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Abstract: Remote sensing technologies are extensively applied to prevent, monitor, and forecast
hazardous risk conditions in the present-day global climate change era. This paper presents an
overview of the current stage of remote sensing approaches employed to study coastal and delta
river regions. The advantages and limitations of Earth Observation technology in characterizing the
effects of climate variations on coastal environments are also presented. The role of the constellations
of satellite sensors for Earth Observation, collecting helpful information on the Earth’s system and
its temporal changes, is emphasized. For some key technologies, the principal characteristics of
the processing chains adopted to obtain from the collected raw data added-value products are
summarized. Emphasis is put on studying various disaster risks that affect coastal and megacity
areas, where heterogeneous and interlinked hazard conditions can severely affect the population.

Keywords: Earth Observation; remote sensing; coastal regions; river deltas; disaster risk management

1. Introduction

Coastal regions are essential for the socio-economic well-being of many nations [1–4].
Low-elevation coastal zones within 10-m topographic relief contain about 10% of the Earth’s
population, and 44% of the population lives within 150 km of the coast, with a density
expected to grow about 25% by 2050. Coastal areas are often large population centers
with multiple uses, needs, and opportunities. They are particularly exposed to extreme
natural and anthropogenically driven disaster phenomena exacerbated by global climate
change [5–11]. Many vital sectors are affected by long-term effects in these zones, such
as monitoring of public/private infrastructures, cultural/natural heritage preservation,
risk management, and agriculture. The cumulative effect of sea level rise (SLR) [12–26],
tidal evolution [27–30], and modulated ocean currents and extreme events [31–36] can
have numerous impacts on coasts, river deltas and inland water zones, including water
management, which can also lead to unpredictable effects on other sectors. As sea level
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increases globally, tides have also shown worldwide changes. These risks are accompa-
nied by concerns about the increasing urbanization of coastal regions and related hazards
(e.g., tidal-induced nuisance flooding, storm surge). The global sea level has drastically
risen during the last century and is expected to increase and possibly accelerate by at
least ~60 cm by 2100 because of ocean warming and glacier melt, but these projections are
spatially dependent, and some regions may expect larger increases [37,38]. Projections of
future sea-level-rise (SLR) at any coastal location of the world up until the year 2150 under
various Shared Socioeconomic Pathway (SSP) scenarios as determined by the IPCC Sixth
Assessment Report can be interactively explored using the NASA Sea Level Projection Tool
(https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool) (accessed on 1 January 2021).
SLR results in negative impacts, including coastal erosion [39–41], flooding [42–44], fresh-
water salinization [45–47], and wetland loss [48]. However, SLR is not uniformly spatially
distributed [49,50] and, consequently, vertical rates of ground subsidence coupled with
global SLR pose variable hazards and risks for many coastal population centers. Moreover,
anthropogenic processes (e.g., land subsidence connected to groundwater extraction [51],
the effects of large land reclamation projects [52], the presence of artificial seawalls) and nat-
ural hazards (e.g., storms and storm surge, cyclones and hurricanes, extreme precipitation
and flooding) exacerbate the disaster risks in coastal zones and coastal cities, amplifying
the vulnerability of the local population. Thus, a detailed understanding of the combined
risk of SLR, tidal evolution, storm surge, and ground subsidence in river deltas and coastal
regions is of great relevance for reducing disaster risk and fostering resilience.

Earth Observation (EO) technologies (e.g., [52–66]) have been proven to be highly
useful for obtaining consistent and frequently updated information on environmental
conditions and their temporal variations. Several works have encompassed the study of
the atmosphere [67–69], the ground surface [62,70–76], and the sea [77–79]. The products of
these investigations can help monitor the evolution of natural and anthropogenic calamities
that affect the population and help local authorities and the national governments design,
maintain, and manage effective disaster plans. Disaster management [80–85] aims to
limit the effects of potential losses from hazards, guarantee timely support to victims of
disasters, and accomplish a rapid and effective recovery. It is well known that an effective
disaster management cycle is composed of four main phases [86–89]: mitigation and
preparedness, which occur before a disaster, and response and recovery, which happen
after the occurrence of a disaster. The availability of spatially distributed data concerning
the potential conditions of risk and the knowledge of the technologies used to recover
these data is strategic for making societies more resilient to natural, anthropogenic, and
technological disasters. In this framework, the need to collect, process, and interpret
large amounts of data to obtain synthetic but comprehensive indicators of the state of a
society that is subject to multi-hazard risks is crucial [90,91]. Spatial Data Infrastructures
(SDI) [92,93] have been established to overcome some of the shortcomings related to a
specific data source, improve data sharing, and develop technologies and standards used
by disaster management officers.

EO technologies play a significant role in all disaster phases, especially in the mitiga-
tion and preparedness ones, by guaranteeing the development of extended investigations
on the state of the observed scenes, searching for precursor signals of potential disasters,
and forecasting future evolutions of natural phenomena, and for identifying critical condi-
tions. Constellations of satellite sensors working from microwave to optical wavelengths
are systematically used to monitor changes in the Earth system and obtain valuable in-
formation about the critical needs. The interest in the analysis of Earth’s environment
through EO systems is also testified by the increased number of publications over the last
25 years which address the use of EO methods for disaster risk management, especially for
coastal regions.

This paper addresses current state-of-the-art RS technologies that can be exploited
to detect changes in coastal environments and study their interactions with sea surface
characteristics and global ocean circulations and dynamics. Particular emphasis is on
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investigations carried out over the most extended river deltas worldwide. Although land
areas of river deltas only comprise 5% of the global area, they are intensively developed and
densely populated areas; river delta regions are where thirteen of the world’s biggest cities
are found. The broad investigations performed by multiple studies demonstrate that river
delta regions are seriously affected by SLR and other natural disasters, justifying the need
for extended analyses of natural and human-made events pertinent to coastal areas [94].

2. Remote Sensing Technologies for the Monitoring of Coastal and River
Delta Regions

The exploitation of Remote Sensing (RS), Geographic Information Systems (GIS),
and Global Navigation Satellite System (GNSS) techniques are crucial to maintaining
efficient natural disaster management chains, and the knowledge of these methodologies
allows the identification of potential gaps existing in the usability of the collected data
and encourages the development of new approaches. It is widely accepted that satellite-
based EO observations complement traditional in situ measurements. They are valuable
tools that allow geospatial products to support decision support systems for different
natural calamities. Over the last two decades, we have witnessed a growing availability
of RS satellite constellations. The knowledge of natural catastrophes [90,95–101] has been
improved using many images with various spatial, spectral, and radiometric resolutions.

Historically, optical remote sensing satellites using moderate and high spatial resolu-
tions have commonly been used for observing coastal environment evolution. The Landsat
satellites have continuously been in operation since 1972, which provides a continuity of
high-quality Earth Observations and measurements, with spatial resolutions of about 30 m.
The unique continuity and reliability of the Landsat data allow long-period time series anal-
yses to investigate the global evolution of coastal regions [102,103]. Advanced approaches
applying spatial and temporal data fusion models have recently been developed to com-
bine Landsat imagery with lower frequency but higher spatial resolution observations and
MODIS and VIIRS observations with a low spatial resolution and higher temporal resolu-
tion [104]. In this context, a significant role is now played by the “Landsat-like” Sentinel-2
constellation that consists of the two Sentinel-2A/B sensors and routinely provides a global
revisit interval of 5 days at a spatial resolution of 10–60 m. Virtual satellite constellations can
be designed by combining Landsat, Sentinel-2, and other optical remote sensing satellite
data with similar resolutions, effectively increasing the global revisit interval. For example,
Landsat-8, Sentinel-2A, and Sentinel-2B data can yield a comprehensive revisit period
of 2.9 days [99,105,106]. It can map dynamic coastal geomorphological changes at a fine
temporal resolution, directly benefiting coastal evolution mapping [107].

Moreover, RS technologies operating at the microwave band of the electromagnetic
spectrum are also extensively employed to recover information about the geometrical and
electromagnetic properties of an imaged scene. Synthetic Aperture Radar (SAR) represents
a uniquely useful microwave instrument for EO, as it can acquire high-resolution data from
the Earth with the potential to operate day and night and in any weather condition [108].
Sequences of SAR data are exploited by interferometric SAR techniques (InSAR) [109–119]
for coastal mapping and monitoring to determine regions where severe changes have
occurred over time, and correlate these changes with shoreline changes, coastal erosion,
groundwater exploitation, etc. Other methodologies, such as measurement of the Doppler
Centroid Anomaly (DCA) [120], can provide a viable and accurate estimation of sea surface
displacements based on a single SAR image, which are related to currents and wind.

Nonetheless, InSAR systems have some limitations that need to be taken into consid-
eration, as they can limit the reliability of the final products to some extent. These include
noise introduced by wind [121], heavy precipitation [122], atmospheric perturbations [123],
decorrelation phenomena [124], topography decorrelation [125], and other limitations that
may arise from an incorrect data processing. If not well understood, the above limita-
tions can be responsible for unreliable results, which could lead scholars to unreal and
biased analyzes.
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The remainder of this section provides technical details on the principal RS tech-
nologies, including both optical and microwave methods, emphasizing their role in the
monitoring of major coastal regions and river deltas, and considers various disaster risk
conditions, such as ground subsidence, flooding, coastal erosion, SLR, and extreme climatic
events. Figure 1 shows the worldwide geographical distribution of major coastal regions
and the major river deltas considered here.
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2.1. Remote Sensing Technologies for Deriving Land-Use and Land-Cover (LULC) Changes

Optical remote sensing imaging, including multi-spectral and hyperspectral RS imag-
ing, is beneficial for extracting coastline information [128–132], deriving long-term land
use and land cover change [133], retrieving nearshore bathymetry [134], mapping coastal
wetlands [135,136], and detecting coastal erosion [137].

