optimum. Under the framework
of multi-objective evolutionary optimization, Pareto dominance [28] is used to evaluate
objective functions. Although the evolutionary algorithm is robust and suitable for solving
complex multi-objective optimization problems, its convergence speed is slow. Learning
from quantum genetic algorithm (QGA) [31], using quantum chromosome to encode the
phase code matrix may improve the algorithm execution speed. Moreover, because of the
implicit parallelism, the quantum evolutionary algorithm is easy to be implemented on
parallel computer system.

In order to solve the problem of designing the constant modulus waveform set, this
paper proposes a multi-objective quantum genetic algorithm (MoQGA) based on the
framework of multi-objective optimization and QGA. In particular, this paper has designed
the quantum chromosome encoding of the phase code matrix. Using quantum-rotating gate,
a novel rotating targets selection strategy is designed for MoQGA. Based on the quantum
chromosome and Pareto dominance, the population update strategy is developed.

The block diagram of MoQGA is shown in Figure 2. In addition, the specific execution
steps are summarized as follows.
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Step 1 Generate phase code matrix of the size M× N using random numbers.
Step 2 Initialize the first-generation population, encode the phase code matrix into quan-

tum chromosomes (the population size is set to 100).
Step 3 Use fast Pareto non-dominated sorting (Fast-NS) algorithm [29] to evaluate the

first-generation population generated by Step 2. The output of the algorithm is the
Pareto level of each individual in the population. Record the Pareto dominance
relationship between any two individuals.
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Step 4 According to the sorting result of Step 3, update the population and obtain the
offspring population using quantum rotate gate.

Step 5 Combine the parent and offspring population, and use the Fast-NS algorithm to
sort the combined population.

Step 6 According to the result of Step 5, select appropriate number of elite individuals to
form new parent population.

Step 7 Perform quantum mutation operation on the new parent population to increase
population diversity.

Step 8 Check whether the maximum genetic generation is reached, if yes, output the elite
population and decode it into the phase code matrices, otherwise jump to Step 3
and continue execution.

3.1. Quantum Chromosome Encoding

Quantum chromosomes use qubit encoding. A system with k qubits is described as[
α1|α2|. . .|αk
β1|β2|. . .|βk

]
, i = 1, 2, . . . , k (19)

where αi and βi are two complex numbers, which represent the probability amplitude
of the i-th qubit. Their modulus satisfies the normalization condition |αi|2 + |βi|2 = 1.
The |αi|2 is the probability of discovery |0〉 during one measurement, and the |βi|2 is the
probability of discovery |1〉. Before calculating the values of multi-objective functions and
Pareto level, MoQGA needs to measure the quantum chromosome at first. Then decode
the measured binary result into decision variables. Finally, calculate the value of the multi-
objective function using the decision variables. When the MoQGA is executed to a certain
preset maximum generation or the probability amplitude αi, βi satisfies αi = 1, βi = 0 or
αi = 0, βi = 1, the algorithm stops.

After the decision variable of the optimization problem is encoded into a quantum
chromosome, the update and mutation of the population can be completed using quan-
tum rotate gates and quantum mutation operations. For the MIMO radar phase-coded
waveform set design problem described in (18), the decision variable of the MoQGA is a
K-phase encoded phase matrix. Therefore, any element of the phase code matrix needs to
be encoded with log2 K qubits. Therefore, a code matrix of size M× N can be encoded as
a quantum chromosome containing M× N × log2 K qubits. The quantum chromosome
Xqubit corresponding to the phase code matrix X can be expressed as follow.

Xqubit =

[
α1|α2| . . . |αM×N×log2 K
β1|β2| . . . |βM×N×log2 K

]

|αi|2 + |βi|2 = 1, i = 1, 2, . . . , M× N × log2 K

(20)

when the probability amplitude has converged, the measured result of Xqubit is shown in
(21). Because the M× N × log2 K values are binary number 0 or 1, every log2 K bits are
convert to decimal number to obtain the phase values.

Xqubit =
[

x1|x2| . . . |xlog2 K| . . . . . . |xM×N×log2 K

]
(21)

3.2. Pareto Level of Population

For multi-objective functions, MoQGA uses Pareto level as the evaluation criterion for
the merits of individuals in the population. Before defining the Pareto level of the finite
population, Pareto optimal solution and Pareto front of the solution space are introduced
firstly. Let Ω be the solution space, and n is the number of the objective functions. For
any two solutions Xa and Xb from Ω, if the following two conditions are true, and then Xa
dominates Xb, denoted as Xa � Xb.



