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Abstract: Antarctic basal water storage variation (BWSV) refers to mass changes of basal water be-
neath the Antarctic ice sheet (AIS). Identifying these variations is critical for understanding Antarctic
basal hydrology variations and basal heat conduction, yet they are rarely accessible due to a lack
of direct observation. This paper proposes a layered gravity density forward/inversion iteration
method to investigate Antarctic BWSV based on multi-source satellite observations and relevant
models. During 2003–2009, BWSV increased at an average rate of 43 ± 23 Gt/yr, which accounts for
29% of the previously documented total mass loss rate (−76 ± 20 Gt/yr) of AIS. Major uncertainty
arises from satellite gravimetry, satellite altimetry, the glacial isostatic adjustment (GIA) model, and
the modelled basal melting rate. We find that increases in basal water mainly occurred in regions with
widespread active subglacial lakes, such as the Rockefeller Plateau, Siple Coast, Institute Ice Stream
regions, and marginal regions of East Antarctic Ice Sheet (EAIS), which indicates the increased water
storage in these active subglacial lakes, despite the frequent water drainage events. The Amundsen
Sea coast experienced a significant loss during the same period, which is attributed to the basal
meltwater discharging into the Amundsen Sea through basal channels.

Keywords: Antarctica; basal water variation; multi-source satellite; gravity inversion

1. Introduction

In Antarctica, downward overburden from overlying thick ice and heat supplied by
geothermal and interfacial friction have generated a large amount of meltwater on the
interface between the ice sheet and its underlying bed [1,2]. Typically, the basal meltwater
could spread across the ice-bed interface, accumulate in subglacial lakes, migrate through
complex basal hydrological networks, or flow into surrounding oceans [2–4]. The presence
of basal water storage facilitates fast ice flow by lubricating the interface between the ice
sheet base and bed materials, and the variation in basal water storage may have an effect
on basal effective friction and trigger changing ice velocity [5–7].

Antarctic basal water storage variations (BWSV) are controlled by basal conditions
(basal temperature, geothermal flux, melting, freezing, etc.) and basal mass balance (BMB).
Basal conditions affect BWSV by controlling basal ice melting/ water freezing, and have
been studied by many researchers [8–17], through regional or continental radioglaciological,
geological, magnetic, seismic, sparse ice-core site measurements data, or ice-sheet models.
BMB affects BWSV through basal water migrations on the ice-bed interface, causing the
ice sheet’s vertical movement (IVM) through pumping up and down the overlying ice
sheet [2,18,19]. However, the continental BMB remains poorly understood due to the
lack of direct observation. Furthermore, changes in groundwater in basal aquifers also
influence BWSV, while the current knowledge on such changes is mainly confined to
coastal or ice-free regions of Antarctica [20,21] with a magnitude smaller than that of basal
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water migrations [20]. Therefore, the induvial effect of groundwater changes on BWSV are
ignored in this study.

To date, many studies have been conducted for the detection of BMB. The commonly
adopted approach is to examine local IVM (surface height variations) by satellite altime-
try, based on surface height variations in response to the basal water volume changes
caused by subglacial lakes’ filling or drainage [3,22]. However, this approach is effective
only in regions that are characterized by periodic or abrupt basal water migrations and
might be invalid in regions where basal water increase/decrease constantly, or where
surface expressions of basal water migrations are not sufficient (such as the Siple Coast
region [23]). Göeller et al. [24] proposed a balanced water layer concept on a continental
scale to present the evolution of subglacial lakes or water fluxes, and demonstrated the
variations of subglacial lakes and their effect on overlaying ice velocity, while the presented
results rely largely on the reliability of the building models. Besides, many combined
methods have also been conducted on AIS [25–29], with the object of reconciling the results
among individual geodetic techniques (including satellite altimetry, satellite gravimetry,
and GPS) by adjusting the proportion of mass change processes of AIS (such as surface
mass balance, ice dynamics, and GIA). Unfortunately, these methods are unable to isolate
BMB due to the fact that the Earth’s surface ‘thin layer’ assumption used in gravity-mass
conversion process [30,31] ignores dual sensitivities of gravity variations to mass and dis-
tance variations [32]. To address this problem, gravity forward/inversion methods [33] can
be used to exploit the dual sensitivities of gravity and convert the known mass variations
to gravity variations and vice versa. In this way, BMB-induced gravity variations can be
obtained by subtracting variations caused by other components from the total Antarctic
gravity variations, and the associated mass variations can also be estimated accordingly.

To investigate the BMB and BWSV, a layered gravity density forward/inversion
iteration method is presented. Unlike previous direct/indirect local observation and
numerical simulation approaches, the proposed method relies little on conceptual ice
models, but on the input datasets consisting of multi-source satellite geodetic observation
and relevant models throughout AIS. Thus, the BMB and BWSV results can cover the most
regions of AIS. Uncertainties in BMB and BWSV depend mainly on the errors of the input
datasets rather than the reliability of conceptual modes. The proposed method provides
a new approach for exploring the mass variation beneath the AIS, which is important for
understanding the Antarctic mass changes and the evolution of Antarctic basal conditions.