Numerous archived images with coarse, moderate, and high resolution from optical
remote sensing satellites, including Terra/Aqua MODIS, Landsat, Sentinel, SPOT, IKONOS,
WorldView, etc., have principally been utilized for long-term monitoring of land-cover
and land-use modifications in river deltas [138]. Many studies have presented extended
investigations of coastal and river delta zones using optical remote sensing image time
series [138–144]. For instance, Seto et al. [139] monitored the land-use change in the Pearl
River Delta using Landsat TM data from 1988 to 1996, revealing that urban areas increased
by more than 300%. The work of [145] investigated land cover changes, magnitude, and
urbanization of Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta, relying
on the classification of Landsat TM and HJ-1A/B images. The results show that urban
land areas have increased by about 28,000 km2, and coastal wetlands and cropland have
simultaneously decreased from 1990 to 2010. The authors of [146] used Landsat and HJ-
1B images to detect the spatio-temporal dynamics of land-use and land-cover Mekong
Delta from 1979 to 2015. During this period, large-scale inland planting land has been
transformed into aquaculture ponds. Landsat images taken during the period from 1995
to 2010 show that the Yellow River Delta landscape has dramatically been changed with
increases in urban and cultivated aquatic areas displacing naturally vegetated areas [142].
Landsat images from 1999 to 2013 were used to identify land-cover alterations in the Parana
River Delta in South America [143]. However, a presentation of accurate and long-term
multi-class land-cover and land-use products of the world deltas is rare. Land-cover and
land-use change maps of global deltas with 10 to 30 m spatial resolution would be needed
using data generated from Landsat, Sentinel-2, and SAR satellites. Acquiring cloud-free
images with optical remote sensors for coastal areas located in cloudy and rainy areas is
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particularly challenging. However, other observation techniques, such as SAR, are not
typically hindered by cloud cover.

Unlike primarily applied to images acquired by optical satellites, a rapidly advancing
research field concerns the development and application of change detection methods with
SAR images at the microwave band [147,148]. SAR data are, thus, used for mapping the
changes of Earth’s surface due to natural phenomena or linked to anthropic activities. In
this context, SAR microwave images are exploited because they bring complementary infor-
mation, being the electromagnetic radiation of microwaves able to penetrate forest canopies.
Many features can be extracted from sets of SAR images and the most commonly used
estimator for the extraction of changes is the backscattering coefficient [149], a fundamental
indicator of the ground conditions which is sensitive to surface roughness and depends on
the polarization of the transmitting/receiving waves. Polarimetric decomposition through
eigenvalue analysis of the complex data allows the identification and categorization of
the type and contribution of the involved scattering mechanisms. These studies provide
meaningful and thorough exploitation of SAR polarimetry [150], including the phase infor-
mation discarded in studies using the backscattering coefficient. An alternative to using
SAR backscattering to detect and map surface changes is exploiting interferometric SAR
products, such as the coherence. Coherent change detection (CCD) techniques make use of
the cross-correlation between the interfering pairs of complex SAR images [151]. A change
of the scene can lead to a sensible variation of the coherence, and the coherence can be used
as an additional way to discover and map such variations. A component of the coherence
that is more difficult to model and relate to physical parameters is the temporal decorre-
lation [150,152], resulting in a combination between natural random changes and those
possibly associated with events that are desired to track and study over time. In coherent
change detection (CCD), ambiguity remains when coherence changes are not causally
related to the events are misinterpreted. Thus, poor change detection performances are
obtained. Further efforts to model the different causes of decorrelation in a coherence map
are still required to discriminate and isolate the temporal decorrelation signals not causally
related to the events under investigation. Tracking coherence differences between couples
of SAR images were used to study different phenomena. A non-exhaustive but nearly
comprehensive discussion of applications using CCD technologies, with a specific focus on
those related to the monitoring of coastal and deltaic regions, can be found in [151,153–158].

2.2. Mapping Coastal Wetlands

Wetlands are highly diverse ecosystems that can provide necessary ecological goods
and services. However, wetlands are threatened by intensive anthropogenic activities,
and wetland loss is a global public concern [159]. In the Parana River Delta, one-third of
wetlands once covered by freshwater marshes have been modified into pastures and forestry
in the past 14 years, as revealed by Landsat images [143]. In the Gulf of Mexico, many
woody wetland regions were replaced by urban land between 2001 and 2006, as quantified
by optical remote sensing satellite imagery [141]. Optical remote sensing has advantages of
inventory and monitoring wetlands over large geographic areas. Landsat, SPOT, NOAA
AVHRR, IRS-1B, and other major satellite systems can be used for wetland identification
and discrimination [160]. Additionally, radar imagery can distinguish between flooded
and non-flooded areas, and radar can work in all weather conditions. The integration of
radar and optical remote sensing images provides a promising methodology for improving
wetland identification and classification.

2.3. Remote Sensing for Coastline Change Extraction

Optical RS technology can help efficiently extract and measure coastline changes with
high accuracy over large areas [161–165]. These changes can be stimulated by natural
phenomena, such as SLR, the effects of hurricanes and possibly, in case of large ruptures,
the impacts of coastal earthquakes. Coastline changes can also be due to the direct involve-
ment of humans. With RS techniques, the change detection of the coastline’s orientation,
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position, and shape [166] can retrieve valuable information on the inter-relationships be-
tween SLR and tidal currents, wave energy, land subsidence, and human intervention.
Thus, the mapping of coastline changes is fundamental for coastal management, land use
land change investigations, autonomous navigation, coastal erosion study, the planning of
protection infrastructures, and an overall assessment of the increased risk of inundation
at the coast. Coastline extraction is related to boundary extraction and image segmenta-
tion and belongs to the class of machine vision approaches [166,167]. Coastline changes
have manually been outlined by expert photo interpreters who have visually inspected
aerial photographs for many decades. However, these operations were costly and time-
consuming. The frequently used automatic interpretation-based methods are mainly based
on edge detection, index analysis, threshold segmentation, region growth, neural network,
and sub-pixel [128,130,168–174]. Landsat imagery has efficiently been applied to monitor
coastline evolution using dozens of years of data [175,176]. Long-term coastal changes of the
Yellow River Delta have been determined based on decades of Landsat imagery. Sediment
siltation, erosion, and human activities drive the dramatic deltaic coastline change [176].

Detecting coastal erosion with optical remote sensing imagery strongly depends on
the accuracy and frequency of coastline extraction. High resolution optical remote sensing
imaging methods, such as IKONOS, WorldView-2, WorldView-3, QuickBird, and GF-1,
have been applied to extract coastline changes and geomorphology changes and map
coastal erosion at a fine resolution [135,177–179]. Twenty-nine deltas of the world are
in a state of overall erosion, determined by complementary analysis and quantification
of coastline changes using satellite images of Landsat, SPOT-5, and SPOT-6 taken from
1972 to 2015 [131].

Although many coastline extraction methods using optical remote sensing imagery
have been developed over the decades, there is no universally valid coastline extraction
technique. All existing algorithms are applied to images of individual satellites or for
applications. It is also challenging to choose an algorithm for an application, because there
is still no established theory for this purpose and no index for comparing and evaluating
the performance of different methods in other specific cases. Complete automatic coastline
extraction methods and algorithms using high-resolution optical remote sensing imagery
still need to be developed, and time series images of “30 m MODIS” and virtual satellite
constellations promise future research directions. Despite the advantages of optical satellite
remote sensing, there are also some obvious limitations due to cloud coverage on rainy days,
solar illumination, and natural meteorological conditions. Microwave data can circumvent
these problems, because they are not significantly affected by these factors. As clarified
below, the exploitation of independent information from sets of radar images helps obtain
accurate coastline change maps. Some approaches also use coherence information between
couples of complex-valued synthetic aperture radar (SAR) images to discriminate the land
and sea boundaries [180].