Remote Sens. 2022, 14, 2387 8 of 21

(1) ∀i = 1, 2, . . . , n, fi(Xa) ≤ fi(Xb);
(2) ∃i = 1, 2, . . . , n, fi(Xa) < fi(Xb);

If a certain solution X∗ ∈ Ω satisfies:X∗ dominates all other feasible solutions in Ω,
then X∗ is called non-dominated solution or Pareto optimal solution. Any two Pareto
optimal solutions do not dominate each other, and the set of all Pareto optimal solutions is
denoted as P∗.

P∗ , {X∗|¬∃X ∈ Ω : X � X∗ } (22)

Pareto front PF∗ is the front surface of the objective function vectors corresponding to
all Pareto optimal solutions, which can be expressed as

PF∗ = {F (X∗) = ( f1(X∗), . . . , fn(X∗))|X∗ ∈ P∗} (23)

Let S = {X1, X2, . . . , XP} be the population of each generation in MoQGA, where P is
the number of individuals in each generation population. Similar to the Pareto front of Ω,
there is also a Pareto front, denoted by PFS defined on the population S.{

PFS =
{
F (X∗) = ( f1(X∗), . . . , fn(X∗))

∣∣X∗ ∈ P∗S
}

P∗S = {X∗|¬∃X ∈ S : X � X∗ } (24)

The purpose of multi-objective optimization is to make PFS as close as possible to PF∗.
Ideally, the Pareto front of the elite population finally obtained by MoQGA algorithm is
located on the Pareto front of solution space Ω, denoted by PF∗S . That means PF∗S is a subset
of PF∗. Take two objective functions as an example for better visualization. As shown in
Figure 3, the two coordinate axes represent two objective functions. The area enclosed by
the bottom left solid line and the top right dashed line represents the solution space Ω,
and the bottom left solid line is Pareto front PF∗. The solid dots represent PFS, the Pareto
front of population with finite size. The hollow dots represent PF∗S , the ideal Pareto front
of population. MoQGA and other multi-objective optimization algorithms expect that the
obtained Pareto front have more elements in the Pareto front. At the same time, the more
even the distribution, the better the optimization effect.
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Because the number of solutions in the population S is finite, the Pareto levels can
be defined among every solution in S. The set of individuals whose Pareto level are 1 is
actually the Pareto front of S.{

P1 = PFS =
{
F (X∗) = ( f1(X∗), . . . , fn(X∗))

∣∣X∗ ∈ P∗S
}

P∗S = {X∗|¬∃X ∈ S : X � X∗ } (25)

In (25), P1 represents the set of individuals whose Pareto level is 1. Remove the
individuals of P1 from the population S, and the Pareto front of the remaining population
S− P1 are defined as P2.
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P2 = PFS−P1 (26)

Similarly, the Pareto levels of all solutions in this population can be obtained, and the
recurrence relationship is shown as follows.

Plevel = PFS′ (27)

S′ = S−∑level−1
i=1 Pi (28)

In (27) and (28), S′ is the remaining population set without the individuals whose
Pareto level is 1, 2, . . . , level − 1. And the Pareto front of S′ is the set of individuals whose
Pareto level is level. Because the number of individuals of S is finite, the number of
Pareto levels is also finite. The schematic diagram of the Pareto level is shown in Figure 4.
Assuming there are only three Pareto levels in S. The set of all points represents the entire
population S, the black solid dots represent P1, the solid line and open dots represent P2,
and the dashed open dots represent P3. Generally, the Pareto front, P1 of the population S,
is the optimal solutions and P2, P3 and others are suboptimal solutions.
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MoQGA needs to calculate Pareto levels for each generation of the population. In
order to improve the execution speed of the algorithm, we use the fast Pareto non-
dominated sorting algorithm in NSGA-II [29] to divide the Pareto level. For population
S =

{
X1, X2, . . . , Xp, . . . , XP

}
and objective functions F (X) = ( f1(X), f2(X), . . . , fn(X)),

the steps of fast non-dominated sorting algorithm for MoQGA are shown in Algorithm 1.

