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Abstract: Understanding the spatiotemporal evolution and driving mechanisms of landslides fol-
lowing a mega-earthquake at the catchment scale can lead to improved landslide hazard assessment
and reduced related risk. However, little effort has been made to undertake such research in the
Wenchuan earthquake-affected region, outside Sichuan Province, China. In this study, we used the
Goulinping valley in the Bailong River basin in southern Gansu Province, China, as an example. By
examining the multitemporal inventory, we revealed various characteristics of the spatiotemporal
evolution of landslides over the past 13 years (2007–2020). We evaluated the activity of landslides
using multisource remote-sensing technology, analyzed the driving mechanisms of landslides, and
further quantified the contribution of landslide evolution to debris flow in the catchment. Our results
indicate that the number of landslides increased by nearly six times from 2007 to 2020, and the total
volume of landslides approximately doubled. The evolution of landslides in the catchment can be
divided into three stages: the earthquake driving stage (2008), the coupled driving stage of earthquake
and rainfall (2008–2017), and the rainfall driving stage (2017–present). Landslides in the upstream
limestone area were responsive to earthquakes, while the middle–lower loess–phyllite-dominated
reaches were mainly controlled by rainfall. Thus, the current landslides in the upstream region remain
stable, and those in the mid-downstream are vigorous. Small landslides and mid-downstream slope
erosion can rapidly provide abundant debris flow and reduce its threshold, leading to an increase
in the frequency and scale of debris flow. This study lays the foundation for studying landslide
mechanisms in the Bailong River basin or similar regions. It also aids in engineering management
and landslide risk mitigation under seismic activity and climate change conditions.

Keywords: landslide; evolution characteristics; state of activity; earthquake; rainfall; the Bailong
River basin

1. Introduction

Landslides cause catastrophic and significant economic and human losses world-
wide [1]. In recent years, the incidence of landslides has increased owing to climate change
and seismic activity [2–4]. Fragile rocks, fault structures, frequent earthquakes, and heavy
and concentrated rainfall during monsoon periods make the eastern margin of the Tibetan
Plateau a notable hotspot for landslide risk [5,6]. The Wenchuan earthquake in the region
posed a great threat to people’s lives and property safety, triggered more than 15,000 land-
slides, and caused the deaths of more than 20,000 people in Sichuan Province [7–9]. Except
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for Sichuan Province, the Bailong River basin is one of the areas most seriously affected by
the Wenchuan earthquake [10]. More than 800 landslides were triggered by seismic shaking
along the Zhouqu–Wudu section [11,12]. Meanwhile, the earthquake reactivated the ancient
landslides, such as the Sanjiadi and Hongtupo landslides [13,14]. According to the State
Council Information Office of the People’s Republic of China (https://www.scio.gov.cn
(accessed on 15 March 2022)), the Wenchuan earthquake caused 10,523 casualties (including
365 deaths) in the Gansu Province and the three hardest-hit areas were in the Bailong River
basin. However, the landslide evolution and driving mechanisms of the catchment or
region scale in this region are unclear, thus warranting the undertaking of relevant research.

Clarifying the spatiotemporal evolution pattern of landslides is vital for landslide-
prone areas to better predict and mitigate disasters [15,16]. Most studies of rainfall- or
earthquakes-induced landslides were focused on identifying the spatial pattern and poten-
tial risk of landslides, whereas the dynamic evolution processes of landslides at catchment
or regional scale was ignored [17–19]. However, the evolution characteristics of landslides
at the catchment scale can be well-reflected by spatiotemporal landslide inventories [20–23].
The spatial and temporal completeness of multitemporal inventories is of utmost impor-
tance in the study of landslide evolution at the catchment scale. Recently, many researchers
have devoted themselves to researching the spatiotemporal evolution of landslides covering
different types and mechanisms at the catchment scale following the Wenchuan earthquake
to evaluate the long-term impacts of the earthquake on geological hazards [16,24–28]. In
areas affected by such large earthquakes, the threat of landslides persists in the years
following the earthquake, as intensified landslides and landscape erosion are induced by
coseismic mass wasting [23,24]. However, these studies are mainly concentrated in Sichuan
Province, while the effects on the Bailong River basin, which was also severely affected by
the Wenchuan earthquake, remain poorly understood.

