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Abstract: Monitoring ground layer biomass, and therefore forage availability, is important for
managing large, vertebrate herbivore populations for conservation. Remote sensing allows for
frequent observations over broad spatial scales, capturing changes in biomass over the landscape
and through time. In this study, we explored different satellite-derived vegetation indices (VIs) for
their utility in estimating understorey biomass in semi-arid woodlands of south-eastern Australia.
Relationships between VIs and understorey biomass data have not been established in these particular
semi-arid communities. Managers want to use forage availability to inform cull targets for western
grey kangaroos (Macropus fuliginosus), to minimise the risk that browsing poses to regeneration in
threatened woodland communities when grass biomass is low. We attempted to develop relationships
between VIs and understorey biomass data collected over seven seasons across open and wooded
vegetation types. Generalised Linear Mixed Models (GLMMs) were used to describe relationships
between understorey biomass and VIs. Total understorey biomass (live and dead, all growth forms)
was best described using the Tasselled Cap (TC) greenness index. The combined TC brightness
and Modified Soil Adjusted Vegetation Index (MSAVI) ranked best for live understorey biomass
(all growth forms), and grass (live and dead) biomass was best described by a combination of TC
brightness and greenness indices. Models performed best for grass biomass, explaining 70% of
variation in external validation when predicting to the same sites in a new season. However, we
found empirical relationships were not transferrable to data collected from new sites. Including
other variables (soil moisture, tree cover, and dominant understorey growth form) improved model
performance when predicting to new sites. Anticipating a drop in forage availability is critical for
the management of grazing pressure for woodland regeneration, however, predicting understorey
biomass through space and time is a challenge. Whilst remotely sensed VIs are promising as
an easily-available source of vegetation information, additional landscape-scale data are required
before they can be considered a cost-efficient method of understorey biomass estimation in this
semi-arid landscape.

Keywords: aboveground biomass; forage; monitoring; Landsat; spectral indices; grazing manage-
ment; ecological restoration and conservation; rangelands

1. Introduction

Monitoring aboveground biomass over broad spatial scales and frequent temporal
intervals is essential in a range of fields, such as fuel mapping for fire management [1],
monitoring ecosystem change [2,3], estimating agricultural yield [4], carbon accounting [5],
and for quantifying forage for livestock production [6,7]. In the field of ecological conserva-
tion and restoration, optical remote sensing has been used to estimate forage availability
for large vertebrate herbivore management in a range of environments (e.g., [8–12]).

Multispectral remote sensing of aboveground biomass typically employs the red and
near infrared (NIR) bands, as these contain approximately 90% of vegetation informa-
tion [13]. Chlorophyll absorbs visible radiation in the red wavelengths, whereas radiation
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in the NIR wavelengths is reflected by leaf cellular structures [14]. Short-wave infrared
(SWIR) bands are also sensitive to variations in vegetation, particularly water content [15].
Many vegetation indices (VIs) exist, using combinations of these bands to measure veg-
etation parameters, such as cover, standing biomass, and primary productivity [14,16].
Perhaps the most widely-used is the Normalised Difference Vegetation Index (NDVI), a
simple ratio-based index sensitive to variation in red-NIR reflectance, and hence vegetation
greenness and density [9,17].

Extending empirical relationships between field biomass and remote sensing data
across space and time has often been challenging [18], though few studies have assessed this
(e.g., [19–22]). The spectral response of vegetation may be affected by many factors such as
canopy background (e.g., soil brightness and colour), vegetation and soil moisture, senes-
cent vegetation and litter, and species composition [18,23,24]. As well as environmental
factors, atmospheric effects can also contribute to signal noise [25]. As these factors can vary
across different environments, many VIs have been developed for specific contexts [14,26].
For example, NDVI has been shown to saturate at high biomass (e.g., tropical rainforests)
and be affected by canopy background, which is a concern in areas of low biomass [23]. The
Enhanced Vegetation Index (EVI), which is more sensitive to canopy structural variations
such as leaf area index (LAI), was developed to improve sensitivity in high biomass areas
and reduce the influence of soil background and atmospheric effects [27].