Algorithm 1: Fast non-dominated sorting algorithm for MoQGA

Input: Population set S =
{

X1, X2, . . . , Xp, . . . , XP
}

Objective functions F (X) = ( f1(X), f2(X), . . . , fn(X))
Output: Pareto levels P1, P2, . . . . . .

Step 1: Calculate the dominated number np of every individual p. Calculate the set of individuals
dominated by p, denoted as Up. Calculate the set of individuals who dominate p, denoted
as Dp.

Step 2: Put the individuals who satisfy np = 0 into P1 and set level = 1.
Step 3: For every individual Xp ∈ Plevel

For every individual Xq ∈ Up
nq = nq − 1;
If nq = 0
Put Xq into set Plevel+1;

Step 4: level = level + 1; Jump to Step 3 to execute; if all the population levels are divided, jump
out of the loop and end.
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3.3. Population Update Strategy Based on Pareto Levels

The population update strategy of the MoQGA is described as follows. Firstly, com-
bine the offspring population and its parent population when the offspring population
is generated. Secondly, select the same number of elite individuals as parent population
from the combined population, according to the Pareto level of combined population. And
the new parent population is obtained. Thirdly, use quantum rotate gate to update all
individuals in the parent population (the rotation strategy is shown later in this paper).
Finally, the new offspring population is obtained after quantum mutation operation.

The schematic diagram of the selection strategy is shown in Figure 5, where Fg is the
parent population, Sg is the offspring population, P is the population size, and g represents
the current generation. Firstly, combine Fg and Sg into population C. Then, execute the
fast Pareto non-dominated sorting algorithm on population C, and the Pareto levels of all
individuals are obtained. Next, according to the order of Pareto levels from low to high,
put the individuals into the new parent population Fg+1. Finally, when a certain layer of
individuals cannot be completely put into the parent population Fg+1, randomly select
individuals from this layer to fill up the new parent population Fg+1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

sents the current generation. Firstly, combine Fg and Sg into population C. Then, execute 

the fast Pareto non-dominated sorting algorithm on population C, and the Pareto levels 

of all individuals are obtained. Next, according to the order of Pareto levels from low to 

high, put the individuals into the new parent population Fg+1. Finally, when a certain 

layer of individuals cannot be completely put into the parent population Fg+1, randomly 

select individuals from this layer to fill up the new parent population Fg+1. 

Fast-NS

Algorithm

C

P2

P1

C

P3

P4

...

Fg+1

P1

P2

P3

Fg

Sg

 

Figure 5. Selection strategy of elite individuals in the population. 

3.4. Offspring Population Creation Using Quantum Rotate Gate 

MoQGA uses quantum rotate gates to update each individual in the parent popula-

tion Fg+1. The rotation strategy is based on the Pareto dominance relationship obtained by 

the fast Pareto non-dominated sorting algorithm. 

Quantum gates are used to change the probability amplitude of each qubit. Widely 

used quantum gates include: NOT gates, XOR gates, controlled XOR gates and rotate 

gates [48]. The generation of the offspring population is based on quantum rotate gates in 

MoQGA. For the quantum chromosome shown in (20), the quantum rotate gate ( )U  

with a rotation angle   can be expressed as follow. 

 


 

 − 
=  
 

cos sin
( )

sin cos
U  (29) 

One qubit in quantum chromosome is ( ) = ,
T

i i i
x , and the process of quantum ro-

tation is 

   


   

      − 
 = =  =       

       

cos sin
( )

sin cos
i i i

i

i i i

x U  (30) 

where    =    
T

i i i
x  is the qubit after the quantum rotation. As known from (30), the 

direction and size of the rotation angle  need to be determined before performing the 

quantum rotation operation. This paper proposes a rotation strategy based on the Pareto 

dominance of the population. 

Determine the individual’s rotation target at first, and then calculation the direction 

and size of rotation angle. Figure 6 shows how to determine the rotation target. The hol-

low dots in this figure represent the individuals other than Pareto front. The star repre-

sents the individual X need to be rotated. P1 in this figure represents Pareto front of the 

current population, and PF* represents Pareto front of the solution space. The 
1 2 3
, ,p p p  

in Figure 6 are the available rotating targets of X. They meet two conditions, one is that 

they all dominate X, and the other is that they are all located on the Pareto front. The set 

of available rotate targets can be expressed as  = 
1

| ,
X

B p p X p P . Any element of BX 

is non-dominated with each other. So, MoQGA randomly selects an individual from it as 

the rotating target of X, denoted as b(X). 