2.4. Ground Deformation Analyses

In coastal and river delta regions, ground deformations due to subsidence are poorly
understood in many cases. Ground subsidence of deltas can occur naturally due to sed-
iment compaction, peat oxidation, and tectonics [94], but can be highly exacerbated by
anthropogenic activities, such as reduced sedimentation due to embankments, over the
withdrawal of sub-surface fluid [181], underground construction [182], and land reclama-
tion [183–187]. Coastal subsidence can cause an increase in relative sea level rise (RSLR),
increased flooding frequency and areal extent, permanent loss of land elevation, subsequent
coastal line retreat, failure of coastal defenses, wetland loss, and amplified groundwater
salinization. In some cases, the amplitude of ground subsidence may be much larger than
absolute SLR, which may amplify local RSLR. Precise measurements of the Earth’s surface
deformations are routinely recovered by exploiting the Interferometric synthetic aperture
radar (InSAR) technology. It relies on extracting the phase difference between complex-
valued SAR images collected at separate times and from slightly different illumination
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angles [188–190]. Many advanced interferometric SAR methodologies [116,118,191,192]
have been developed to process heterogeneous sets of SAR acquisitions collected from dif-
ferent orbiting SAR constellation sensors during the last two decades. These research tech-
niques have greatly advanced from the investigation of single deformation events [193,194]
to follow the time evolution of the ground deformations through multi-temporal differen-
tial InSAR (MT-InSAR) techniques [110–113,116,118,119,195–197]. Historically, pioneering
works developed for the analysis of ground deformations of coherent, pointwise targets
(i.e., permanent scatters (PS)) were made by Ferretti et al. [197,198]. Many other PS-related
works have been developed [112,114,199–202], which increased the attainable measure-
ment points’ density. Other PS-like approaches have been used, e.g., [203–205]. Among
the various techniques, the Small Baseline Subset (SBAS) algorithm [110] was developed to
produce a ground displacement time series of distributed scatterers (DS) on the ground
by processing multi-look interferograms. Many alternative methods for the analysis of
DS targets [111,115,195,206–213], and the generation of 2D (3D) displacement maps from
multi-satellite/orbit data [214,215] have been designed. In the work of [216,217], a method-
ology was also proposed to employ the phase values of intermittent coherent DS targets.
The recent work of [119] proposed an extension of the canonical SBAS approach to better
operate in mid-to-low coherent scenarios, based on Weighted-SVD (WSVD), which exac-
erbates the concept of intermittent coherent targets and produces reliable displacement
time series with variable sample length. Recently, another class of InSAR methods that
explore the temporal relationships of a set of interferograms has also been proposed to
enhance the InSAR performance [109,218–223]. InSAR products are primarily used to
monitor ground stability and perform analyses of the potential risk in zones subjected
to natural or anthropogenic causes of ground displacements. Interested readers can find
an in-depth description of such methods and a series of applications in heterogeneous
scenarios in [76,190,224–245]. Coastal ground subsidence has been investigated world-
wide, in locations such as Houston (U.S.) [246], Mexico City, the Mississippi River delta
(U.S.) [247], Norfolk and Miami Beach on the U.S. Atlantic coast [248], the Ionian coast of
south-eastern Sicily (Italy) [249], the Volturno River Plain (Italy) [250], the Friuli Venezia
Giulia coastal plain (Italy) [251], the Venice coastland (Italy) [252], the Gippsland Basin
(Australia), and many other locations. Deltaic regions are significantly more susceptible
to subsidence than other coastal areas. Previous studies have reported that many modern
river delta regions are sinking due to ground subsidence and SLR [253], such as the Ganges–
Brahmaputra–Meghna delta, the Mekong Delta [51], the Mississippi River Delta [254], the
Yellow River Delta [255,256], the Yangtze River Delta, and the Pearl River Delta [257]. The
Ganges–Brahmaputra–Meghna delta is the second largest globally, with over 100 million
residents. A wide range of subsidence rates has been reported in the literature; however,
the causes of subsidence in the delta are still not well understood, and reliable subsidence
data for the whole region are scarce [258]. Ground subsidence has also been reported
in the Yellow River Delta, mainly due to oil extraction and sediment consolidation and
compaction [255,256]. Excessive groundwater withdrawal, rapid urbanization, sediment
consolidation, and compaction are responsible for the ground subsidence of the Yangtze
River Delta [182,259]. Ground subsidence in densely populated deltas is also a significant
source of uncertainty in RSLR calculations.

To show the potential of InSAR methodologies, we portray in Figure 2 some examples
of ground displacement maps. Specifically, Figure 2 shows the mean ground displacement
velocity maps of the Saint Petersburg (a), Shenzhen (b1,b2), and Shanghai (c) regions,
respectively. As detailed in [240,260,261], the ground deformation in these coastal regions
is mainly due to terrain subsidence linked to land reclamation projects.
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Petersburg (a), Shenzhen (b1,b2), and Shanghai (c). (a) The geocoded mean line-of-sight deformation
velocity map of Saint Petersburg retrieved using Sentinel-1A/B descending track images acquired
from 2016 to 2018 (refer to [261]); (b1) The map of 2007–2010 vertical (subsidence/uplift) deforma-
tion velocity derived from ENVISAT ASAR images (refer to [240]); (b2) The map of vertical mean
deformation velocity derived from Sentinel-1A data acquired from June 2019 to June 2020; (c) The
LOS mean displacement velocity map retrieved by the COSMO-SkyMed dataset acquired from 2013
to 2016 (refer to [240]).
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2.5. Sea Surface Monitoring through SAR-Based Approaches

Sea surface can be evaluated by studying and estimating sea state parameters, such
as bathymetry, waves, currents, wind vectors, etc. [262]. Several sea state observation
instruments are available for marine monitoring, such as waveform buoys, weather stations,
scatterometers, anemometric stations, etc. Such instruments can provide continuously
acquired data but only at fixed locations, usually installed in specific strategic coastal areas.
In recent years, SAR has allowed a new and exciting direction of remote monitoring, thanks
to its synoptic vision and the ability to provide data covering large areas [263]. Hence,
SAR features overcome limits related to some of the classic in situ instruments, and SAR
images have been integrated with optical or multispectral images. Furthermore, SAR can
be mounted on different platforms, such as aircraft or satellites [108]; this opportunity can
provide other techniques and applications to monitor the sea surface state [120].

In the context of marine monitoring, existing satellite SAR systems are widely used
to detect oil spills, and there are many other surface characteristics (such as wind, current
characteristics, natural films, surface temperature patterns, rain cells) that provide oil-like
radar signatures.

However, operational use of SAR (satellite or airborne) is limited by some factors.
Satellites sensors move along orbits, and therefore, they are governed by celestial laws; this
implies, first of all, that the revisiting time, after which the same region is imaged again, is
fixed and cannot be changed in the case of emergencies. Moreover, the orbits covered by
remote sensing satellites, cannot allow north-south deformation detections. Accordingly,
spaceborne sensors could be not flexible enough to be helpful in catastrophe management.
In this context, airborne SAR platforms could allow overcoming the above-mentioned limits
while also assuring spatial resolutions higher than those of some satellite SAR sensors, due
to smaller acceptable dimensions of transmitting antennas. Airborne SAR sensors were
developed due to their flexibility and lower cost; hence, they are more efficient than the
much more expensive satellite missions [264].

Nevertheless, airborne raw data are affected by the so-called motion errors, which
are due to the presence of atmospheric turbulences that produce sensor track deviations
from an ideal straight track. Motion errors, if not properly accounted for during the SAR
focusing procedure, may seriously damage the quality of the final image. Accordingly, the
so-called Motion Compensation (briefly MOCO) algorithms are commonly applied within
the SAR focusing step with the aim of achieving the same image accuracy usually reached
with spaceborne SAR data [265,266].

Consequently, the choice of the SAR platform is made based on the type of analysis to
be developed.

The use of SAR data to estimate sea state parameters is based on the computation of
the SAR signal backscattered to the radar instrument from the sea, which is governed by
the interaction between the transmitted electromagnetic waves and short surface waves.
The development of algorithms to extract surface currents from a collected SAR image’s
amplitude signal is a somewhat complicated issue. Furthermore, the SAR intensity’s
exclusive use is not enough for the direct measurement of sea currents due to many
variables that globally influence the sea backscattering, such as the wind, bathymetry, etc.
Therefore, the joint use of amplitude and phase information embedded in the SAR images
provides the means to access more direct measurements of interest parameters [120,267].

Marine surface current velocities are a crucial sea state parameter that can also be
estimated through SAR sensors, thanks to many research efforts in this field in the last
years [120,267–272]. Today, SAR-based applications are relatively well-established for
estimating waves and the derivation of wind over the sea surface [273–275].

Surface current velocities can be estimated using two different SAR data processing
techniques: the Along-Track Interferometry (ATI) [271] and Doppler Centroid Anomaly
(DCA) method [120]. Both methods only measure the radial component of the sea surface
velocity, i.e., the radar-to-target line-of-sight (LOS) component. However, it is worth noting
that the radar Doppler frequency results from several factors, e.g., ocean currents, wind
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fields, ocean waves, and wave–current and wave–wave interactions [120,269,270], and
extra work is required to separate the various mechanisms.

For ocean current estimation, it is necessary to integrate data acquired from SAR
with wind models, ocean models, and real data obtained from in situ instruments (when
available), such as buoys, to get a quantitative and precise description of the current sea
state [276,277]. Currently, only a limited number of operational services exist; thus, research
in this field is substantial. Consequently, many efforts are still required to foster SAR data
for coastal applications, considering the potential social and economic returns: regional
coastal protection, ship traffic monitoring, electrical energy generation from the sea, etc.
Additionally, the results obtained in this framework could also be helpful for the analysis
and characterization of meteorological phenomena.

ATI requires that the SAR images be achieved from along-track displaced antenna
phase centers [278]. The ATI technique typically operates on a SAR data pair, which allows
for the combination of two (or more) SAR data points collected over an identical area;
data are collected from different orbital positions but separated by a physical baseline
along the azimuth direction. The estimated phase differences are proportional to the
Doppler shifts of the backscattered radar echoes [279]. More specifically, when two SAR
antennas are dislocated along the radar flight track (azimuth direction), the radar signal
related to the identical target is collected by the different antennas within a short time
lag. Accordingly, the targets’ movements translate to phase shifts on the interferometric
phase difference [268,280].

In the framework of marine observation, examples of fast-varying phenomena are sea
current surface velocity and vehicle fluxes in marine environments; hence, their monitoring
necessitates a technique, such as ATI, able to measure changes in the observed scene over a
short time scale [280,281].

This technique has undergone significant development in recent years. Still, it requires
unique sensor characteristics: namely, the possibility of having two antennas spaced along
the azimuth direction, which can achieve images with a short time lag. For this reason, this
technique is often successful in using SAR sensors mounted on airborne platforms.

The DCA technique, unlike ATI, exploits a single SAR image and relies on measuring
the Doppler shifts induced on the SAR images by the LOS component due to the sea surface
velocity [120]. The DCA is obtained by subtracting from the Doppler Centroid the term
corresponding to a “stationary” scene, e.g., the scene where all scatterers move at the same
velocity associated with the Earth’s rotation [275]. Depending on the radar wavelength,
the sea surface velocity can be obtained from DCA using a given factor. Furthermore, in
the literature, some studies have used DCA to analyze the sea state by considering surface
currents and wind influence [273–275,282].