In arid and semi-arid environments in particular, vegetation is generally sparse [28],
and soil background can significantly affect spectral response [18]. Soil-adjusted indices
have been developed to dissociate the background effects of soils from vegetation signals
(e.g., [13,29]). An example is the Soil Adjusted Vegetation Index (SAVI), which extends
NDVI by including an adjustment factor to account for soil background [23]. Alternatively,
orthogonal indices, such as the Tasselled Cap (TC) transformation bands [30], have also
been found to be less sensitive to the effects of soil background than other greenness
indices [31]. As senescent vegetation and litter are common features of arid and semi-arid
areas [18], indices that capture reflectance in the SWIR wavelengths have been useful for
isolating dry vegetation signals from green vegetation and soil in these environments
(e.g., [32,33]).

Several semi-arid woodland communities in south-eastern Australia have seen little
to no regeneration of both their overstorey and many native understorey species in several
decades, despite livestock removal and introduced herbivore control measures [34,35].
Western grey kangaroos are thought to switch from grass to other browse (e.g., shrub
and tree seedlings) when grass biomass falls below 400 kg ha−1 for sustained periods,
which is likely to occur during dry summer and autumn months [36,37]. Managers are
seeking an efficient, cost-effective way of obtaining seasonal understorey biomass esti-
mates, particularly grass biomass, without the need for site visitation. Although empirical
relationships between understorey biomass and remotely sensed VIs have been developed
for several semi-arid areas around the world [18], these relationships are lacking for the
semi-arid communities in this region. Furthermore, few studies assess the spatial and
temporal transferability of biomass-VI relationships [18]. Understorey biomass information
would allow managers to anticipate a drop in forage availability, thus triggering population
control efforts to reduce the browsing risk to native understorey and tree seedlings as well
as promote woodland regeneration.

In this study, we compared the ability of several remotely sensed vegetation indices to
describe and predict total understorey (live and dead, all growth forms), live understorey
(all growth forms), and grass biomass (live and dead, annual and perennial graminoids) in
a semi-arid environment over a period of 2.5 years. We aimed to: (1) determine the most
useful VIs to include in predictive models for understorey biomass, (2) examine whether
models could be improved and extended to other sites when including additional soil
moisture and vegetation variables, and (3) develop models appropriate for management
that require no site visitation. A validation understorey biomass dataset was collected from
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existing and new sites in the autumn following the main sampling period, and were used
to test the predictive performance of the first two models.

2. Materials and Methods
2.1. Study Area

Field sites were located in the Pine Plains area of Wyperfeld National Park (NP),
south-eastern Australia (Figure 1). Wyperfeld NP is semi-arid with a mean annual rainfall
of 332 mm [38]. Over the sampling period, the region experienced both higher than
average rainfall (404 mm in 2016 and 348 mm in 2017) and lower than average rainfall
(143 mm in 2019) [38]. Rainfall occurs predominantly throughout winter and spring, with
approximately 60% of mean annual precipitation falling between May and October [38].

Figure 1. (a) Map of the Pine Plains area of Wyperfeld National Park, south-eastern Australia (inset,
red square). The background image is a Google Satellite XYZ tile basemap; (b) Images captured
in December (summer) 2017, which highlight the variation in structure and composition of the
vegetation communities sampled.

The study area is largely a mosaic of woodland communities, dry lakebeds, and de-
rived grasslands resulting from extensive historical clearing [39]. Woodlands are dominated
by Buloke (Allocasuarina luehmannii, often co-dominated by Slender Cypress Pine (Callitris
gracilis R.T.Baker)), Black Box (Eucalyptus largiflorens F.Muell.) or River Red Gum (Eucalyptus
camaldulensis Dehnh.), with understories composed of grasses, forbs, and chenopod shrubs.

2.2. Field Data

We collected aboveground understorey biomass, comprising graminoids, forbs, and
shrubs, over six seasons between December 2016 and May 2018. We sampled a total of
40 sites within Buloke Woodland (n = 10), Black Box Woodland (n = 10), Derived Grassland
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(n = 10), and Lakebed (n = 10). For a more detailed description of field methods, see
Riquelme et al. [37].