Figure 5. Selection strategy of elite individuals in the population.

3.4. Offspring Population Creation Using Quantum Rotate Gate

MoQGA uses quantum rotate gates to update each individual in the parent population
Fg+1. The rotation strategy is based on the Pareto dominance relationship obtained by the
fast Pareto non-dominated sorting algorithm.

Quantum gates are used to change the probability amplitude of each qubit. Widely
used quantum gates include: NOT gates, XOR gates, controlled XOR gates and rotate
gates [48]. The generation of the offspring population is based on quantum rotate gates in
MoQGA. For the quantum chromosome shown in (20), the quantum rotate gate U(θ) with
a rotation angle θ can be expressed as follow.

U(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(29)

One qubit in quantum chromosome is xi = (αi, βi)
T , and the process of quantum

rotation is

x′i =
[

α′i
β′i

]
= U(θ) ·

[
αi
βi

]
=

[
cos θ − sin θ
sin θ cos θ

]
·
[

αi
βi

]
(30)

where x′i =
[
α′i β′i

]T is the qubit after the quantum rotation. As known from (30), the
direction and size of the rotation angle θ need to be determined before performing the
quantum rotation operation. This paper proposes a rotation strategy based on the Pareto
dominance of the population.

Determine the individual’s rotation target at first, and then calculation the direction
and size of rotation angle. Figure 6 shows how to determine the rotation target. The
hollow dots in this figure represent the individuals other than Pareto front. The star
represents the individual X need to be rotated. P1 in this figure represents Pareto front of
the current population, and PF* represents Pareto front of the solution space. The p1, p2, p3
in Figure 6 are the available rotating targets of X. They meet two conditions, one is that
they all dominate X, and the other is that they are all located on the Pareto front. The set of
available rotate targets can be expressed as BX = {p|p � X, p ∈ P1}. Any element of BX is
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non-dominated with each other. So, MoQGA randomly selects an individual from it as the
rotating target of X, denoted as b(X).
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Then, perform a measurement on the quantum chromosome of the individual X and
its rotating target b(X). The measured result is expressed as

X =
[

x1|x2| · · ·|xi| · · ·|xM×N×log2 K

]
(31)

b(X) =
[
b1|b2| · · ·|bi| · · ·|bM×N×log2 K

]
(32)

where the value of xi and bi is 0 or 1. The direction and size of rotation angle
θi = s(αi, βi) · ∆θi can be determined according to the measurement result, where αi, βi are
the probability amplitude of the quantum chromosome in (20). The size of the rotation
angle is a constant, named rotation step ∆θi. The direction of the rotation angle is controlled
by s(αi, βi), whose available values are {−1, 0, 1}. They correspond to counterclockwise
rotation, no rotation and clockwise rotation respectively. Table 1 describes how to deter-
mine the rotation angle. δ ∈ (0, 2π) represents the value of rotation step. Use a small δ
will reduce the convergence speed but may obtain better solutions. Because obtaining
waveform set with better metrics have a higher priority, we set δ = 0.1π in this paper.

Table 1. Rotation angle selection strategy.

xi bi ∆θi
s(αi,βi)

αiβi > 0 αi βi < 0 αi = 0 βi = 0

0 0 0 — — — —
0 1 δ −1 0 ±1 0
1 0 δ 0 −1 0 ±1
1 1 0 — — — —

3.5. Quantum Mutation

The last step to generate the offspring population is quantum mutation. Quantum
mutation can improve the diversity of the population and enhance the local search ability
of MoQGA. In this paper, a quantum mutation operation is designed based on the quantum
NOT gate. The steps are as follows.

Step 1 Select several individuals from the population based on a certain probability Pm.
Step 2 Determine several qubits for the selected individuals according to a certain proba-

bility Pb.
Step 3 Perform quantum NOT gate operation on the selected qubits.
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Among them, Pm is the individual mutation probability; Pb is the qubit mutation
probability. They are both constants. The operation of the quantum NOT gate in Step 3 can
be expressed by the following formula.

x′i =
[

α′i
β′i

]
=

[
βi
αi

]
=

[
0 1
1 0

]
·
[

αi
βi

]
(33)

where xi = (αi, βi)
T represents a qubit on the chromosome before mutation, and x′i =

(
α′i, β′i

)T

represents the qubit after mutation. The quantum mutation operation actually changes the
state of the superposition of the qubit state, so that when the qubit is measured, the original
tendency to collapse to the state |1〉 becomes the tendency to collapse to the state |0〉, or
vice versa.