The classification of landslide activity can reflect the driving mechanisms of landslides
and guide land-use planning, thus effectively reducing social and economic costs [29].
The evaluation of landslide activity is mainly based on optical images or interferometric
synthetic aperture radars (InSAR) [24,25,30]. Optical remote sensing has great potential
for monitoring seasonal changes in landslides [31]. In the last decade, unmanned aerial
vehicles (UAV) have been widely used in landslide studies, offering users a more conve-
nient way to obtain high-spatial-resolution optical images [32]. Even so, it is difficult to
quantitatively analyze optical remote-sensing data and determine the process of landslide
activity [22]. InSAR is a powerful technique with a comprehensive area coverage and
high sensitivity to surface displacement [33,34]. It has good monitoring capability for
quantitative analysis, but has limitations in terms of monitoring fast deformation areas,
and some regions are decorrelated [22,31]. Using a single remote-sensing technology is
often inefficient in accurately classifying the activity of all landslides in the region; thus,
it is necessary to combine multiple remote-sensing techniques to enhance the accuracy of
evaluating landslide activity.

Understanding the relationship between landslides and their driving mechanisms
forms the basis for predicting future landslides and assessing landslide hazards [35–37]. Pre-
vious studies have shown that rainfall and earthquakes are the two principal mechanisms
that induce landslides [37–39]. Several attempts have been made to establish relationships
between rainfall levels and landslides [40–44]. In earthquake-affected areas, long-term slope
destabilization was predicted because of monsoonal climatic conditions and the seismody-
namic setting [45–48]. The spatial distribution and topographic context of rainfall-triggered
and coseismic landslides in the same study area may differ [9,49]. Therefore, the coupling
of the postearthquake effect and rainfall has been widely studied [45–47]. During the wet
season, vast amounts of deposits loosened by landslides may lose stability due to rainfall
infiltration and can easily evolve into deadly debris flows and trigger impressive chains of
geohazards [23,49]. Hence, clarifying landslide spatial likelihood and driving mechanisms
is critical for mitigating risk through proper countermeasures and reconstruction strategies.

https://www.scio.gov.cn
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In this study, we explored the spatiotemporal evolution pattern and driving mech-
anisms of landslides in a valley of the Bailong River basin, China, in the Wenchuan
earthquake-affected region. To this end, we generated a multitemporal landslide inven-
tory map and used multisource remote-sensing technology to classify landslide activity.
Furthermore, we quantified the potential contribution of landslides to debris flows in
this catchment. The novelty of this study is that combined multiple remote-sensing ap-
proaches to investigate the evolution pattern of landslides and the potential contribution
of landslides to debris flow at the catchment scale in the Wenchuan earthquake-affected
area outside Sichuan Province. It provides a valuable basis for constraining the control of
landscape evolution and improving landslide risk management.

2. Study Area

The Bailong River basin is located in the transition zone between the Tibetan Plateau,
Loess Plateau, and Sichuan basin in China, featuring high-relief and steeply-incised val-
leys [50,51]. Across the region, faults are extensively developed, and neotectonic move-
ments are frequent, resulting in the widespread formation of fragmented rocks coupled
with frequent downpours, making the region one of the four most disastrous areas in
China [52]. There are 171 tributary valleys in the middle reaches of the Bailong River
basin, and the intermediate-sized tributary valleys account for a primary proportion in this
section. Most of them have hypsometric integrals values between 0.41 and 0.60, and relief
between 1645 and 2405 m [53].

The Goulinping (GLP) valley is located in the middle section of the Bailong River basin.
It is a representative small–medium tributary valley in this area in terms of relief, drainage,
and hypsometric integrals [53]. It has high mountains and narrow valleys, with a watershed
area of 20.15 km2 and a relief of 1947 m. The main channel is the first-level branch of the
Bailong River, with a length of approximately 6.1 km and average ratio of approximately
17%, as shown in Figure 1. It is sourced from a high-relief carboniferous limestone area
and subsequently passes through a low-relief Silurian phyllite area covered by Quaternary
loess, before finally entering the Bailong River. The tectonic structure in the GLP was
developed, and the Jiudun fault, which is the secondary fault of the Diebu–Bailongjiang
fault zone, passes through the watershed. The rock layers have many folds, faults, and
joints, and their lithology is weak and broken, providing prerequisites for geohazards, as is
shown in Figure 2.
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Figure 2. Geomorphic map of the GLP.