The DCA has the potential to obtain information on the surface current with a single
SAR image, acquired with any sensor and platform. Therefore, the use of this technique is
very flexible.

Sea state is generally defined for the ocean where statistical characteristics of the wave
field do not vary appreciably [262]; therefore, ocean areas typically represent the starting
point. Hence, several SAR technology applications consider case-study areas in oceans or
coastal regions [120,263,270].

Current interest has also been oriented to inland seas, where currents occur in a much-
limited range. The Mediterranean Sea represents an interesting case study for estimating
sea surface currents with the SAR techniques [275,281,283,284]. Furthermore, recently, the
use of SAR images has been applied for the analysis of inland waters. In the literature,
SAR applications on lakes are mainly limited to the analysis of the backscattered signal
amplitude. In these cases, the SAR amplitude is used as a support for optical or thermal
imagery [285–287]; moreover, there are some studies that show the potential of using SAR
images to recover the size of surface eddies in large lakes [288] and information distributed
in space on the intensity of the wind [289]. Finally, a preliminary study was also presented
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in which the possibility of recovering surface water velocity from SAR Doppler analysis in
medium-sized lakes is investigated [265].

To show the potential of these methodologies in an operational context, we show in
Figure 3 some results related to an acquisition performed in January 2013 in an area along
the south coast of Italy that includes the Volturno river estuary (see the zoomed-in area of
Figure 3). The test area covers about 7 km × 3 km (azimuth and range) along the coastline.
Data were collected in January 2013 by an airborne SAR system, the InSAeS4 system (also
called TELAR), an Italian-operated, InSAR-oriented airborne platform operating at the
X-Band [290,291]. The area encompasses the Volturno river estuary (see the zoomed-in
area in Figure 3). The test area covers about 7 km × 3 km (azimuth and range) along the
coastline. On the right side of Figure 3 is the estimated sea surface velocity map. The mean
value decreases toward the coast, which is expected behavior for a marine environment.
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Figure 3. Test site presented in [281], situated along the coast of southern Italy. The middle panel
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obtained from the ATI technique [281].

A further example of applying the DCA technique in the Mediterranean Sea can be
found in [275]. The analysis proposed in this work was oriented to understand the influence
of wind on the sea surface radial velocity estimated from the Doppler analysis of SAR.
This methodology is based on the joint use of three modules exploiting SAR data: the
DCA map, wind information (e.g., speed and direction), and the Doppler map associated
with wind. The results demonstrate that the use of DCA for estimating surface speed can
provide valuable results for the internal seas, and the integrated use with wind analysis
represents a helpful methodology for a precise estimation of the sea surface velocity. The
results shown in Figure 4 and obtained from DCA evidence there is a relatively good
correspondence between the surface velocity obtained from DCA and the surface velocity
due to the wind contribution.
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Figure 4. The test site presented in [275], is situated in southern Italy near the Gulf of Naples and is
indicated by red on the left panel. On the right, panel (A) presents the surface radial velocity map,
and panel (B) displays the surface radial velocity due to the wind, both obtained from the DCA
technique [275]. The results are obtained from an ASAR ENVISAT acquisition on 11 January 2006.

3. Experiments

In this section, we address two main topics: (i) the exploitation of advanced RS
techniques to evaluate the impacts of global climate change and anthropogenic activities on
the coast of large river delta regions and (ii) the study of the interactions between the ocean
and the coast using RS methods and the evaluation of their implications in response to
projected climate change. We summarize the main findings of some recent case studies for
selected areas, including major river deltas in China and Eastern Asia, the Po River Delta
and the Venice Lagoon in Italy, the St. Petersburg Bay in Russia, the Nile Delta in Egypt,
the Mississippi River Delta in the U.S., and the Amazon River in Brazil (see Figure 5). Of
great concern is that most major river deltas are sinking at a larger rate than SLR [253],
which significantly increases the impact of relative sea level rise. Many deltas are extremely
sensitive and vulnerable to the cascading effects and increased risks of global climate
change, local ground subsidence, and intensive human activities. The acceleration in global
mean sea level, increasing frequencies of extreme weather events, ground subsidence,
declining upstream sediment fluxes, and decreasing wetland areas impact the integrity
of the delta regions of the world. Recently, the work of [126] has systematically assessed
the changing risk profiles of 48 coastal deltas and found that most coastal deltas are at an
elevated risk level. Here, we emphasize how RS technologies are valuable instruments
for detecting, monitoring, and quantifying risk conditions and the potential impacts on
land and population centers. The following sub-sections address specific natural and/or
anthropogenic phenomena that affect coastal regions, including the risks due to coastal
erosion, coastal flooding and extreme meteorological events, sea level rise, and storm surge.
Next, we will focus on selected delta river zones and provide a brief overview of recent
investigations performed in these regions.

3.1. Coastal Erosion Risk

Accelerated coastal erosion due to human activities, such as a global reduction in
sediment flux induced by dams, oil and gas extraction in alluvial plains and nearshore
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regions, illegal sand excavation, etc., and an ongoing warming climate are now common
issues for all coasts of the world [292]. Coastal erosion can increase groundwater salinity
and saltwater intrusion. Over half of the delta regions of the world have conditions of
overall erosion in terms of reduced river sediment loads [131]. River bed diversions induced
by oil industry activities have caused the shoreline dynamics of the Yellow River Delta to
undergo erosion and accretion of 13 to greater than 21 km over four decades, as observed
by Landsat observations [163]. In total, 68% of the Mekong delta shoreline is undergoing
erosion because of the Mekong River’s reduced sediment loads, mainly caused by an
increased number of dams and large-scale sand mining [293]. Coastal erosion rates have
generally increased in the entirety of the Russian Arctic [294]. Around 85% of the river
deltas of the world shrank over temporal and spatial scales in the first decade of the 2000s
due to sediment load decline, and this trend is expected to become more severe in the
following decades [253]. Intensive human activities have dramatically reduced coastal
wetland areas. Accelerated SLR could also exacerbate saltwater intrusion. Higher saltwater
levels can contaminate fresh surface and groundwater resources by infiltrating coastal
aquifers. Increased salinity intrusion could significantly threaten local ecosystems, crop
yield, tree production, etc. By analyzing about 250,000 coastal groundwater wells in the
U.S, Jasechko et al. [295] found that the groundwater levels of a majority of the observed
wells located along more than 15% of the contiguous coastline are currently below sea level.

3.2. Flood Risk

Coastal flood risk and adaptation are worldwide concerns [296,297]. Previous studies
suggest that about 40 million people living in coastal port cities are likely to be subject
to at least one major coastal flooding event each century [298]. Using global re-analysis
products of storm surge and extreme sea levels and a hydrodynamic model, Muis et al. [299]
estimated 76 million people could be subjected to a once a century flood event. The most
significant inundation mainly occurs in the delta regions of Asia and Europe, especially
China, the Netherlands, Vietnam, and Egypt, all of which have relatively sensitive flood
exposure. European coasts will be strongly impacted by climate-induced flood risk [11].
It has been estimated that by the end of 2100, five million Europeans will be under the
threat of a 100-year extreme sea level event [11]. Previous investigations have documented
that low-lying river deltas, especially cities, are significant flood risk hotspots [299–301].
Global climate change and local ground subsidence can significantly increase the exposure
to coastal flooding risk. Previous research has employed different approaches (e.g., GIS-
based method, RS, hydrodynamic models, etc.) to map and simulate flood inundation in
floodplains [302–316]. Various numerical models have also been developed for floodplain
delineation/flood inundation and flow simulation [317–320].

Satellite RS is a valuable tool for detecting and monitoring flood phenomena [318,321],
allowing the differentiation between inundated and non-inundated areas. Flood risk in-
creases due to urban growth, land subsidence, and climate change [322]. Identifying areas
that are more prone to extreme floods helps optimize urban planners’ civil protection actions
and evaluate damage [323]. To reliably estimate the losses in affected regions, comprehen-
sive maps of the flooded areas and the computation of the water level and flow velocity are
required [324–327]. Recent advances in RS technology have allowed the generation of rapid
damage prediction maps and associated models helpful in a flood event [e.g., the Coper-
nicus Emergency Management Service (https://emergency.copernicus.eu/) (accessed on
1 May 2021)]. Satellite RS data are beneficial to detect the impact of severe floods at distinc-
tive spatio-temporal resolutions, using multispectral [328–332] or SAR [333–339] images.
SAR data are beneficial for sub-tropical cloud-prone areas, and consecutive SAR time series
help a multifaceted understanding of flood regimes. For instance, Kuenzer et al. [321]
used ENVISAT ASAR-WSM time series with a spatial ground resolution of about 150 m
for analyzing flood dynamics and floodwater progression in the Mekong River Delta.
Associated with coastal flooding risk is the growing worldwide occurrence of extreme
weather events and rapidly evolving flash floods that overpower the capacity of coastal
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populations to develop effective responses [340,341]. RS satellite data are widely used to
monitor rapid flash floods’ effects and forecast their occurrence and strength. For instance,
a recent study has documented a remarkable increasing tendency of extreme rainfall in
the vicinity of major Chinese delta rivers, including the cities of Shanghai, Suzhou, and
Nanjing, from 1998 to 2015 [342]. Several advanced applications of RS technology for the
evaluation of the effects of extreme rainfall have recently been proposed [343–346]. Finally,
it is also worth highlighting that weather radar has assisted predictions for more than
50 years by providing rainfall estimates and helping develop proper hydrological models
(see, for instance, [347,348]).