A 90 m × 90 m area of homogeneous vegetation in terms of structure and cover
was chosen for each site, corresponding to a 3 × 3 Landsat pixel arrangement. Although
sampling focused on the centre 30 m × 30 m pixel, a larger area was selected to allow
for any satellite or GPS positional errors [40]. Five quadrats (0.5 m × 0.5 m each) were
placed on the corners and middle of the central 30 m × 30 m area. Within each quadrat,
understorey biomass was clipped as closely to the ground as possible using grass shears,
separated into live and dead, and placed into paper bags. Woody material was not clipped
when sampling shrubs. Samples were dried at 70 ◦C for 72 h and then weighed.

We estimated grass biomass following the dry-weight-rank method developed by ‘t
Mannetje and Haydock [41]: prior to clipping each quadrat, the top 3 understorey species
in terms of dry weight were ranked visually. Dominant understorey species were classified
into the following growth forms: annual graminoids, perennial graminoids, forbs, and
shrubs. Grass biomass was calculated by multiplying the proportion of biomass classified
as a graminoid by the total understorey dry weight [41].

An additional biomass dataset was collected in May 2019 and used as a validation
dataset to test model performance over space and time. Of the 40 sites previously sampled,
24 were resampled to provide a temporal validation dataset. To enable spatial validation,
24 new sites were also sampled in this season. Sampling was distributed equally across
vegetation types, with 12 (6 existing, 6 new) sites sampled within each. A total of 48 sites
were surveyed in May 2019.

All data is available via the Open Science Framework [42].

2.3. Satellite Data

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land
Imager (OLI) scenes spanning the sampling period were visually inspected for cloud
cover. A scene was excluded if cloud was present over the study area. This could not be
automated because although percentage cloud cover was included in the metadata, their
spatial distribution throughout the scene was not specified. Surface reflectance (SR) and
top-of-atmosphere (TOA) bands (path: 95, row: 85; Collection 1, Level 2) were downloaded
from the United States Geological Survey (USGS) EROS Science Processing Architecture
(ESPA) On Demand Interface [43]. NDVI, EVI, SAVI, MSAVI, and NDMI were calculated
from SR data. TOA bands were required for the TC transformation, as transformation
coefficients have only been developed for Landsat 8 TOA bands [44].

Although Landsat 7 and 8 broadly sample the same regions of the spectrum, systematic
differences between sensors exist, particularly for TOA bands [45]. We adjusted Landsat 7
SR and TOA data to fit more closely with Landsat 8 data using coefficients derived for the
Australian landscape [45].

Landsat satellites scan each scene with an 8-day interval; furthermore, approximately
40% of scans during the study period were deemed unusable due to cloud cover. To fill
these temporal gaps and have remote sensing data that coincided with field surveys, a Gen-
eralised Additive Model (GAM) [46] was developed to model remote sensing data to daily
values. GAMs were fitted using the mgcv package [47] in the R statistical environment [48].
GAMs were trained using 95 scenes between January 2016 and July 2019. The structure of
the GAM was:

VI ~ s(date) + s(date, by satellite) + tree cover + εi

where “date” denotes satellite scan date, “satellite” specifies Landsat 7 or 8 imagery, and
“tree cover” refers to the probability of native tree cover at a given site [49]. A smoothing
function (s) with a thin plate spline with shrinkage was applied to date in two ways: an
average smooth for date (“s(date)”), as well as an individual smooth per satellite (“s(date,
by satellite)”) to account for any deviations from the average smooth over time. Residual
error is represented by εi.
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The VIs (Table 1) were calculated using the RStoolbox package [50] in the R statistical
environment [48]. For each VI, mean values for the centre pixel (30 m × 30 m) were
extracted at each site.

Table 1. Vegetation indices used in this study.