Climatically, the monsoon strongly influences the study area, which is warm and
humid in summer and cold and dry in winter [52]. The annual precipitation of the area is
487.2 mm, 75 to 85% of which falls between May and September [53]. The average annual
precipitation varies across the valley, with the largest cumulative precipitation occurring in
the upper–middle reaches and decreasing downstream (Figure 3). It should be emphasized
that there have been several extreme rainfall events in recent years, the most serious being
in August 2020, with an annual precipitation of nearly 800 mm. In this region, the average
precipitation of August in the past 30 years was 59.4 mm, while it quadrupled to 258.9 in
August 2020. Climatic conditions have triggered geohazards in the study area.
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GLP has an active crust and is affected by surrounding mega-earthquakes, such as the
1654 Lixian M8.0 earthquake, the 1879 Southern Wudu (Wenxian) M8.0 earthquake, the
2008 Wenchuan M8.0 earthquake, and the 2017 Jiuzhaigou M7.0 earthquake. The study
area is located in the VI intensity of the 1654 Lixian earthquake and the X intensity of the
1879 Southern Wudu (Wenxian) earthquake (Figure 4a,b). These two earthquakes triggered
massive landslides in history, of which the 1879 Southern Wudu (Wenxian) earthquake had
a more serious impact [54,55]. The mountain ecosystems have a strong resiliency following
major geologic disturbances [56]. The 1879 Southern Wudu (Wenxian) earthquake occurred
more than 100 years ago. As the landscape has evolved, the scars can be covered with
vegetation, which makes them difficult to identify on remote-sensing images [57]. Due to
the long history and sparse data of the 1879 Southern Wudu (Wenxian) earthquake, it is
hard to make explicit its coseismic landslides, whereas it can be speculated that parts of the
landslides in the study area before 2008 were affected by this earthquake. According to the
China Earthquake Administration survey, the intensity of the Wenchuan earthquake in the
study area is VII, while that of the Jiuzhaigou earthquake is less than VI (Figure 4c,d). The
coseismic displacement of the Wenchuan earthquake measured using GPS is 53 mm [58].
Therefore, the Wenchuan earthquake is considered a mega-earthquake that has had a great
impact on the study area in recent years. The research focuses on the landslide evolution
after the Wenchuan earthquake.
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Figure 4. The intensity of different earthquakes in the study area. (a) The intensity of the 1654 Lixian
earthquake (Adapted with permission from Ref. [54]. 2017, Yuan et al.); (b) the intensity of the
1879 Southern Wudu (Wenxian) earthquake (Adapted with permission from Ref. [55]. 2014, Yuan
et al.); (c) the intensity of the 2008 Wenchuan earthquake (the data comes from the China Earthquake
Administration); (d) the intensity of the 2017 Jiuzhaigou earthquake (the data comes from the China
Earthquake Administration).

3. Materials and Methods
3.1. Data

In this study, we used optical images from 2007 to 2020 (Table 1) for the landslide
inventory, extraction of geomorphic factors based on digital elevation model (DEM) data
with a resolution of 12.5 m from the advanced land-observing satellite (ALOS), small
baseline subset (SBAS) InSAR calculated using SAR data from ENVISAT ASAR 2003–2010
and Sentinel-1A 2014–2020, precise orbit determination (POD) data, and a resolution of
30 m SRTM data; detailed information of the SAR data is presented in Table 2, and the
coverages are shown in Figure 5. We used the moisture balance drought index (MBDI)
to indicate regional soil moisture [59]. Sunshine, air temperature, and precipitation data
were obtained from the Wudu meteorological station, while the rest of the precipitation
data were obtained from rain gauges installed by our team in the study area, the detailed
information of precipitation data is showed in Table 3.
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Table 1. Optical image data sources and information.

Image No. Source Acquisition Data Spatial Resolution (m) Type

1 IKONOS-2 24 November 2007 1.0 m Panchromatic
2 SPOT 16 May 2008 2.5 m Multi spectral
3 ZY03 11 October 2013 2.1 m Pan-sharpened
4 UAV 22 April 2014 0.5 m Multi spectral
5 Google Earth 1 November 2017 0.5 m Multi spectral
6 Google Earth 31 July 2019 0.5 m Multi spectral
7 UAV 30 October 2019 0.2 m Multi spectral
8 UAV 20 August 2020 0.1 m Multi spectral

Table 2. ENVISAT ASAR data and Sentinel-1A data information.

Parameters ENVISAT ASAR Sentinel-1A

Band C C
Wavelength (cm) 5.6 5.6

Incidence angle θ (◦) 22.8 39.2
Heading angle γ (◦) −165 −167

Track 018 62
Polarization VV VV

Number of images used 32 135
Orbit direction Descending Descending

Acquisition time 13 August 2003 to
15 September 2010

9 October 2014 to
1 October 2020
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Table 3. Annual precipitation data of the study area.

Year Annual Precipitation (mm) Year Annual Precipitation (mm) Year Annual Precipitation (mm)

1996 339.9 2005 410.1 2014 494.2
1997 270.5 2006 337.9 2015 448.6
1998 479.8 2007 457.3 2016 465.2
1999 397.2 2008 489.4 2017 570.1
2000 450 2009 508 2018 492.4
2001 377.1 2010 338.3 2019 574.3
2002 414.7 2011 546.7 2020 759.8
2003 519.8 2012 422 Mean annual precipitation (mm)
2004 411.6 2013 618.7 463.7