3.3. Sea Level Rise and Tidal Evolution
3.3.1. Sea Level Rise

Global sea levels are increasing and likely accelerating worldwide, escalating impacts
on coasts. Additional risks are brought by the increased probabilities of erosion, tidal
flooding, and modulations in annual or seasonal cycles related to weather and storms. Low
relief and low elevation deltas are regions particularly susceptible to the effects of global
SLR. Some deltas are already experiencing submergence risk because of the combined
impact of land loss, reduced sedimentation rates, and SLR [349]. Hinkel et al. [296] found
that damage due to coastal flooding events is likely to increase significantly, and the risks to
populations and coastal assets in the coastal floodplain will magnify. Another critical factor
is that tidal range may often vary in river delta regions due to the combined consequences
of alterations in background water levels and improvements to harbors and other coastal
infrastructure projects that can modify friction and resonance. Changes in annual cycles
may also occur in some locations, which may amplify the seasonal effects of water levels.
Mean sea level (MSL) changes can often be severe in low-lying coastal regions, especially
true for population hubs located in estuaries and river delta regions. The combined changes
of MSL, tidal evolution, and annual variability can lead to higher rates of “total” water
levels, known as peak extended water levels (PEWL). A recent global survey of PEWL at
long-period tide gauges demonstrated that rates of PEWL can often be much larger than
MSL, up to 8 mm yr−1, which is over twice the global average of MSL [350]. Figure 5
displays PEWL rates and the difference between mean extended water level rates (MEWL; a
time-variable expression of MSL) over the past 50 years, showing significant differences between
the two estimates in the western Atlantic and Pacific Oceans. These changes may trigger various
local water depth changes in coastal regions, impacting entire coastal ecosystems.

3.3.2. Tidal Evolution

The water depth changes brought by SLR may, in turn, modulate the response of tides
via resonance changes, frictional changes, and other mechanisms [29,351]. Changes in
tidal range, tidal currents, and energy distribution can induce severe adverse effects on
human society, since the economy of the estuarine population depends on the stability of
the coastal ecosystem, including fisheries, farming, and tourism. Extreme storm events (e.g.,
hurricanes, typhoons, or tsunamis) may lead to catastrophic consequences to estuarine
cities through extensive damage to critical coastal infrastructure and disturbance of the
local economy. However, both hurricanes and tsunamis are short-lived, and estuarine and
coastal societies have developed knowledge about such extreme events that allow them
to respond promptly and quickly recover from natural disasters. Many local populations
have implemented estuarine developments, including harbors, roads, and public infras-
tructures. Storms and other extreme events can have severe short-term impacts on coastal
environments, but on longer timescales, the average characteristics of the coastal zones,
such as MSL and local tidal range, have historically remained relatively constant. However,
under the present-day scenarios of increasing SLR accompanied by the associated changes
in tidal range, many coastal communities are now experiencing an alteration of “stable
background” water levels, and prior assumptions and measures adopted to face worst-case
scenarios may no longer be valid, making coastal defense infrastructures insufficient to
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mitigate upcoming extreme events. In some locations, the changes in MSL and tidal range
might occur rapidly, such as that seen in the developed harbor regions of Hong Kong [352].
Thus, it is difficult to predict future coastal flooding events without a careful individual
analysis of each coastal location. The combined response of MSL and tidal range can vary
significantly by location.
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Tides are evolving at different rates in many coastal zones due to non-astronomical
mechanisms [353–355]. Regionally based investigations have investigated changes in the
diurnal and semi-diurnal tides of the Eastern Pacific [27], the Gulf of Maine, [356], the North
Atlantic [354,357], in China [358,359] and Japan [360], and of different Pacific islands [361].
Tidal evolution might result from harbor modifications [196,362–366], often due to land
reclamation or channel deepening. MSL may directly influence tidal evolution or be related
to tidal variability through secondary mechanisms in several ways and at different scales,
from a local to a basin-wide (amphidromic) level. Some possible mechanisms include a
“coupled oscillator” effect between the open ocean and the continental shelves [367,368],
through warming of the upper ocean [33], which may lead to internal changes in stratifi-
cation properties and modulation of thermocline depth, and modifications of the surface
manifestation of internal tides [369].

3.3.3. Tidal Anomaly Correlations (TAC)

Short-term tidal evolution can be as important to coastal zone dynamics as long-
term changes in tides and SLR. The relationship of tidal sensitivity to short-term sea
level fluctuations has been previously explored using the tidal anomaly correlation (TAC)
method [29,351,370,371]. Surveys of the Pacific and the Atlantic Ocean have shown TACs to
be significant at over 90% of locations analyzed, with the most considerable changes often
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being found in estuarine or deltaic regions. Hong Kong, located near the Pearl River Delta,
shows a significantly positive tidal sensitivity, further investigated in a focused regional
study [352]. Tidal anomaly correlations (TACs) respond to short-term tidal variability
to short-term MSL fluctuations, which express individual tidal components’ sensitivity
to any given sea level perturbation. A parallel approach can combine the largest tidal
amplitude variabilities and be summed as a proxy for the change in tidal range or the
highest astronomical tide (δ-HAT). Both TACs and δ-HATs can be helpful to understand
how tidal evolution can complicate the future overall behavior of total water levels at
coastal and estuarine locations as SLR continues. Locations with strong positive values
can indicate where tidal changes are reinforced as MSL increases and suggest the most
extensive positive feedback to total sea levels, thus showing higher probabilities of flooding
coastal and estuarine locations. In Hong Kong, near the Pearl River Delta, some of the
most substantial variability of the tidal range was observed [352], and some results of
this study are shown below in Figure 6. Individual TAC results are widely observed and
mixed between positive and negative at the Hong Kong tide gauge network (comprising
12 separate locations), but the δ-HATs are only significant at less than half of these gauges,
with substantial positive values seen at the harbor locations of Quarry Bay and Tai Po
Kau, which have been significantly modified over the past century. This demonstrates the
impacts that anthropogenic modifications can have on coastal zones.
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The variability of tides with MSL variability can also be dependent on frequency. A
new study [372] analyzed the tidal variability in the Indian Ocean on multiple timescales,
considering seasonal, annual, and interannual modulations of tides and MSL separately.
The separation of different timescales is helpful to understand the reasons for the variability,
and the most prevalent correlations seen were in the annual frequency band, which may
indicate that the relevant mechanisms have to do with seasonal meteorological variability.
For instance, the Indian monsoon system and its pattern of changing winds and extreme
rainfall is likely the reason behind the strongly positive tidal variability observed in the
Ganges Delta region. Figure 7 displays these results for the M2 tide (the twice a day lunar
tide). In another recent study, the long-period (monthly and fortnightly) tides’ behavior
in estuaries was considered in the Yangtze River case [373]. Whereas incoming high-
frequency tides will quickly diminish while travelling upstream in a river due to friction
from working against the outgoing river discharge, it was revealed that low-frequency
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tidal components might amplify when moving upstream, potentially adding an extra
0.5 to 1.0 m to an upstream river stage level for hundreds of kilometers. This effect may
be a severe complication during high river flood events, particularly for the Yangtze River
watershed, which saw its worst flooding season in decades in 2020 and can undoubtedly
increase flood risk and waterlogging in the estuary tidal flat regions.
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making them vulnerable to cyclonic storms. The IBTrACS database (v04r00) (downloaded 
from the IBTrACS website https://www.ncdc.noaa.gov/ibtracs/index.php?name=ibtracs-
data; IBTrACS-All data v04r00 all storms points shapefile (accessed on 1 January 2021)), 
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Figure 7. M2 TACs in four different regions of the Indian Ocean: (a) the Arabian Sea, (b) the Bay
of Bengal, (c) Africa, and (d) the Australian region. Symbols inside boxes indicate three different
frequency bands: squares are the sub-annual (SA) band, circles are the annual (ANN) band, and
stars are the interannual (IA) band. Station names are also indicated. Color shading of the symbols
indicates positive (shades of red) and negative (shades of blue) TACs, according to the legend at
the bottom right. Background colors show tidal amplitudes (corresponding to the color bar at the
right of each subplot in units of meters) and phases (solid lines, in increments of 30◦) from the TPXO
7.2 global solution [374]. The figure is taken from [372].

3.4. Storm Surge

Storm surge is the most severe impact of tropical cyclones in river deltas. The combined
consequences of high winds and water levels are responsible for considerable property dam-
age and high causality rates in densely populated delta river regions worldwide [298,375].
In total, 26 of 48 major coastal deltas are located in tropical areas (see Figure 5), making
them vulnerable to cyclonic storms. The IBTrACS database (v04r00) (downloaded from
the IBTrACS website https://www.ncdc.noaa.gov/ibtracs/index.php?name=ibtracs-data;
IBTrACS-All data v04r00 all storms points shapefile (accessed on 1 January 2021)), which
contains complete global datasets of historical tropical cyclone tracks from 1842 to 2019,
is used to calculate the density of all tropical cyclone tracks, shown in Figure 8. Many
previous studies have documented a substantial global increase in severe cyclones and a
consistent shift of the latitude of maximum tropical cyclone intensity, which agrees with the
projections of future climate models [376]. Many studies have also assessed the potential
risk of tropical cyclones in the coming decades and centuries in densely populated river
delta cities/regions. Table 1 shows the risk rate index of 48 major coastal cities, and Table 2
summarizes the risk conditions of the world’s most significant river delta regions.

https://www.ncdc.noaa.gov/ibtracs/index.php?name=ibtracs-data


Remote Sens. 2022, 14, 2384 18 of 44
Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 49 
 

 

 
Figure 8. Locations of 48 major coastal deltas collectively hold over 340 million inhabitants [377]. 
The labeled number of each delta represents the risk rank trend due to increasing exposure associ-
ated with anthropogenic relative sea level rise, as estimated by [126], and the risk rate of change 
index (rank) is listed in Table 1. The Krishna delta (Rank 1) has the highest risk trend. All deltas are 
listed in Table 1. According to the color bar at the bottom right, the density of all tropical cyclone 
tracks from 1842 to 2019, as determined by the IBTrACS database, is overlaid in red contours. 