4. Numerical Results and Discussions

This section presents case study results to demonstrate the performance of the pro-
posed MoQGA. In order to facilitate the evaluation of the waveform set, the objective
functions PCCR, PASR, and ISL are expressed in dB.

4.1. Quaternary Phase Code Design

In this subsection, we demonstrate the multi-objective optimization capability of the
proposed method by comparing with NSGA-II through a design case of quaternary phase
set design problem. We also illustrate how the PSL and ISL of the non-dominated solutions
obtained by MoQGA are calculated in our method. The PSL and ISL results obtained in the
later subsections of numerical results are all calculated in this way.

The Pareto front obtained by MoQGA is compared with NSGA-II in Figure 7. The
MoQGA and NSGA-II start with the same initial population, whose Pareto front is rep-
resented by green square dots. The result is obtained at the end of the 300-th generation.
The phase code sequence set size M is set to 4, the sequence length N is set to 64 and the
number of phase values K is set to 4 (That means MoQGA designs quaternary phase-coded
waveform set). It can be seen that the Pareto front obtained by MoQGA has lower objective
functions than NSGA-II, which is one of the state-of-the-art multi-objective optimization
methods. The three views of the obtained Pareto front are shown in Figure 7b–d. From
these results, we can see that MoQGA algorithm can push the Pareto front deeper to the
left-bottom corner where the values of PASR, PCCR and ISL are better.

The non-dominated solutions on the Pareto front obtained by MoQGA are multiple
phase code matrices, while the optimal solution obtained by Multi-CAN or BiST is a phase
code matrix. The result in Figure 7 cannot be directly compared to two standard metrics of
the iterative algorithm and phase-coded waveform set (Such as Legendre sequence [49]
and CAZAC sequence [50–52]), which are PSL = max{PCCR, PASR} and ISL. This paper
calculates the PSL and ISL value of each non-dominated solution. The optimal solution
with the lowest PSL and ISL value is selected as the comparison to BiST, Multi-CAN and
other state-of-the-art methods. The PSL and ISL metrics of a Pareto front are expressed by
(34) and (35), denoted as PSLMoQGA and ISLMoQGA.

PSLMoQGA = min
x∈PF∗

max[PCCR(X), PASR(X)] (34)

ISLMoQGA = min
x∈PF∗

ISL(X) (35)

Table 2 shows the objective function values of the 32 non-dominated solutions on
the Pareto front in Figure 7. According to (34) and (35), the results are expressed as
PSLMoQGA = −14.16 dB (Set 25) and ISLMoQGA = 11.14 dB (Set 30). Since the MoQGA
obtains total 32 non-dominated solutions, different solution can be selected according
to specific practical system requirements. For instance, the Set 1 has the lowest PASR
(−16.83 dB) with high PCCR (−13.01 dB). When the system requires lower PASR, the Set 1
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will be selected. Overall, every solution is non-dominated to each other, so each of them is
better than other 31 solutions in a certain dimension of the multi-objective functions.
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Pareto front.

Table 2. Objective functions values of Pareto front.

No. PASR
(dB)

PCCR
(dB)

ISL
(dB) No. PASR

(dB)
PCCR
(dB)

ISL
(dB)

Set 1 −16.83 −13.01 11.34 Set 17 −15.75 −12.04 11.17
Set 2 −16.83 −10.44 11.30 Set 18 −15.48 −12.94 11.18
Set 3 −16.63 −13.01 11.24 Set 19 −15.44 −12.47 11.16
Set 4 −16.28 −13.82 11.34 Set 20 −15.15 −13.74 11.17
Set 5 −16.26 −13.11 11.40 Set 21 −15.15 −12.14 11.16
Set 6 −16.21 −13.45 11.28 Set 22 −15.05 −11.89 11.15
Set 7 −16.12 −13.07 11.27 Set 23 −14.98 −13.84 11.32
Set 8 −16.12 −11.50 11.23 Set 24 −14.79 −12.94 11.16
Set 9 −16.08 −13.74 11.32 Set 25 −14.48 −14.16 11.37
Set 10 −16.08 −13.25 11.25 Set 26 −14.48 −13.98 11.32
Set 11 −16.08 −13.11 11.23 Set 27 −14.16 −14.16 11.35
Set 12 −15.95 −13.45 11.22 Set 28 −14.16 −12.25 11.13
Set 13 −15.95 −12.02 11.21 Set 29 −14.15 −14.08 11.32
Set 14 −15.87 −13.62 11.27 Set 30 −14.08 −13.07 11.14
Set 15 −15.75 −13.84 11.26 Set 31 −12.58 −14.16 11.28
Set 16 −15.75 −13.18 11.20 Set 32 −15.75 −12.04 11.17