3.2. Landslide Inventory

In this study, landslide catalogues were interpreted using multiple optical images
from 2007 to 2020 and verified by field investigation in 2020. Owing to the limited image
data, different data sources and time gaps exist. Landslides are interpreted according to
image features, including shape, size, color, tone, spot, and texture [25,60–65]. Owing to
the differences in the resolution of optical images from different sources, we considered
only landslide areas larger than 100 m2, to avoid the impact on the subsequent statistical
analysis. During the field investigation, the landslide cataloguing results were verified
and supplemented. In addition, we collected the basic characteristic parameters of the
landslides. According to the landslide classification criteria of Varnes (1978) and Hungr
et al. (2014), landslides are classified into fall, slide, and flow, as is shown in Figure 6 [66,67].
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3.3. SBAS–InSAR Technology

The SBAS–InSAR technology uses a multimaster image to obtain the interferogram of
a short time and spatial baseline and extract the distributed point that maintains coherence
in a period, which is suitable for the deformation monitoring of natural surfaces [68,69]. In
this study, SBAS–InSAR technology based on SARscape software was used to process the
ENVISAT ASAR datasets from 2003 to 2010 and Sentinel-1A datasets from 2014 to 2020. The
SAR data were divided into three groups, and the connection graphs are shown in Figure 7;
this was generated according to the maximum temporal baseline of 1000 days (2003–2008),
100 days (2008–2010), and 160 days (2014–2020) and the maximum normal baseline of
45%. The Goldstein filtering method was used to improve the signal-to-noise ratio of the
differential interferogram, and the image pairs with low coherence, poor unwrapping effect,
and serious influence of atmosphere and terrain were deleted. To eliminate the influence
of the residual terrain phase on the results, 20 ground control points (GCPs), which were
coherently higher than 0.85 and confirmed in the stable region by field investigation, were
selected in the study area. The unwrapping phase obtained after removing the terrain phase
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was used to derive the remaining height and initial displacement using a linear model,
and the singular value decomposition method was applied to search the least-squares
solution for each coherent pixel and estimate the nonlinear deformation. After subtracting
the estimated atmospheric artefacts and orbital ramps, the ultimate time-series deformation
was inverted [70].
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4. Results
4.1. Spatiotemporal Evolution of Landslides

Figures 8 and 9a,b show the spatiotemporal inventory of landslides, changes in the
number and area of landslides, and changes in the number and area of different types of
landslides. The landslide area ranged from 102 m2 to 192,208 m2. Seventy-one landslides
were developed in 2007, covering 8.78% of the study area and concentrated in the loess and
weathered phyllite in the middle–lower reaches; their type was mainly slides. Compared
to 2007, the number and area of landslides doubled in 2008. Most of the added landslides
were developed in the upstream limestone area, mainly in falls and flows. The falls were
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developed on the steep slope with good free-face condition and the flows were developed
on the concave slope covered by debris deposits; the number and area of landslides in
subsequent years exhibited a moderate rise, and the spatial distribution of new landslides
gradually shifted to the middle–lower reaches. Compared with previous years, the number
and area increased significantly in 2020, with a total of 408 landslides developing and
covering 17.7% of the study area. The new landslides are concentrated in the middle and
lower reaches, and their spatial distribution is consistent with that in 2007; the type of these
was mainly slides.
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We estimated the landslide volume based on the field survey, literature data, and
area–volume geometric scaling relationships, defined as:

V = aAb (1)

where V is the landslide volume, A is the landslide area, a is a fit parameter, and b is the
power-law exponent [71]. The method of calculating the volume of landslides was used in
many studies [72–74]. We used 60 landslide data in an area range of 1.0 × 101–6.33 × 105 m2

and volume range of 1.7 × 101–2.26 × 107 m3 for fitting and obtained the fitting formula
with V = 0.5505A1.3163 (R2 = 0.9538) to estimate the remaining landslide quantity in the
study area. The accuracy of the total landslide volume depends on the quality of the
individual volume measurements and the completeness of the landslide inventory. The
landslide depth is an important parameter for landslide volume [75]. Most of the landslides
are shallow in the study area; thus, we measured the depth of the landslide scarp with
a laser rangefinder to represent its depth [76,77]. The volume of landslides measured in
the field was obtained as the product of landslide area and the average landslide depth,
meaning that the volume of landslides was probably overestimated [71]. Therefore, the
area–volume empirical formula has certain uncertainties. Owing to the limitations of
remote-sensing image resolution and terrain, some boundaries of small landslides which
were located in unreachable mountain areas cannot be interpreted and verified precisely.
Meanwhile, the connected small landslides were possibly delineated with a larger bound-
ary. Therefore, the areas of small landslides may be enlarged and the volume was probably
overestimated. However, the uncertainties do not affect the variation trend of landslide
volume. Figure 9c,d show that the total volume of landslides increased from 3.32 × 107 m3

(2007) to 5.87 × 107 m3 (2020). Moreover, the volume of most landslides was less than
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105 m3, and this number increased annually. The number of landslides increased at a
constant rate from 2007 to 2019, and the growth rate in 2020 was relatively large compared
to that in the previous period. A rapid growth was evident in the number of landslides
with a volume between 105 and 106 m3 in 2008 and 2020, while the number of landslides in
other years varied little. However, the number of landslides with a volume between 106

and 107 m3 remained unchanged for many years.