The work of [378] examined the spatio-temporal patterns and the return periods of 
tropical storms and hurricane landfalls along the East and Gulf Coasts of the United States 
by analyzing 105 years (1901–2005) of tropical cyclone strikes. A tropical hazard index 
(THI) was developed to estimate the vulnerability of these regions from a geographic per-
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Brahmani (India) 0.22(3) Yes 
Godavari (India) 0.21(4) Yes 
Limpopo (Mozambique) 0.21(5) Yes 
Sebou (Morocco) 0.19(6) No 
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Figure 8. Locations of 48 major coastal deltas collectively hold over 340 million inhabitants [377]. The
labeled number of each delta represents the risk rank trend due to increasing exposure associated
with anthropogenic relative sea level rise, as estimated by [126], and the risk rate of change index
(rank) is listed in Table 1. The Krishna delta (Rank 1) has the highest risk trend. All deltas are listed
in Table 1. According to the color bar at the bottom right, the density of all tropical cyclone tracks
from 1842 to 2019, as determined by the IBTrACS database, is overlaid in red contours.

The work of [378] examined the spatio-temporal patterns and the return periods of
tropical storms and hurricane landfalls along the East and Gulf Coasts of the United States
by analyzing 105 years (1901–2005) of tropical cyclone strikes. A tropical hazard index (THI)
was developed to estimate the vulnerability of these regions from a geographic perspective.
The THI of the Mississippi River Delta has a value of approximately 130. The work of [379]
analyzed tropical cyclones that affected the Yangtze River Delta and the Pearl River Delta
from 1951 to 2010 and found that the frequency of tropical cyclones has varied harmonically,
with periods ranging from 2 to 6 years.

Table 1. The world’s 48 major coastal deltas.

Delta (Country) Risk Rate of Change Index 1

(Rank)
If the Delta Is in Tropical
Regions or Not

Krishna (India) 0.28(1) Yes
Ganges-Brahmaputra-Meghna (Bangladesh) 0.22(2) Yes
Brahmani (India) 0.22(3) Yes
Godavari (India) 0.21(4) Yes
Limpopo (Mozambique) 0.21(5) Yes
Sebou (Morocco) 0.19(6) No
Indus (Pakistan) 0.19(7) Yes
Shatt-el-Arab (Iraq) 0.16(8) No
Hong (Vietnam) 0.16(9) Yes
Mahanadi (India) 0.16(10) Yes
Irrawaddy (Myanmar) 0.15(11) Yes
Senegal (Senegal/Mauritania) 0.13(12) Yes
Tana (Kenya) 0.13(13) No
Volta (Ghana) 0.12(14) No
Pearl (China) 0.12(15) Yes
Dnieper (Ukraine) 0.11(16) No
Yangtze (China) 0.10(17) Yes
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Table 1. Cont.

Delta (Country) Risk Rate of Change Index 1

(Rank)
If the Delta Is in Tropical
Regions or Not

Colorado (Mexico) 0.10(18) Yes
Yellow (China) 0.097(19) Yes
Sao Francisco (Brazil) 0.095(20) No
Grijalva (Mexico) 0.085(21) Yes
Tone (Japan) 0.083(22) Yes
Nile (Egypt) 0.082(23) No
Rio Grande (USA/Mexico) 0.078(24) Yes
Moulouya (Morocco) 0.076(25) No
Amur (Russia) 0.069(26) Yes
Han (South Korea) 0.068(27) Yes
Niger (Nigeria) 0.067(28) No
Mahakam (Indonesia) 0.061(29) No
Po (Italy) 0.060(30) No
Mekong (Vietnam) 0.057(31) Yes
Danube (Romania) 0.056(32) No
Fly (Papua New Guinea) 0.054(33) Yes
Chao Phraya (Thailand) 0.049(34) Yes
Congo (Democratic Republic of Congo/Angola) 0.048(35) No
Magdalena (Columbia) 0.047(36) Yes
Amazon (Brazil) 0.044(37) No
Vistula (Poland) 0.043(38) No
Ebro (Spain) 0.040(39) No
Burdekin (Australia) 0.040(40) Yes
Parana (Argentina) 0.036(41) No
Orinoco (Venezuela) 0.033(42) Yes
Rhone (France) 0.030(43) No
Mississippi (USA) 0.025(44) Yes
Lena (Russia) 0.019(45) No
Mackenzie (Canada) 0.016(46) No
Rhine (Netherlands) 0.014(47) No
Yukon (USA) 0.005(48) No

1 Risk rate of change index of each delta was estimated in [126].
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Table 2. Significant risks for eight critical deltas (refer to [133,253,258,380–405]).

Delta Ground Subsidence Flood Risk Erosion Risk Tidal Wetland Decline Extreme Rainfall Storm Surge Urbanization and
Over-Population

Mississippi
Delta

An average subsidence rate of
5.2 ± 0.9 mm/y was measured
by GPS [380].

Significant drowning
is inevitable [381].

The sediment load is
insufficient.
Upstream dams trap
~50% of the total
sediment load
[381,382].

>25% of deltaic wetlands
have disappeared [383].

The largest floods in the last
century principally resulted
from heavy rainfall in the
lower Mississippi Delta
[384]. El Niño generates a
positive precipitation
anomaly over the lower
Mississippi
Basin [385].

The Mississippi
Deltas are especially
susceptible to storm
surge [386].

Urbanization has increased
substantially over the past
five decades. Population
growth has increased in the
past decades [387].

Po
River
Delta

The Po River Delta has
experienced serious ground
subsidence in the late 19th
century [388]. The maximum
deformation velocities are in the
order of −30 mm/y. It is mainly
caused by compaction of highly
compressible sediments and
heavy extraction of methane
water [389].

Flooding events along
with episodes of
storm surge have
increased, enhanced
by climate variations
[388]. Disastrous
floods occurred in last
century [391].

Severe coastal erosion
was triggered by
ground subsidence,
and promoted by
reduced sentiment
loads of the rivers.

The natural wetlands were
mainly converted to
agricultural and urban areas
in the last century [390].

N/A

Climate changes
makes the influence
of storm surges and
flooding more
alarming [388].

Urbanization increased by
agriculture settlement in the
last century. Agricultural
activities were a major driver
of wetland loss in last
century, and it increased
agricultural settlement [390].

Mekong
Delta

The ground subsidence rates are
around 1–4 cm/y based on
InSAR measurements [392].

Threatened by the
increased inundation
hazard.

Mekong River Delta
experienced dramatic
evolution. Coastlines
retreated toward land
in low-lying
areas [393].

Wetland degradation is
caused by resettlement and
economic development
policies, population growth
and urbanization, demand
for food and reclaiming for
agriculture, construction of
canals and dykes, expansion
of travel systems [394].

Extreme rainfall events
occurred more frequently in
the northern areas,
indicating the northern
region is facing high risk of
flooding [395].

N/A
Experienced fast pace of
urban development [396].
Densely populated.

Yangtze
River
Delta

Shanghai, a representative
megacity situated in deltas,
records the greatest ground
subsidence in China. Ground
subsidence has been also found
in the other cities of the delta,
including Suzhou, Wuxi, and
Changzhou. Over-pumping
groundwater and rapid
urbanization are the major
causes.

The delta is highly
sensitive to increasing
flood risk. The
interaction of sea level
rise, land subsidence,
and storm surges may
lead to more abrupt
flood disasters.

The Yangtze River
Delta is also facing
erosion risk in the
context of reduction
of sediment load from
upstream.

Intensive reclamation has
caused degradation and loss
of tidal wetland [397].

The regional yearly extreme
precipitation events cause
floods [398].

Yangtze River Delta
is with the highest
risk of storm
surge [399].

Fast urbanization and
expansion. Densely
populated.
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Table 2. Cont.

Delta Ground Subsidence Flood Risk Erosion Risk Tidal Wetland Decline Extreme Rainfall Storm Surge Urbanization and
Over-Population

Pearl
River
Delta

Three regional subsidence bowls
has been detected by InSAR and
multi-platform SAR
imagery [400].

Flood risks of the
middle and lower
delta were enhanced
with analysis of the
historical flood
records [401].

Anthropogenic
activities like
dredging, sand
mining, and sediment
disposal increase
erosion risk.

Wetland loss has occurred
due to rapid urbanization.

Extreme rainfall events
increased at a significant
pace in the most recent ten
years.

Pearl River Delta is
with the highest
risk of storm
surge [399].

Fast urbanization. Densely
populated.

Yellow
River
Delta

The average subsidence rate is
−5 mm/y, while the highest
subsidence rate of −33 mm/y.

Flood events occur
frequently.

Increased coastal
erosion due to
reduced sediment
load [253,402].

Newly created wetland
enlarges by 25 km2 each
year [403].

N/A

The coasts of Yellow
River Delta are with
the highest risk of
storm surge [399].

Intensive urbanization, oil
industry.
Densely populated.

Ganges-
Brahmaputra-

Meghna

The reported subsidence rates
are variable: A mean of
5.6 mm/y, and median of
2.9 mm/y [258].

Around 80% of the
delta area is
floodplain, with
floods occurring
every six years or so.

Erosion is mainly due
to insufficient
sediment supply and
extreme events.

Large of mangrove areas
have been converted into
paddy fields and shrimp
farms [404].

Rainfall is dominated by the
monsoon season. The delta
is highly vulnerable to
extreme rainfall events.

Storm surges are a
major concern.

Urbanization rate is evident
[405]. Highly populated.