4.2. Binary Code Design under Different Sequence Length N

In this subsection, we compare the MIMO radar binary phase-coded waveform set
designed by the MoQGA with those designed by BiST, Multi-CAN, and Legendre se-
quence set. Notice that the objective function of the BiST is the weighted sum of the
three objective functions [27], F = w1PCCR + w2PASR + w3 ISL. The BiST results un-
der w1 = 0.25, w2 = 0.25, w3 = 0.5 have the best metrics values, which are compared to
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MoQGA in the later part of numerical results. The phase values of some sequence set
are continuous. They are quantized into binary values at first. The design results are
carried out under different code sequence length N, i.e., N = {8, 16, 24, 32, 40, 48, 56, 64}.
The maximum generation of MoQGA is set to 300, and the number of individuals in the
population is set to 100. Consider the two cases of M = 3 and M = 4, the following results
are obtained over 10 trials. Figure 8 shows results under M = 3 and different sequence
length while Figure 9 corresponds to M = 4.
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Figure 9. PSL and ISL values of MIMO radar binary phase code sequence set obtained by MoQGA
and other methods under M = 4 and different code sequence length. (a) PSL; (b) ISL.

Figure 8a shows the result of PSL when M = 3. The red solid line represents the
PSL value of the MIMO binary phase code sequence set designed by MoQGA. As the
code sequence length N increases, the PSL value becomes smaller. The cyan dotted line
represents the PSL value of the Legendre sequence, which is a structured MIMO binary
phase code sequence set (The PSL value of Legendre sequence is 20 log10(2/

√
N) dB [53]).

The pink dotted line represents the result of Multi-CAN, and the blue dotted line represents
the result of BiST. It can be seen that the PSL value of the MIMO binary phase code
sequence set designed by MoQGA is lower than the set designed by Multi-CAN, BiST and
the Legendre sequence. Under the parameters set in this section, MoQGA’s result is 2.64 dB
lower than the Legendre sequence on average, 3.91 dB lower than Multi-CAN, and 2.66 dB
lower than BiST.

Figure 8b shows the result of ISL when M = 3. The lower bound of the ISL value
is 10 log10(M(M − 1)) dB [15], and when M = 3, the lower bound is 7.78 dB, which is
represented by the black dashed line in this figure. The red solid line represents the ISL
values of binary phase code sequence set obtained by MoQGA. It can be seen that the ISL
value increases with the increase of the code length N. The average value of ISL is 0.27 dB
higher than the lower bound. The pink dotted line represents the result of Multi-CAN. It
can be seen that the ISL value of the set obtained by MoQGA is 1.09 dB lower than that
obtained by Multi-CAN on average. The blue dotted line represents the result of BiST
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and its ISL values are all around 8.00 dB, which is close to the lower bound. The result of
MoQGA is 0.05 dB higher than BiST on average. However, for smaller N no larger than
40, the performance of MoQGA outperforms BiST by 0.04 dB. In conclusion, the ISL value
of the MIMO code sequence set designed by the MoQGA is significantly better than that
designed by Multi-CAN, slightly worse than BiST, but also close to the lower bound.

Figure 9a shows the similar result as Figure 8a when M = 4. The result shows that the
PSL value of the MIMO binary phase code sequence set designed by MoQGA is 1.40 dB
lower than the Legendre sequence on average, 3.14 dB lower than Multi-CAN, and 2.26 dB
lower than BiST.

Figure 9b shows the similar result as Figure 8b when M = 4. At this time, the lower
bound is 10.79 dB. The result of MoQGA is also compared with Multi-CAN and BiST. The
result shows that the ISL value of the set designed by MoQGA is 0.81 dB lower than that of
Multi-CAN on average, 0.07 dB higher than BiST, and only 0.18 dB higher than the lower
bound. Regardless of the case of M = 3 or M = 4, as the code sequence length N increases,
the ISL value of code sequence set obtained by MoQGA increases. That is because the
degree of freedom of the phase code matrix increases as the N increases, but the maximum
generation and number of individuals in population is not increased.