4.2. Effect of Terrain and Geomorphic Factors on Landslides

Terrain and geomorphic conditions control the distribution, scale, and types of land-
slides. The spatial distribution of landslides in various terrains and geomorphic factors in
the study area is shown in Figure 10. Landslides were mainly distributed at 1300–1900 m,
and their peak value shifted from to 1500–1700 m to 1300–1500 m from 2019. Simulta-
neously, the number of landslides higher than 1900 m increased after 2008 (Figure 10a).
The landslides were mostly distributed at a slope gradient of 30–40◦. However, compared
to other years, the number of landslides at a slope gradient of 40–50◦ increased in 2008.
Additionally, the number of landslides at a slope gradient of 20–30◦ increased considerably
in 2020 (Figure 10b). Landslides occurred in all slope aspects but were mainly distributed in
the SE direction in all years (Figure 10c). In terms of geomorphic distribution, the landslides
were concentrated on slopes consisting of loess, phyllite, and limestone (Figure 10d). In
2007, the most landslides occurred in loess slopes. After 2008, the number of landslides
that developed on limestone slopes increased markedly and then declined in 2020. In 2020,
the number of landslides that developed in loess slopes reached a record high, and the
geomorphic distribution trend of landslides recovered from a rate consistent with that
of 2007.
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4.3. Landslide Activity
4.3.1. InSAR Results

By processing ENVISAT ASAR and Sentinel-1A data with the SBAS–InSAR technique,
we obtained the surface deformation rates in the line-of-sight (LOS) of the study area from
2003 to 2020. Owing to the different data used, we transformed the results along the LOS
into the slope direction based on the methods of Zhao et al. (2012) [78]. The formula used
was the following:

VSlope =
VLos

(− sin θ cosα, sin θ sinα, cos θ)(− sinβ cosϕ, − cosβ cosϕ, sinϕ)
(2)

where VSlope is the deformation in the slope direction; VLos is the deformation in the LOS
direction; θ is the incidence angle; α is the satellite flight azimuth; β is the slope angle
above the horizontal surface; φ is the slope azimuth. According to the formula, when the
numerator approaches zero, the VSlope tends to infinity. Therefore, we used 0.3 to replace
the value of 0 to 0.3 and used −0.3 to replace the value of −0.3 to 0. When the VSlope
was greater than 0, the material moved upwards along the slope direction. This situation
generally does not exist, except for the rock layer reverse. Therefore, we removed VSlope
values greater than zero (Figure 11). The results show that from 2003 to 2006 (Figure 11a), in
the phyllite slope in the north of Jiudun (Figure 11d), the maximum deformation rate was
−60 mm/a, and the deformation region was small. The deformation was more significant
from 2008 to 2010 (Figure 11b) than during the previous stage. The deformation region
was enlarged within the red circle and was more severe, reaching −105 mm/a. After 2014
(Figure 11c), the slopes near Jiudun village and some parts of the branch ditch gradually
formed major deformations. Compared with the previous stage, the deformation of the
slope in the northern part of Jiudun was exacerbated, and the maximum deformation rate
increased to −120 mm/a. Based on the field investigation, flow landslide with serious
erosion is marked with a red circle in Figure 10d. Additionally, we found the seepage of
rock mass in the lower part of the landslide (Figure 11e), which indicates that pore or fissure
water were developed in the landslide, the strength of rock decreased, and the deformation
of the slope was aggravated.

4.3.2. Landslide Activity Based on Optical Remote-Sensing and InSAR Technology

In this study, we classified landslides as active, dormant, reactivated, and new ac-
cording to the definitions of landslide activity by UNESCO-WP/WLI (1993) [79]. Using
SBAS–InSAR technology, we chose peak velocities to represent landslide motion and evalu-
ated landslide activity by comparing the historical (VH) and present (VP) representative
velocities of each landslide [30,80]. Thus, we gave the maximum possible sliding or reacti-
vation range. Owing to the lack of SAR data, the SBAS–InSAR results from 2003 to 2006
represented the landslide activity before the earthquake. Based on the SBAS–InSAR results,
the stable threshold was set to −16 mm/a through statistical analysis of the results and field
investigations [81,82]. The complex relief and rapid deformation in some parts of the study
area will lead to the incoherence of InSAR results [73]. A reliable and robust interpretation
of landslide motion rates includes those phenomena with a density of coherent targets
(CTs) of up to 20–30 km2 and at least three within the landslide [30,83]. Thus, when the
number of CTs was insufficient, a comparison of the two optical images before and after
was used to supplement the activity of some landslides [24]. The classification criteria are
presented in Table 4.
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Table 4. Classification criteria of landslide activity in this study.