Nile
Delta

Ground subsidence is strongly
localized at big cities.

The coastal areas are
prone to be flooded.

Significant coast
erosion has occurred.

Wetland were converted to
agricultural lands [133]. N/A N/A

The urban extent has
increased. Living more than
50% of the Egyptians.
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3.5. Remote Sensing Investigations of Large Rivers Deltas
3.5.1. The Yangtze River Delta

The Yangtze River is the third-largest river globally in terms of length and is one of
the world’s most important river deltas. The coastal vulnerability of the Yangtze River
Delta is currently amplified due to the combined impacts of non-linear land subsidence
related to groundwater extraction [259], instabilities of underground infrastructure con-
structions [182], large-scale land reclamation of ocean areas [397], an accelerated rate of
SLR [406], tidal evolution [407], and natural hazards [408,409]. Shanghai, one of the world’s
largest megacities with 24 million inhabitants, is located within the Yangtze River Delta
zone and has an average population density of over 2000 inhabitants per square kilo-
meter. Additionally, a continuous supply of fine-grained suspended sediments from the
Yangtze River has yielded the development of extensive tidal flats along the deltaic coast.
Large dams, like other large rivers, intensively regulate the Yangtze River. The sediment
supply and the high total discharge rate in the Yangtze River Delta have promoted the
development of sizeable ocean-land reclamation projects in the intertidal and wetland
areas [410,411]. The Yangtze River Delta is also experiencing highly rapid economic and
population growth over the last fifty years. Rapid industrial development and urbanization
have caused widespread ground subsidence in the delta region, not only in Shanghai
but also in the mid-sized cities and many nearby small cities and towns. Homogeneous
subsidence in the Shanghai suburban area and exceptionally rapid subsidence along metro
lines, highways, and elevated roads have also been observed by InSAR-based time series
measurements ([182,412]). The detected land subsidence is mainly caused by groundwa-
ter exploitation and rapid urbanization [412]. Shanghai has also performed numerous
large-scale ocean-reclamation projects [413]. The new lands are subject to long-lasting
subsidence phenomena, which have been extensively studied in recent years using InSAR
technology [240,314,414–417]. These investigations have clarified how to land subsidence
of the reclamation projects combined with SLR can pose severe threats to population centers
in the future [308,314,418]. The newly reclaimed lands may also advance the shoreline
dozens of kilometers inland. Simultaneously, it is difficult to predict how the subsidence
trend will continue, and the magnitude of cumulative land deformation depends highly on
the localized drivers and responses. RS technology permits us to monitor the land continu-
ously and apply corrective measures. However, the penetration of these technologies into
local administrations is still lacking and has to be further promoted.

The mean Yangtze River water discharge and mean sediment flux of the Yangtze River
had declined since 2003 when the Three Gorges Dam began operation [419]. The decline of
water and sediment discharges is attributable to climate change and human activities, such
as decreased precipitation, construction of reservoir dams, and soil conservation. On the
other hand, the Yangtze River Delta, especially the Yangtze Estuary, is highly susceptible to
SLR. In particular, it has been predicted that 40% of the terrestrial area of the Chongming
Dongtan Nature Reserve, at the mouth of the Yangtze Estuary, will likely be submerged by
2100, given the expected 0.88 m of SLR [420]. The effects of SLR might be even worse due
to ground subsidence [421].

3.5.2. The Pearl River Delta

The Pearl River Delta is the third-largest delta in China, located on the southern coast
of mainland China on the South China Sea and is one of the world’s most urbanized
and industrialized regions [422]. The river delta and many surrounding areas are below
local high tide storm surge levels. Over the last 50 years, reclaimed lands have been
merged into over one hundred enclosures protected by flood defense measures. However,
many coastal areas remain under threat from natural hazards, such as river flooding,
waterlogging, typhoons, and tidal-induced flooding [401,423–427]. Over recent decades,
extensive land reclamation projects have been carried out to keep up with urbanization and
industrial development. The delta region is exposed to natural disasters, such as ground
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subsidence caused by soft soil compaction, Karst geomorphology, and regional tectonic
effects [257,400,428]. Guangzhou, one of the major metropolitan regions in the Pearl River
Delta, has continuously experienced ground subsidence and ground collapse accidents in
recent decades. The increase in geological hazards has also caused casualties [429]. Sudden
ground collapse accidents occurred near metro lines, which were under construction at the
time, due to over-pumping of underground water, compaction of soft soil, concentrated
underground construction, and Karst geomorphology. Noticeable ground subsidence has
also been observed in the other mega-cities of the delta, such as Macao, Shenzhen, and
Hong Kong [240,430,431].

The Pearl River Delta is also facing increased inundation threats due to SLR and has
experienced a high frequency of flooding disasters in the last century [401,432]. Long time
series tidal records and long-term geological subsidence suggest that relative sea level may
experience a 30 cm rise at the mouth of the estuary by 2030, and extensive coastal areas
will be heavily and severely affected by the potential risk of tidal inundation [433]. The
tidal range has also been observed to have a strong sensitivity to sea level variability in this
region, as tide gauges in Hong Kong show that the increase in the tidal range may increase
by up to 0.6 m for every 1 m of SLR [352]. Additionally, indiscriminate sand excavation
throughout the Pearl River region since the 1980s directly affects annual extreme water
levels, further increasing the risk of flooding [434].

3.5.3. The Yellow River Delta

The Yellow River ranks second globally in sediment load, and the second-largest
oilfield (Shengli Oilfield) in China is located in the Yellow River Delta. Similar to the
Yangtze River Delta, the runoff and sediment load have exhibited declining trends in the
first decade of this century. These trends are mainly due to water and soil conservation
measures, reservoir and dam construction, increased water consumption, and inter-annual
fluctuations of rainfall caused by climate change. Although the runoff and sediment
load has decreased, the Yellow River Delta area and the length of the coastline in the
delta have increased [435]. Ground subsidence has also occurred in the Yellow River
Delta as monitored by InSAR analysis and spirit levelling [255,256]. It is mainly caused
by oil extraction, sediment consolidation, and compaction. The Yellow River Delta also
experiences the highest worldwide erosion rate. By analyzing Landsat archives acquired
over four decades, net erosion areas of shoreline retreat have been observed to be greater
than 13 km, and net accretion areas of shoreline advance are greater than 21 km [163].

3.5.4. The Mekong Delta

The Mekong Delta is vital to the economy of Vietnam. Extensive floods severely
influenced the delta during the last century [436]. It now faces significant changes due
to the development of new infrastructures and facilities for irrigation, flood prevention,
and electricity generation that have led to substantial hydrological alterations [437–440].
In particular, the over-exploitation of groundwater in the Mekong Delta has caused the
widespread hydraulic head decline and ground subsidence over a region of ~1000 km2 [392].
In [321], the flood risk in the Mekong river delta was analyzed via ENVISAT SAR images
acquired from 2007 to 2011, which applied incoherent change detection algorithms. Those
results showed that flooded areas most often coincided with the two-season rice crop areas
in the delta. Another critical risk condition in this ecosystem is salinity intrusion, which
occurs during the dry season.

3.5.5. The Ganges–Brahmaputra–Meghna Delta

The Ganges–Brahmaputra–Meghna delta is especially vulnerable to flooding, ground
subsidence, and increased sea salinity intrusion [441]. Salinity intrusion has occurred due
to a massive reduction in river inflow caused by dams, barrages, embankments, and SLR.
As a result, people have had to travel further upstream to find suitable fresh water in
the coastal city of Khulna. Additionally, increased salinity has adversely affected coastal
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vegetation and animals, such as the death of Sundari trees, the loss of shrimp farming, and
the impacts on a wide range of biodiversity. The Sundarban wetland located in the delta
is one of the most extensive coastal wetlands globally, covering over 100 km2. Over the
past centuries, the Sundarban mangroves have been modified into paddy lands and shrimp
farms, which has accelerated salinity intrusion in the region.

3.5.6. The Po River Delta and the Venice Lagoon

The North Adriatic coastal area in Italy is a large area of geophysical and historical
relevance. It includes Venice’s city and its lagoon, the Po River delta, and the Emilia
Romagna region. The Po River delta is the largest in Italy and is highly threatened by
SLR [442–444]. The Po River Delta has experienced widespread shoreline retreat and
salinity intrusion due to anthropogenic-induced subsidence and SLR [445,446]. Land
subsidence of the delta is the most severe in Italy [388,389]. The irreversible sinking due
to the over-extraction of methane water from Quaternary strata in the last century caused
average subsidence of approximately 50 cm to 3 m [388]. Consequently, some flat coastal
areas have become inundated.

Sea level in the Venice lagoon is subject to seasonal and long-lasting periodic changes,
with fluctuations over a few hundred years and cycles alternating between cold-wet and
warm-dry periods. These phenomena are amplified by present-day climate change, and the
vulnerability risk increases [447]. The locally known phenomenon of “Acqua Alta” in the
city of Venice refers to the excessive-high tides responsible for episodic flood events [see,
for instance, the recent flooding events that occurred in November 2019 [448,449]]. This
phenomenon has a cascading effect on the media, society, and the scientific community due
to the Venice lagoon having a historical and fragile ecosystem. However, recent studies
on the land subsidence of the Venice lagoon carried out by using multi-temporal/multi-
satellite interferometric SAR analyses at different wavelengths and spatial scales [389,443]
have confirmed that the historical city of Venice is essentially tectonically stable now. In
contrast, the northern sector of the lagoon, see Figure 3 in [443], is subject to an average
ground displacement of up to 3 cm/year, as observed from 1992 to 2017. Although the
amplitude of subsidence reduced in the last few decades, the low-lying coastal areas are
still threatened by the combined flooding risk of SLR and elevation loss.