Vegetation Index Formula References

Normalised Difference Vegetation Index (NDVI) (NIR−Red)/(NIR + Red) [17]

Enhanced Vegetation Index (EVI) 2.5 × ((NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1)) [27]

Soil Adjusted Vegetation Index (SAVI) ((NIR − Red)/(NIR + Red + L)) × (1 + 0.5) [23]

Modified Soil Adjusted Vegetation Index (MSAVI) (2 × NIR + 1 −
√

((2 × NIR + 1)2 – 8 × (NIR - Red)))/2 [29]

Normalised Difference Moisture Index (NDMI) (NIR − SWIR1)/(NIR + SWIR1) [15]

Tasselled Cap Brightness 0.3029(Blue) + 0.2786(Green) + 0.4733(Red) + 0.5599(NIR) +
0.508(SWIR1) + 0.1872(SWIR2) [30,44]

Tasselled Cap Greenness −0.2941(Blue) + −0.243(Green) + −0.5424(Red) +
0.7276(NIR) + 0.0713(SWIR1) + −0.1608(SWIR2) [30,44]

Tasselled Cap Wetness 0.1511(Blue) + 0.1973(Green) + 0.3283(Red) + 0.3407(NIR) +
−0.7117(SWIR1) + −0.4559(SWIR2) [30,44]

2.4. Analysis and Modelling

We used Generalised Linear Mixed Models (GLMMs) to test the ability of satellite-
derived vegetation indices (alone or in combination) to describe and predict understorey
biomass. Site was included as a random effect. A Pearson’s correlation test was carried
out on the VIs to determine the degree of correlation between indices. A pair that had a
correlation coefficient |r| > 0.7 was considered to be highly correlated [51,52] and was
therefore excluded from modelling. GLMMs were trained with biomass data collected
in the field over 6 seasons between December 2016 and May 2018. GLMMs were fitted
using the lme4 package [53] in the R statistical environment [48]. The general GLMM
structure was:

biomass ~ vegetation index + εi

where “biomass” refers to biomass type (total understorey, live understorey, or grass)
at a given site, and “vegetation index” represents a remote sensing vegetation index or
combination of indices (additive). Residual site error is denoted by “εi”.

We then examined the Variance Inflation Factor (VIF) to determine the degree of
collinearity among explanatory variables within each model [52,54]. Any variables with
a VIF > 5 were excluded from the models. A model selection process was carried out
for each biomass type. Models were ranked based on Akaike’s Information Criterion
(AIC) [55] and Akaike weight [56]. We also reported the marginal R2 (R2m: the proportion
of variance explained by the fixed effects only), the conditional R2 (R2c: the proportion of
variance explained by both the fixed and random effects) [57], and the degrees of freedom
for each model. The model with the lowest AIC and highest weight for each biomass type
was selected.

We also ran GLMMs with additional data on soil moisture [58], tree cover [49], and
dominant understorey growth form (Table 2), to determine whether models could be
further improved. Another model selection process was conducted, and the model with
the lowest AIC and highest weight was selected for each biomass type.
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Table 2. Additional explanatory variables used in models.

Variable Resolution Summary

Soil moisture 5 km × 5 km; Daily.

Root zone (top 1 m of soil profile) soil moisture
obtained from the BoM Australian Landscape
Water Balance (AWRA-L model) [58].
A mean soil moisture window of the previous
month, with 2-week lag from clipping date, was
chosen as it was most influential for understorey
biomass in this study area [37].

Tree cover 22 m × 27 m approx. Remotely sensed estimates of the probability of
native tree cover [49].

Dominant
understorey growth

form

90 m × 90 m;
Seasonal.

Growth forms were classified into annual
graminoids, perennial graminoids, forbs, and
shrubs. Dominant growth form was estimated at
each site following the dry-weight-rank
method [41].

We then used those models to develop models suitable for managers, who require a
cost-efficient approach for estimating grass biomass seasonally, using only remotely sensed
data. These incorporated all seasons’ data (i.e., training and validation), but did not include
additional data requiring field collection (i.e., dominant understorey growth form).

2.5. Model Validation

The predictive performance of the models was tested by predicting understorey
biomass to autumn of the following year (May 2019), then comparing predictions to
the observed understorey biomass data collected in the same season using Pearson’s
correlation test.