4.3. Quaternary Code Design under Different Sequence Length N

In this subsection, we evaluate the proposed method with quaternary code design. The
results are shown in Figures 10 and 11, wherein except for the binary phase code changed to
the quaternary phase code, the other parameters are the same as Figures 8 and 9. Figure 10
shows the PSL and ISL values of quaternary phase code sequence set designed by different
algorithms under different code lengths when M = 3. The red solid line represents the result
of the set designed by MoQGA. The trend of the curve is consistent with the situation of
the binary phase code shown in Figure 8. The cyan dotted line represents the result of the
CAZAC sequence. CAZAC sequence requires that the code sequence length is prime, so
the result of CAZAC sequence is obtained when NCAZAC = {7, 17, 23, 31, 41, 47, 53, 61}, the
prime numbers close to the parameters of other code sequence set. In addition, because the
phase values of CAZAC sequence are continuous, the phase values should be quantized
into quaternary values at first.
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Figure 10. PSL and ISL values of MIMO radar quaternary phase code sequence set obtained by
MoQGA and other methods under M = 3 and different code sequence length. (a) PSL; (b) ISL.

Figure 10a shows the PSL value of the MIMO quaternary phase code sequence set
designed by MoQGA, which is 2.08 dB lower than Multi-CAN, 1.75 dB lower than BiST,
and 1.89 dB lower than the CAZAC sequence on average. Figure 10b shows the ISL result
when M = 3. The ISL result of MoQGA is 0.55 dB higher than the lower bound, 0.36 dB
higher than BiST, and 0.23 dB lower than Multi-CAN.

Figure 11 shows the PSL and ISL results under different code lengths when M = 4.
Figure 11a shows the PSL result. The result of MoQGA is 2.09 dB lower than Multi-
CAN, 1.73 dB lower than BiST, and 1.65 dB lower than the CAZAC sequence on average.
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Figure 11b shows the ISL result when M = 4. The result of MoQGA is 0.36 dB higher than
the lower bound, 0.26 dB higher than BiST, and 0.24 dB lower than Multi-CAN.
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Comparing the results of quaternary code design with binary code design, we can
see that when designing a quaternary phase code sequence set, the obtained ISL value of
MoQGA is much higher than the binary case. And their trend via different sequence length
N is the same. The ISL value increases as N increases. The results indicate that the ISL value
results of MoQGA will become worse when the system’s degree of freedom has increased
while the maximum generation and number of the individuals in the population remain
unchanged. This phenomenon is not obvious but also exists in the results of the PSL value
results. Comparing the PSL results under binary and quaternary case, the binary phase
code sequence set results of MoQGA are 2.66 dB and 2.26 dB lower than BiST respectively
(corresponding to M = 3 and M = 4). However, the quaternary results are only 1.75 dB and
1.73 dB lower than BiST.

4.4. Impact of Sequence Set Size M

In order to analyze the impact of code sequence set size on the PSL and ISL result, the
sequence design parameters are N = 32, M = {2, 3, 4, 5, 6, 7, 8}. The maximum generation
is still set to 300, and the number of individuals in the population is still set to 100. The
following results are still obtained over 10 trials.

Figure 12 shows the PSL and ISL values of MIMO binary phase code sequence set
designed by different algorithms under different values of M. Figure 12a is the design
result of PSL values. The PSL result of MoQGA is 1.14 dB lower than BiST, 2.83 dB lower
than Multi-CAN on average. Figure 12b shows the result of the ISL values. For the seven
values of M in this section, the lower bounds of the ISL values are 3.01 dB, 7.78 dB, 10.79 dB,
13.01 dB, 14.77 dB, 16.23 dB, and 17.48 dB respectively. On average, the result of MoQGA
is 0.73 dB lower than Multi-CAN, 0.05 dB higher than BiST, and 0.16 dB higher than the
lower bound.
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Figure 13 shows the PSL and ISL results under quaternary case. It can be seen that the
PSL value obtained by MoQGA is 0.95 dB lower than BiST, 1.83 dB lower than Multi-CAN.
The result of ISL value is 0.22 dB lower than Multi-CAN, 0.22 dB higher than BiST, and
0.32 dB higher than the lower bound.
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It can be seen from Figures 12 and 13 that the PSL values and ISL values of the
MIMO waveform set designed by different algorithms increase with the increase of the
sequence set size. The design result of the quaternary phase code sequence set is lower
than that of binary case. Although the ISL values of the waveform set designed by different
algorithm are about the same, the PSL values obtained by MoQGA are lower than BiST
and Multi-CAN.