3.5.7. Saint Petersburg

The city of St. Petersburg is located along the banks of the Neva River, on the Gulf
of Finland in the Baltic Sea. The city’s topography is nearly flat, with an elevation range
of 1–5 m. Regular floods have historically impacted the city’s coastal area [450]. From
1703 to 2010, 339 flood events have been recorded [261,451]. An average of one flood per
year was recorded from 1703 to 1975, and this rate has approximately doubled in the last
forty years [261]. The sea level of Neva bay was calculated in [450] for three floods in Saint
Petersburg on 21 November–2 December 2011, on 20 December 2011–1 January 2012, and
on 19–30 October 2013, using the BALT-P hydrodynamic flooding model. This revealed a
maximum water column height of about 183 cm in December 2010. To prevent significant
economic losses due to frequent floods and efficiently manage land subsidence and its
joint risk with SLR, a flood prevention facility complex was designed and built by the
municipal government [452]. The recent land subsidence of the Saint Petersburg Bay has
recently been investigated in [261] through the multiple-satellite Minimum Acceleration
(MinA) combination technique [215], which allows the discrimination of east-west and
up-down deformation time series, relying on two sets of Sentinel-1 SAR images collected
between 2016 and 2018. An independent investigation of this phenomenon has also been
reported elsewhere [453], showing that the ground deformation of the city is nearly steady,
except for the western sector of the Neva river delta, where ground deformation associated
with considerable land reclamation projects has a maximum rate of about 10 cm/year (see
Figure 2).
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3.5.8. Nile Delta

The Nile Delta supports 63% of Egypt’s agricultural land and accommodates about
45% of its population. Erosion, land subsidence, and deterioration of natural habitats have
influenced the coastal areas of the Nile Delta [133]. Severe erosion has occurred along
the Nile Delta coast due to reduced sediment supply after dam construction on the river,
with estimated maximum shoreline recession rates of about 100 m/year [454,455]. InSAR
techniques has been used to retrieve land subsidence of the delta; most of the big cities
in the delta are suffering from land subsidence, which are mainly due to ground water
pumping [456]. The subsidence of the deltaic region has led to land-use change and land
loss for agriculture and aquaculture activities. Coherence data obtained from ERS-1/ERS-2
SAR data’s tandem mission were also utilized to delineate the border between the water
and land [457].

3.5.9. Mississippi Delta

The Mississippi River and its delta is the most extensive river system in North America,
draining 41% of the water of the continental United States [458]. For millennia, the river
delta has been relatively stable, though subject to continuous accommodation processes
resulting from SLR and ground subsidence [459]. From the mid-1950s to the mid-1970s, a
progressive loss of wetlands, including the formation of holes in the delta plain and the
transformation of wetlands to open water, has occurred [460–463]. Since the 1990s, satellite
measurements have been widespread to investigate the Mississippi River plume structure,
sediment transport, and water circulation [464]. Multi-scale temporal analyses of remotely
sensed imageries were demonstrated to be a useful tool capable of precise measurements of
land changes in wetland environments [160,465]. Furthermore, the possibility of using SAR
interferometry to predict future flood events in the river floodplain has been demonstrated
[e.g., [466]]. The Great Mississippi/Atchafalaya river flood of 2001 [467] demonstrated
that massive floods significantly change the seasonality of sediment discharge, requiring
an update to flood management plans, and changes are likely more significant due to the
numerous systems of levees and dams established to constrain the discharge to the ocean.
The results also show that InSAR methods can develop and test hydrodynamic models to
prevent future flood events and efficient risk management in near-real-time profit from
parallel computation architectures. Additional information and extensive studies related
to the region of the Mississippi River and the northern coastal area of the Gulf of Mexico
through satellite remote sensing techniques can be found in [464,468] and references are
contained therein.

3.5.10. The Amazon River Delta

The Amazon River is one of the major axial alluvial rivers on the planet, characterized
by a massive volume of water and sediment seasonally exchanged through complex channel
floodplain interactions [e.g., [469–472]]. Understanding and predicting water storage
changes is vital to evaluating the potential impacts of climate change on a continental
and worldwide scale. Several remote sensing data studies have been conducted to model
the river’s hydrodynamics [473–475]. In particular, the work of [476] analyzed rainfall
estimates from the Tropical Rainfall Measuring Mission (TRMM) satellite over the Tapajos
River basin. They used the data as inputs to a large-scale hydrological model for the whole
basin, demonstrating that satellite data are helpful to identify damaged or aberrant rain
gauges on a basin-wide scale. The Amazon River floodplain’s annual inundation has been
comprehensively studied [see, for instance, [477,478]]. The results show that many different
water types can enter the floodplain and affect flooding events, including rainfall, flooding
of local tributaries, groundwater, or exchange with the main channel [469]. Flooding is
also influenced by the local topography, soil characteristics, and the vegetation of the
floodplain. RS data to calculate the regional methane emission rates for the Amazonian
wetlands are also a topic of great interest to this region and the world. Methane emissions
in the atmosphere are generated by the anaerobic degradation of organic matter and
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can significantly influence global climatic and environmental changes, land use, and
river alterations [479–484]. Amazonian wetlands’ flooded forests, lakes, and floating
macrophytes are globally significant tropospheric methane sources [483]. RS has made it
possible to quantitatively analyze the inundation and vegetation cover in the wetlands of
the Amazon basin [473,477,485–488].

4. Discussion

This paper has demonstrated that there is a broad and growing scientific interest in
investigating the effects of natural and man-induced disaster risks in coastal and river
delta regions. Worldwide coastal regions and river deltas are vulnerable environments
experiencing many pressures and are subject to numerous natural and human-made threats,
some of which are triggered by global climate changes. EO technologies have proven
valuable tools for local authorities and national governments to design, maintain, and
manage effective disaster plans and obtain consistent and frequently updated information
about environmental conditions and their temporal variations. Additionally, we remark
that the growing availability of EO datasets has led in recent years to a significant shift
in the perceptivity of RS technologies and the role of GIS [489–491] for the planning
and organization of suitable disaster management cycles. EO instruments can contribute
significantly to management of major technological and natural disasters and help during
humanitarian crises. The increased scientific interest in the design and maintenance of
effective disaster management plans in coastal communities is also demonstrated by the
increased number of publications addressing this research theme in the literature. The
paper has addressed the different conditions of risk in coastal and river delta environments.

Coastal flood risk and adaptation are a worldwide concern. Significant inundation
is increasingly common in many delta regions of Asia and Europe, including China, the
Netherlands, Vietnam, and Egypt, subject to relatively high flood exposure. Global climate
change can significantly increase the population’s exposure to coastal flooding risk. Satellite
RS is a valuable tool for detecting and monitoring flood phenomena, allowing for the rapid
differentiation between inundated and non-inundated areas. Extreme rainfall can also
cause flooding, enormous economic losses, and civilian casualties. Another generator of
flooding in coastal regions is storm surges associated with tropical cyclones. The combined
effects of high winds and water levels are responsible for considerable damage to property
and casualties in densely populated river delta regions worldwide.

Coastal flood risk is due to total sea levels, not just mean sea level, and the effects of
tidal evolution can make the influences of MSL rise much more severe. The tidal anomaly
correlation method (TACs) described above demonstrate that changes in tidal evolution
that may accompany sea level rise can amplify the magnitude of total water levels, which
can, in turn, strengthen all the detrimental risks to coastal regions and deltas described in
this review. The TACs and δ-HATs observed from worldwide surveys show that nearly
half of all locations are significant. However, large-magnitude tidal responses (which can
either be positive or negative) are predominantly found in coastal regions, mainly in delta
and estuarine regions.

Local ground subsidence can significantly increase the exposure to coastal flooding risk.
Ground subsidence has become a significant global problem for world coasts. River delta
regions are considerably more susceptible to subsidence than other coastal areas, partially
due to the increased urbanization rates. The causes of ground subsidence in different deltas
are numerous. Most major river deltas are sinking much faster than historical sea level rise
rates. However, the mechanisms behind the subsidence are still not well understood, and
reliable subsidence data for entire regions are scarce. Long-term and large-scale subsidence
measurements for the most important delta regions are still lacking.

Accelerated coastal erosion is also a common issue nowadays on the world’s coasts.
Over half of the world’s delta regions are in overall erosion due to reduced river sedi-
ment loads. Intensive human activities have dramatically reduced coastal wetland areas.
Accelerated sea level rise may also exacerbate saltwater intrusion.
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5. Conclusions

This work summarized some recent applications of RS technologies in major coastal
and river delta regions of the world, including major river deltas in China and Eastern
Asia, the Po River Delta, the Venice Lagoon in Italy, the St. Petersburg Bay in Russia, the
Nile Delta in Egypt, the Mississippi Delta River in the U.S., and the Amazon River in Brazil.
Advanced RS techniques can evaluate the impacts of climate change and anthropogenic
activities on the coasts and large river delta regions. RS methods can also study the in-
teractions between the ocean and the coast and evaluate their implications in response to
projected climate change. RS technologies can also measure and map the long-term evolu-
tion of coastal and deltaic environments, providing updated information on environmental
variations, assessing hazards and risks, and understanding the relevant mechanisms. Many
new RS satellite programs are being scheduled and deployed, and many new methods are
being developed in concert. One such example is the integration of many similar satellite
sensors, such as Sentinel-2 and Landsat, to establish a virtual constellation that allows
frequent observations of highly dynamic environments. Combining optical and microwave
RS images will make it possible to frequently and efficiently observe coastal environment
evolution in cloudy and rainy areas, including the extraction of coastline information,
deriving long-term land use and land cover change, and retrieving nearshore bathymetry,
mapping coastal wetlands, and detecting coastal erosion.
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