3. Results
3.1. Understorey Biomass

Mean values are reported with 95% confidence intervals. Total understorey biomass
ranged from 835 ± 41 kg ha−1 (May (autumn) 2019) to 1324 ± 100 kg ha−1 (Septem-
ber (spring) 2017); live understorey biomass ranged between 84 ± 15 kg ha−1 (May
(autumn) 2018) and 781 ± 57 kg ha−1 (July (winter) 2017), and grass biomass between
488 ± 17 kg ha−1 (autumn 2019) and 872± 84 kg ha−1 (September (spring) 2017) (Figure 2).
Overall, summer and autumn were found to be seasons of lowest understorey biomass
availability, with live understorey and grass biomass falling below the forage-switch thresh-
old [36] for extended periods during those seasons (Figure 2).

Total understorey and grass biomass were significantly higher in open sites compared
to woodland sites across all seasons (Figure 2). For live understorey biomass, this trend
was only seen during winter and spring. Live biomass was similar across all vegetation
types during the drier summer and autumn months (Figure 2). For more detail, refer to
Riquelme et al. [37].
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Figure 2. Mean understorey biomass for each sampling occasion in open and wooded sites, with 95%
confidence intervals (n = 40, except May 2019 where n = 48). A validation dataset was collected in
May 2019. Orange reference line represents purported forage-switch threshold (adapted from [36]).

3.2. Vegetation Indices

All VIs, except for brightness, followed a similar trend through time, though slopes
tended to vary (Figure 3). VI values tended to peak in the wetter winter and spring months,
which corresponded to winter seasons with average or above average rainfall (Figure 3) [38].
The opposite was generally true for brightness (Figure 3). As conditions gradually dried out
over 2018–2019, values fell (again, except for brightness). Seasonal fluctuations also tended
to flatten, which was seen for all VIs. VI values were similar across open and wooded sites
during more mesic conditions, but diverged during drier years, with a more pronounced
decrease in open sites than in woodland (Figure 3).

Most VIs, excluding brightness, were strongly positively correlated (Pearson’s
r = 0.75–0.99). In contrast, brightness had a high degree of negative correlation with wetness
(r =−0.74) and a moderate negative correlation with NDVI (r =−0.66), but only weak nega-
tive correlations with all other indices (r =−0.38–−0.45; Figure S1, Supplementary Materials).

3.3. Vegetation Index-Biomass Models

Explanatory power varied little between the top-ranked and lowest-ranked models for
total understorey (mean difference in R2m = 0.018, and in R2c = 0.024) and grass biomass
(mean difference in R2m = 0.014, and in R2c = 0.019) (Tables S1 and S3, Supplementary
Materials). Models for live understorey biomass were more variable, however (mean
difference in R2m = 0.441, and in R2c = 0.583) (Table S2, Supplementary Materials).

Brightness combined with MSAVI best explained live understorey biomass, and bright-
ness and greenness accounted for the most variation in grass biomass (Table 3). Greenness
alone best explained variation in total understorey biomass (Table 3), although the next-
best model (brightness plus greenness) only had a difference in AIC of 3.62 (Table S1,
Supplementary Materials).

Higher greenness values were associated with a modest increase in total understorey
and grass biomass (Figure 4). Brightness was correlated with slightly lower grass biomass,
but higher live understorey biomass (Figure 4). MSAVI also correlated with greater live
biomass, although this was approximately twice the effect size of brightness (Figure 4).



Remote Sens. 2022, 14, 2358 8 of 17

Figure 3. Mean vegetation index values for open vs. wooded sites over the study period. Lines
represent GAM predictions, averaged for open and wooded sites, with 95% confidence intervals.
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Table 3. Performance of top-ranked model for each understorey biomass type.

Model R2m R2c t Value of Predictors

TOTAL ~ Greenness + εi 0.026 0.897 14.26

LIVE ~ Brightness + MSAVI + εi 0.441 0.715 14.16, 35.43

GRASS ~ Brightness + Greenness + εi 0.016 0.878 −7.64, 3.33

Figure 4. Effects plots for top model for each biomass type. Points denote effect sizes of explanatory
variables and are shown with 95% confidence intervals. Blue represents a significant effect.

3.4. Vegetation Index-Biomass Models with Additional Variables

When adding soil moisture, tree cover, and dominant understorey growth form to
the models, the top-performing model for live biomass included EVI instead of brightness
and MSAVI (Table 4). The VIs in the top-performing total and grass biomass models
remained unchanged. Performing a VIF test on the supplementary models only excluded
certain live biomass models, though total and grass biomass models were again unaffected
(Tables S4–S6, Supplementary Materials).