Landslide State Sufficient Number of CTs Insufficient Number of CTs

Active VP < −16 mm/a and VH < −16 mm/a <1/3 vegetated
Reactivated VP > −16 mm/a and VH < −16 mm/a Vegetated reduction

Dormant VP > −16 mm/a Vegetated
New Landslide that does not occur on a pre-existing landslide.

The distribution of landslide activity is shown in Figure 12, and the quantitative statis-
tics are shown in Figure 13. The results showed that 25 active landslides and 46 dormant
landslides were initially detected (2007). The active landslides were concentrated near
Jiudun village in the middle–upper reaches, and sporadic active landslides were also
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observed on both sides of the main and secondary channels. In 2008, many dormant
landslides were reactivated, and abundant new landslides were found. Regarding land-
slide distribution, new landslides were located in high mountain limestone. From 2017 to
2019, the number of dormant landslides exhibited a steady upward trend. The restored
stable landslides were mainly coseismic landslides of the Wenchuan earthquake, while the
concentrated areas of active, new, and reactivated landslides gradually recovered to the
same level as that before the Wenchuan earthquake. However, many dormant landslides
were reactivated in 2020. The number of active and new landslides increased, and the new
landslides were mainly distributed in the middle–lower section. Based on the spatiotempo-
ral distribution of active landslides, the landslides triggered by the Wenchuan earthquake
were mainly located on the upstream and steep slopes, while the landslides induced by
seasonal rainfall were mainly concentrated in the middle–lower reaches. The activity of
coseismic landslides generated by the 2008 Wenchuan earthquake gradually decreased.
Numerous coseismic landslides recovered to stability from 2017 to 2019, indicating that
the postseismic effect of the Wenchuan earthquake on landslides lasted nearly 10 years.
During these 10 years, the gradual weakening of the postseismic effect gradually led to the
distribution of active landslides to the middle and lower reaches of the basin.
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4.3.3. Characteristics of Landslide Time Series

To quantify the variation in the landslide displacement rate over time and better reveal
the process and stage of landslide deformation, we selected some representative landslides
to study the characteristics of the landslide time series. Based on different landslide types
and the distribution of the SBAS–InSAR results, we selected 11 landslides from 2008 to
2010 and 25 landslides from 2014 to 2020 as representative landslide sets in the study area.
We selected the 75th percentile CTs values within the landslide body to observe temporal
variation [84]. Landslides are caused by surface and subsurface saturation. Therefore, the
landslide representative set velocity was normalized to analyze the relationship between
the change in landslide velocity and MBDI, as shown in Figure 14. The time-series rate
change of the landslides shows that the deformation presented continuous and seasonal
changes. On a long-term scale, the deformation was related to the MBDI, and the landslide
movement was most significant from May to October each year. On a short-term scale,
there was hysteresis in the movement of landslides caused by water gradually infiltrating
the slope through various pathways. The velocity of some landslides peaked after the
Wenchuan earthquake, and it gradually decreased until the MBDI increased. In addition,
some landslides did not reach their peak movement rate immediately after the earthquake,
but their velocities increased significantly. Under the combined effect of water, landslide
velocity peaked in August and September 2008 and then gradually decreased, showing
seasonal cycle changes affected by MBDI. Owing to the heterogeneity of landslides, their
response to soil moisture varied; however, it was clear that extreme rainfall events in
August 2020 resulted in an increase in most landslide movement rates in the study area.
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(a) Eleven representative landslides from 2008 to 2010; (b) twenty-five representative landslides
from 2014 to 2020.

5. Discussion
5.1. Landslide Driving Mechanism and Evolution Pattern

After the earthquake, the landslide density of the areas at elevations above 1900 m
exhibited an incremental trend (Figure 10a). A comparison of the data prior to and after the
earthquake showed that few pre-earthquake landslides were distributed in locations with a
slope in the 40–50◦, while the opposite was true for coseismic and postseismic landslides
(Figure 10b). Moreover, there were numerous new landslides at the ridge or areas with
local variations in topography and morphology (Figure 8). Various studies have justified
that the role of topographic amplification of ground motion accelerates the initiation of
slope failures and significantly modifies across different parts of hillslopes [85–88]. The
probability of slope failure becomes larger along ridgelines and changes in slope [86–88].
Furthermore, the contribution of amplification effects also appears at steep slopes and
higher altitudes [85]. Thus, compared with the middle–lower reaches of the river valley,
the Wenchuan earthquake has a greater impact on the upstream. After the earthquake,
cracks formed on the slopes. The formation of cracks made slopes vulnerable to failure by
subjecting them to rain seepage. Under the coupling effect of rainfall, the shear capacity of
the slopes gradually decreased and eventually formed landslides. As these cracks led to
the development of landslides, the postearthquake effects wore off. Therefore, the number
of landslides in the upper limestone area increased between 2008 and 2014. From 2017
to 2019, the activity of landslides upstream decreased, and many coseismic landslides
recovered and stabilized. It can be inferred that the study area was significantly affected by
the postearthquake effects from 2008 to 2014, while the postearthquake effects gradually
weakened after 2014, and the coseismic landslides were stable until approximately 2017.