4.5. Poly-Phase Code Design under Different K

In this subsection, code sequence length and set size are set to N = 32 and M = 4. The
result is obtained under different number of phase values K = {2, 4, 8, 16, 32, 64}. Since the
code length of CAZAC sequence should be prime number, set its length to N = 31. The max
generation of MoQGA is still set to 300, and the number of individuals in the population is
set to 100. The following result is still obtained over 10 trials.

Figure 14 shows the PSL values of phase code sequence set designed by different
algorithms. As the number of phase values K increases from 2 to 64, the PSL value of the
obtained phase code sequence set becomes smaller. From 2- to 4-phase code sequence set,
the decline of the PSL value is most obvious. When K = 8,16,32,64, the PSL value has a small
decrease relative to the 4-phase code sequence set. Apart from this result, the PSL value of
the MIMO phase code sequence set designed by MoQGA is lower than BiST, Multi-CAN
and quantized CAZAC sequence.
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4.6. Impact of Random Initialization

The initial population of the MoQGA is generated by random numbers. How random
initialization affects the PSL metric and ISL metric is simulated here. The numerical
simulations of this paper are implemented with MATLAB that runs on a PC with one
Intel Core i7-6700 CPU and 8 GB RAM. When testing PSL and ISL metrics, the parameters
are set as M = 4, N = 64, K = 4. The number of individuals is 100 and the maximum
generation is 300. The results under the same parameters can also be seen in Figure 11,
whose reported values are PSL = −13.74 dB and ISL = 11.34 dB. Then, 500 trials with
random initial populations are calculated. The results are counted in Figures 15 and 16.
It can be seen the distribution of the PSL and ISL metrics are concentrated. The average
value of PSL is −13.68 dB; the standard deviation of the PSL is only 0.13 dB. The average
value of ISL is 11.30 dB; the standard deviation of the ISL is only 0.03 dB. Red lines in
Figures 15 and 16 represent the reported values in Figure 11. The results show that the
random initializations only slightly affect the optimization results of the MoQGA.
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4.7. Correlation Function of Phase Code Sequence Set

In this subsection, we discuss the performance of the proposed method in terms
of PCCR. Figures 17 and 18 show the aperiodic auto- and cross-correlation functions of
the phase code sequence set designed by MoQGA and BiST under M = 4, N = 32, and
K = 4. Different from the experiments above, the results in Figures 17 and 18 are the best
values selected from 10 trials. The peak value of aperiodic cross-correlation function of the
waveform set obtained by BiST is 0.3125, and that of MoQGA is only 0.2519. Convert into
dB form, the PSL value obtained by MoQGA is 1.87 dB lower than BiST. Lower aperiodic
cross-correlation peak means that the interference between different waveforms of the
MIMO radar system is lower. In addition, the solutions on the Pareto front obtained by
MoQGA may have lower cross-correlation function. The radar system could choose a
solution with lower cross-correlation peak, and then use weighted network, mismatch
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filtering, wavelet transform, or artificial neural network to suppress the side-lobe of the
auto-correlation function [54–56].
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5. Conclusions

This paper proposes a new approach for MIMO radar phase-coded waveform design
by formulating the waveform design problem into a multi-objective optimization problem.
Subsequently, based on the Pareto dominance concept, combining the frameworks of NSGA-
II and quantum-inspired genetic algorithm, this paper develops a multi-objective quantum
genetic algorithm to solve the problem. Based on the Pareto level of the population,
MoQGA was designed with unique quantum rotation and population update strategies.
According to extensive numerical analysis, PSL values of the waveform set designed by
MoQGA are 0.95–3.91 dB lower than Multi-CAN, BiST, and structured phase codes like
CAZAC sequence and Legendre sequence. The obtained ISL values are close to the lower
bound. The results under different waveform set parameters show that the gain decreases
when the degree of freedom is large. A large number of trials prove that the results of the
MoQGA are stable. MoQGA may be improved by adjusting the parameters of the MoQGA,
like the population size and maximum generation.
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