Table 4. Performance of top-ranked model (with additional variables) for each understorey biomass
type. Dominant understorey growth form (Dom. G.F.) is a categorical variable, comprising annual
graminoids, forbs, perennial graminoids, and shrubs.

Model R2m R2c t Value of Predictors

TOTAL ~ Greenness + S.M. + Tree C. + Dom. G.F. + εi 0.428 0.881 12.78, −0.25, −6.89, 40.07,
38.66, 40.87, 39.61

LIVE ~ EVI + S.M. + Tree C. + Dom. G.F. + εi 0.602 0.746 3.34, 25.49, −3.40, 34.17,
33.67, 41.33, 37.15

GRASS ~ Brightness + Greenness + S.M. + Tree C. + Dom. G.F. + εi 0.483 0.890 −5.49, 5.03, −1.53, −7.01,
35.21, 26.26, 34.16, 29.73

Total and grass biomass models improved the most when including additional vari-
ables (compared to VI-only models) but only when excluding site effects: R2m improved
by 0.402 for total biomass, and by 0.467 for grass biomass (Table 4). The live biomass model
also improved, but less dramatically, with an increase in R2m of 0.161 (Table 4). There was
little change in R2c for all biomass types when including extra explanatory variables (mean
difference of 0.020; Table 4).

Tree cover showed a significant negative correlation with all understorey biomass
types, especially for total and grass biomass; live biomass, on the other hand, was most
strongly correlated to soil moisture (Figure 5). Dominant understorey growth form showed
variable relationships with understorey biomass: live biomass was generally higher in sites



Remote Sens. 2022, 14, 2358 10 of 17

dominated by forbs or shrubs, and grass biomass was higher in sites dominated by annual
graminoids (Figure 5). Growth form had no significant relationship with total understorey
biomass, however (Figure 5).

Figure 5. Effects plots for top model (with additional variables) for each understorey biomass type.
Points denote effect sizes of explanatory variables and are shown with 95% confidence intervals. Blue
represents a significant effect and red represents a non-significant effect.

3.5. Vegetation Index-Biomass Models for Management

Overall, the management models, which included soil moisture and tree cover but not
dominant understorey growth form, performed better than VI-only models when modelling
with only the main effects (mean improvement in R2m of 0.251; Table 5). In particular, R2m
improved by 0.295 for total understorey biomass and by 0.296 for grass biomass (Table 5).
The management model for live understorey biomass (R2m = 0.443, R2c = 0.726; Table 5)
explained a similar amount of biomass as the live VI-only model (Table 3). Nevertheless,
the management models did not account for as much variation in understorey biomass as
the models with additional variables (Table 4), even when modelling with biomass data
from all seasons (Table 5). The performance of all models was quite similar when modelling
with site effects (Tables 3–5).

Table 5. Performance of top-ranked management model for each understorey biomass type (all
data included).

Model R2m R2c t Value of Predictors

TOTAL ~ Greenness + S.M. + Tree C. + εi 0.321 0.870 15.33, 0.44, −6.49

LIVE ~ EVI + S.M. + Tree C. + εi 0.443 0.726 2.70, 19.73, −1.30

GRASS ~ Brightness + Greenness + S.M. + Tree C. + εi 0.312 0.844 −4.65, 9.08, −0.16, −6.76

Management models with coefficients are presented in Table S7 (Supplementary
Materials).

3.6. Model Validation

We tested the predictive performance of the models by comparing biomass predicted
for May 2019 to observed biomass. Biomass was predicted by taking the random effects of
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site into account (Figure 6, top row), as well as by considering only the main effects (i.e.,
vegetation indices; Figure 6, bottom row). Predicted understorey biomass was more similar
to observed values when modelling with site effects (Figure 6).

Figure 6. Validation plots for models with VIs only: total understorey, live understorey and grass
biomass (predicted using main and site effects (top row), and using main effects only (bottom row)).
Blue lines indicate the linear trend in correlation between predicted and observed values, with
standard error represented by the grey ribbons. Black lines indicate a 1:1 relationship. Df = 622.