As is shown in Figure 15, the number of landslides corresponds to annual precipita-
tion. During heavy rainfall, the number of landslides increased significantly, while when
the rainfall was slight, the increase in the number of landslides was not significant. By
comparing the relationship between annual rainfall and landslide activity, we found that
there were more active landslides in years with high rainfall. Figure 3 shows the rainfall
distribution in the valley. Although rainfall was more abundant upstream, the impact of
rainfall was unnoticeable owing to the shear strength of limestone. In the middle reaches
near Jiudun-Yaodao, rainfall was heavy. This area consists of weak loess and weathered
phyllite that can lead to landslides under the influence of rainfall. Before the earthquake,
landslides were mainly distributed in the middle-lower reaches, and active landslides were
concentrated in the vicinity of Jiudun-Yaodao. After the earthquake, with the weakening of
the postearthquake effect, rainfall gradually enhanced landslide control in the study area.
The new landslides gradually moved to the middle–lower reaches. When there was extreme
rainfall in the valley in 2020, many reactivated and new landslides were concentrated in the
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middle–lower reaches. Therefore, in the study area, landslides triggered by rainfall were
mainly concentrated in the middle–lower reaches and a few upstream regions. In addition,
the rainfall in this region exhibited a trend of gradual increase, as is shown in Figure 15.
Based on the five-year average rainfall of less than 400 mm in 1995–2000 to nearly 600 mm
in 2015–2020, it can be inferred that rainfall will exhibit an upward trend in the future. An
increase in rainfall may make the existing landslides more active, and more new landslides
will occur.
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The land use has changed slightly since 2007 (Figure 16). Road engineering is the most
important triggering factor of anthropogenic nature. It has been reported that roads in
the upstream limestone area were built after the 2008 earthquake. Building roads through
mountains provides the slope with good free-face conditions, which can easily trigger
landslides. As is shown in Figure 8, there were some landslides along the road upstream,
which is another reason for the increase in the number of landslides in this region after
2008. In addition, there has been road construction near Jiudun and Yaodao villages in
recent years. Owing to the destruction of the original slopes caused by various engineering
constructions, landslides are easily formed under seasonal rainfall. Human activities will
amplify the likelihood of landslides triggered by seasonal rainfall. However, compared with
the landslides triggered by rainfall and earthquake, landslides caused by human activities
were relatively rare, with 29 landslides located on road slopes until 2020, accounting for
7% of the total number of landslides. Therefore, road construction is not the dominant
driving mechanism of landslides in the study area. The landslides associated with human
activity have a weak influence on the overall evolution pattern of the study area, so we do
not conduct in-depth discussion.
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Based on the landslide evolution and driving mechanisms in the study area, we
developed a conceptual model for the landslide evolution of the catchment (Figure 17).
Before the earthquake, the landslides were primarily controlled by rainfall, most landslides
were in the middle–lower section, and a few landslides were active (Figure 17a). In the
upper reaches, much landslides and slope damages were caused by the earthquake. At
the same time, the earthquake enhanced the activity of the existing landslides (Figure 17b).
After the earthquake, the coseismic landslides gradually stabilized. Under the coupling
effect of rainfall, the cracks upstream gradually developed into landslides. The spatial
distribution of active landslides gradually shifted to the middle–lower reaches. The loose
sediment of the landslides accumulated on the slope and channel and provided plentiful
material for debris flow (Figure 17c). Currently, landslides are mainly driven by rainfall,
and most of them are small slide landslides that have developed in the middle–lower
sections. Abundant materials were deposited in the channel (Figure 17d).
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5.2. Contribution of Landslide and Surface Erosion to Debris Flow

The study area is a typical high-frequency debris flow catchment, with debris flows
occurring six times per year on average [89]. Three main factors control debris flow
formation [90]. The volume of source material in a catchment is the most significant. Many
landslides cause loose material to accumulate on hillslopes and channels, which increases
the susceptibility of debris flows. To quantify the potential debris flow source provided
by landslides, we divided the catchment into 15 sub-catchments and combined them with
the landslide sediment supply capacity (ISl) to estimate the landslide potential material
source [91]. The potential source quantity provided by landslide sediment for debris flows
each year is shown in Figure 18. The variation trend of the potential source provided by
landslides was generally consistent with that of the number of landslides, except for 2017.
As the ISl index decreased in 2017, the volume also decreased slightly. According to the
existing debris flow records and information gathered from local villagers, in recent years,
the number of debris flows occurring in the basin was the highest in 2020, and these scales
were more prominent than in previous years. Corresponding to the potential source, the
volume in 2020 increased significantly compared to those in previous years. The additional