When including site effects, the model predicted 57% of total understorey biomass
(Figure 6). This was even higher for grass biomass (70%), although grass was generally
overpredicted at sites with higher biomass (Figure 6). The model’s predictive ability
was lower for live understorey biomass (25%; Figure 6). Live biomass was consistently
underpredicted, especially as biomass increased, although a single outlier site exerted a
large influence on patterns in the validation (Figure 6). In contrast, validation showed a
low to moderate negative correlation with total understorey and grass biomass, and almost
no correlation with live understorey biomass (Figure 6).

The predictive ability of the models’ main effects improved when including soil mois-
ture, tree cover, and dominant understorey growth form: correlation between predicted
and observed live biomass increased by 0.16, by 0.89 for total, and by 0.9 for grass biomass
(Figure 7). Predictive ability when including site effects was little changed (Figure 7).

The management models were developed using all seasons’ data (including validation
dataset); hence, model validation was not carried out.
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Figure 7. Validation plots for models with additional variables: total understorey, live understorey
and grass biomass (predicted using main and site effects (top row), and using main effects only
(bottom row)). Blue lines indicate the linear trend in correlation between predicted and observed
values, with standard error represented by the grey ribbons. Black lines indicate a 1:1 relationship.
Df = 622.

4. Discussion
4.1. Vegetation Index-Biomass Models

Remotely sensed VIs performed best for grass biomass, with 70% of variation ac-
counted for when predicting to a new season in external validation, although VIs explained
only 25% of variation in live understorey biomass. The ability of remote sensing to predict
live biomass through time may be limited by the complex and dynamic relationships be-
tween biomass and remote sensing signals across seasons [59]. For example, the timing and
intensity of rainfall events, which are highly variable in dry environments [60], can trigger
species or growth-form specific phenological responses, thus impacting reflectance [9,61].
Moreover, grass and total understorey biomass included standing dead matter, which may
have masked some of the reflectance of green vegetation, especially early in the growing
season as new growth emerged [62]. Changes in soil moisture over time can alter soil
brightness, which can also introduce noise into these relationships [63]. Soil signals are
similar to those of dry vegetation [33]; this may also have affected the performance of VIs,
especially in drier seasons.

While predictive performance of the models through time was mixed, VIs alone were
unable to predict understorey biomass to new sites. Transferability of empirical models
to new areas is one of the most significant challenges of biomass estimation using remote
sensing [18]. Our results show that there is a clear effect of site on remote sensing signals.
Site-specific relationships between biomass and reflectance have also been found elsewhere
(e.g., [19,21,64]). The most obvious explanation for the failure to predict understorey
biomass at new sites is that the VIs were unable to account for the confounding from the
overstorey canopy. This can be seen in Figure 6, where wooded and open sites are predicted
in the wrong order of biomass.

The lack of spatial transferability of the VI-only models can be explained in part by
the fine-scale heterogeneity in topography and resource accumulation over the landscape,
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which is characteristic of semi-arid areas [65]. The spatial resolution of the Landsat sen-
sors was unlikely to be fine enough to capture this variation. Furthermore, as stated by
Graetz [66], “all pixels are mixels”, in other words, that each pixel is an average of several
landscape components, including vegetation, litter, soil, and shadows.

The influence of soil background and litter on reflectance was likely significant, espe-
cially during drier periods. The inclusion of the TC brightness index in the top models for
live understorey and grass biomass indicated that it was a useful complement to greenness
indices for explaining understorey biomass variation in the study area. Other studies in
semi-arid regions have also highlighted the utility of brightness in biomass estimation
(e.g., [20,67]).

Atmospheric effects are another source of noise in the signal, which can be more
difficult to correct in heterogeneous landscapes [68]. Additionally, discrepancies between
Landsat 7 and 8 sensors exist, particularly in top-of-atmosphere reflectance. This was also
apparent in our results. While adjustments can be made to reduce these, differences will
remain at the pixel-level [45].

VI-biomass model performance may also be improved by including observed VI
values for the scan dates that correspond to field sampling, rather than VI values predicted
from the GAMs. These GAMs could be further enhanced by including more scans to
provide temporal repetition to account for scenes deemed unusable due to cloud cover.