Remote Sens. 2022, 14, 2339 19 of 24

landslides in this year were mainly small landslides. Small landslides induced by heavy
rainfall can rapidly change the volume of channel material [92]. Therefore, it can be inferred
that small landslides are an important source of debris flows.
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Furthermore, the surface erosion of slopes also significantly contributes to debris
flow material sources. In a debris flow gully, erosion is distributed throughout the entire
catchment; therefore, based on the SBAS–InSAR results, the obtained deformation data
were used to estimate the volume of erosion occurring in the entire basin via statistical
calculations performed based on the method of Cao et al. (2021) [90]. From 2014 to 2020,
the catchment generated approximately 3.90 × 105 m3 of slope erosion. As is shown in
Figure 11c, owing to excellent water retention, the slope erosion intensity of the upper
reaches with high vegetation cover was low. Erosion principally occurred on both sides of
the gully in the middle–lower reaches. Thus, the erosion material of the slope originated
mainly from the middle to the lower reaches. Overall, the greater the rainfall, the greater
the amount of erosion. The annual amount of erosion from January to October from 2017 to
2020 is shown in Figure 19a. The amount of erosion in 2018 was the lowest, approximately
3.05 × 104 m3, and the amount of erosion in 2020 was the highest, at approximately
8.31 × 104 m3. Taking 2020 as an example, the time-series analysis of slope erosion within
a year showed that the slope erosion in summer and autumn was greater than that in
spring and winter (Figure 19b). Existing debris flow records show that debris flow occurred
mainly from May to October, corresponding to slope erosion and landslide movement [51].
At the same time, the debris flow events that occurred in August 2020, corresponding to
landslide activity and surface erosion at that time, were relatively large. Therefore, the
intensification of landslides and surface erosion increased the material source of debris
flow and the risk of a disaster chain.
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As this study was based only on remote-sensing data and field investigations, it is
impossible to determine the relevant landslide process from stability to activity. Therefore,
it is necessary to conduct further studies based on field experiments or physical models in
the later stages to explore the physical mechanisms triggering landslides from a microscopic
perspective. In the future work, we will conduct geophysical investigation to obtain more
accurate parameters. The connected landslides are partitioned into individual landslides
based on the methods of Fan et al. (2019) [93]. Thus, the accuracy of landslide volume
calculation can be improved and we will estimate a more exact contribution to debris flow.

6. Conclusions

In this study, Goulinping valley, a typical medium–small catchment in the Bailong
River basin, was used as the research area. A multitemporal inventory map and field
investigation results revealed the spatiotemporal evolution pattern of landslides. We used
multisource remote-sensing technology to evaluate landslide activity and analyze the
driving mechanisms of landslides. Moreover, we quantified the potential contribution of
landslides to debris flows in this catchment. The following conclusions were drawn from
this study:

(1) The number of landslides increased nearly six times in 13 years (from 71 in 2007
to 408 in 2020), and the total volume of landslides approximately doubled (from
3.32 × 107 m3 in 2007 to 5.87 × 107 m3 in 2020). The growth was most significant in
2008 and 2020, and the volume of added landslides was less than 105 m3.

(2) Landslides are mainly driven by rainfall and earthquake, and the responses of differ-
ent lithologic strata to disturbances showed apparent differences. The evolution of
landslides in the catchment can be divided into three stages. During the earthquake
driving stage (2008), the coseismic landslides were mainly distributed in the lime-
stone area, and the landslides in the catchment were primarily active. During the
coupled driving stage of earthquake and rainfall (2008–2017), the damage of seismic
rock mass in the limestone area developed into landslides, and the active landslides
gradually concentrated in the loess–phyllite area. During the rainfall driving stage
(2017–the present), rainfall triggered small landslides in the loess–phyllite region, the
landslides in the limestone area were stable, and in the loess–phyllite area they were
active. Human activities have a relatively small influence on landslides instead of the
dominant control.

(3) Small landslides and mid-downstream slope erosion mainly determine the frequency
and scale of debris flow. Many small landslides can rapidly provide abundant debris
flow sources and reduce the threshold of debris flow, leading to an increase in the
frequency and scale of debris flow. The upper reaches, with good vegetation cover, had
a certain degree of soil and water conservation. Hence, vast slope erosion materials
originated from the middle–lower reaches. When the rainfall intensity was high, the
slope erosion intensified, making an outstanding contribution to debris flow.
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