4.2. Vegetation Index-Biomass Models with Additional Variables

The predictive ability of the VI-biomass models to new sites was greatly improved
by including tree cover, soil moisture, and dominant understorey growth form. This was
most evident for total understorey and grass biomass models with additional landscape
variables, where there was an improvement of 90% in predictive ability to new sites in
external validation. Soil moisture can affect soil brightness, with an increase in soil moisture
resulting in lower brightness values [23,69]. The timing and amount of rainfall can also be
a determinant in species composition, which along with vegetation structure, can influence
the relationships between remote sensing signals and biomass [61,63].

Growth form composition data improved the models’ predictive ability, although
collection in the field is time-consuming and labour-intensive. Managers require seasonal
estimates of understorey biomass without the need to carry out extra field work. The
management models were trained using all seasons’ data, which as expected, performed
better than the main or the supplementary models when predicting through time. However,
the management model performance was somewhat lower than the supplementary models
for live understorey and grass biomass when predicting to new sites. This suggests that
growth form may be an important factor to consider when estimating understorey biomass,
though it is not as important as tree cover and soil moisture.

4.3. Vegetation Index-Biomass Models for Management

Although managers do not currently use the purported forage-switch threshold [36]
to inform herbivore management, they are interested in incorporating it into management
decision-making. As this threshold is based on grass biomass, the ability to reliably estimate
grass biomass is particularly important in this context. The VI-biomass model, which
did not include additional variables, was only useful at sites the model was trained on.
Furthermore, it tended to overpredict grass at sites with high biomass. This means that this
model may overestimate forage availability when in reality, it has fallen below the threshold,
masking an increased browsing risk to seedlings. VIs were unable to predict understorey
biomass to new sites without additional landscape scale variables. The performance of the
management models demonstrates that by including remotely sensed soil moisture and
tree cover data in the models, managers may better forecast forage availability across the
study area without needing to collect field data.
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5. Conclusions

Understorey biomass estimation is complex, and the choice of remote sensing variable,
or combination of variables, is context-dependent [14,18]. Our results show that brightness
is an important variable in this semi-arid environment and can improve the explanatory
power of models with an index measuring vegetation greenness. However, VIs alone are
not enough to predict biomass adequately, particularly to new sites. GLMMs could be
further improved by the inclusion of herbivore density data specific to our sites, which
were not available at the time of our study. As herbivore dynamics are complex, and
their impacts on vegetation reflectance in this environment are unclear, further work
to understand these relationships is needed. Finer spatial scale remote sensing data is
required for improved biomass estimation in this heterogeneous environment, such as those
obtained using unmanned aerial vehicles (UAVs). Although most remotely sensed biomass
estimation studies have focused on optical data, there is also potential to integrate other
data, such as Synthetic Aperture Radar (SAR) or Light Detection and Ranging (LIDAR)
data, which have shown promising results in similar environments [70–72].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14102358/s1, Figure S1: Matrix of vegetation index correlation co-
efficients; Table S1: Model outputs for vegetation index-total understorey biomass GLMMs (εi = resid-
ual error); Table S2: Model outputs for vegetation index-live understorey biomass GLMMs (εi = resid-
ual error); Table S3: Model outputs for vegetation index-grass biomass GLMMs (εi = residual error);
Table S4: Model outputs for vegetation index-total understorey biomass GLMMs with additional
variables (S.M. = soil moisture (1-month window + 2-week lag), Tree C. = percentage tree cover, Dom.
G.F. = dominant understorey growth form, εi = residual error); Table S5: Model outputs for vegetation
index-live understorey biomass GLMMs with additional variables (S.M. = soil moisture (1-month
window + 2-week lag), Tree C. = percentage tree cover, Dom. G.F. = dominant understorey growth
form, εi = residual error); Table S6: Model outputs for vegetation index-grass biomass GLMMs with
additional variables (S.M. = soil moisture (1-month window + 2-week lag), Tree C. = percentage tree
cover, Dom. G.F. = dominant understorey growth form, εi = residual error); Table S7: Management
models with coefficients. GLMMs trained using all seasons’ (training and validation) data.
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