2. Materials and Methods
2.1. Overview of Mass Redistributions of AIS

Active mass redistributions of AIS, from surface to solid Earth, are dominated by
the following processes: snow accumulation, sublimation/runoff, and melting/firn com-
paction in firn layer (FL), ice dynamic flows (IDF), and ice sheet vertical movement (IVM)
in ice layer, BMB and basal melting/freezing in the ice-bed interface, glacial isostatic ad-
justment (GIA) of solid Earth (Figure 1). These mass redistributions processes, according
to the resulting impact on mass or height variations, can be classified into two categories:
1. mass-changing processes that contribute to mass variations, including snow accumula-
tion, sublimation/runoff, IDF, BMB, and GIA; 2. mass-conserving processes that contribute
to height variations without mass variations, including melting, firn compaction and
IVM. It is notable that IVM contains not only the ice layer’s vertical movement caused by
basal meltwater migrations (or BMB), but also the movement caused by ice-water volume
changes due to basal melting/freezing.
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Figure 1. Mass redistributions in AIS. Red texts are components that contribute to mass-changing
processes, and italic texts are components related to mass-conserving processes. Vertical arrows next
to the texts denote the contribution to height variation.

Accordingly, mass redistributions of AIS are expressed as superpositions of grav-
ity/height variations in each layer:

dgAnt = dgFL + dgIDF + dgIVM + dgBMB + dgGIA (1)

dhAnt = dhFL + dhIDF + dhIVM + dhGIA (2)

where dgAnt, dhAnt are exterior gravity variations and surface height variations of AIS
(observed by GRACE and ICESat, respectively; see Sections 2.4.1 and 2.4.2), respectively.
Other subscripts of the terms in Equations (1) and (2) represent height and gravity vari-
ations caused by associated mass redistribution processes. Compared with the terms in
Equation (1), the BMB-related term is missing from Equation (2) because the BMB-induced
height variations have already been contained in the dhIVM term.

2.2. Estimation of BMB and BWSV

Separating BMB from the total mass variations is performed based on different sensi-
tivities of satellite observations on gravity and height variations of AIS. Then, BMB-induced
gravity variations dgBMB can be expressed through the modification of Equation (1):

dgBMB = dgAnt − dgFL − dgIDF − dgIVM − dgGIA (3)

In Equation (3), dgAnt and dgGIA are available from GRACE and GIA (see Section 2.4.3).
The remaining terms (dgFL, dgIDF, and dgIVM) are gravity variations related to associated
height variations (dhFL, dhIDF, and dhIVM) in Equation (2). However, satellite altime-
try’s limitation in vertical resolution makes it challenging to determine each height vari-
ation in Equation (2). To address this problem, we adopted a layered gravity density
forward/inversion iteration method to separate dgBMB and estimate BMB based on com
satellite altimetry/gravity data. Detailed procedures of the iteration method are described
as follows.

2.2.1. Initialization of the Iteration Procedure

Iterative procedure initiates with the assumption that no basal water migrations (no BMB)
occur in AIS. Accordingly, the initial value of dhIVM and dgIVM in Equations (2) and (3) are
set to 0. To ensure the time consistency of the input data, the dhGIA term in Equation (2),
derived from GIA model-predicted height variation, is constrained by spare GPS observations
during the study period (see Section 2.4.3). Second, dhGIA and dhIVM are deducted from dhAnt
to obtain the initial residual height variation dhRHV (that is, dhRHV = dhAnt−dhGIA−dhIVM).
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It is worth noting that dhRHV only contains height variations caused by the firn layer’s
processes and ice dynamic flow. Third, we utilize the density discrimination method,
simplified from the approach of Gunter et al. [25], to separate dhFL, dhIDF from dhRHV and
assign corresponding densities. The simplified density discrimination method differs from
Gunter et al. [25] in that it relies primarily on satellite altimetry observation data rather
than modelled climate data. The simplified density discrimination method is described
as follows:

ρ =

{
ρfirn for dhFL, ρice for (dhRHV − dhFL) if (dhRHV − dhFL)< 0& |dhRHV − dhFL| >2σdh

ρfirn for dhRHV otherwise
(4)

where ρfirn is firn density distribution of AIS [34]; dhFL is height variation caused by
the spatio-temporal evolution of the firn layer and available from a time-dependent firn
densification model (FDM) (see Section 2.4.4). ρice is ice layer density (917 kg m−3). The

resulting uncertainty is expressed as σdh =
√

δ2
Ant + δ2

FL.
As shown in Equation (4), the negative height differences between dhRHV and dhFL

greater than 2σdh are assumed to be caused by IDF (that is, dhIDF = dhRHV − dhFL), then
ρice and ρfirn are assigned to dhIDF and dhFL respectively. In other cases, it is assumed
that no IDF occurs. Therefore, ρfirn is assigned to dhRHV. Based on the assumption above,
the associated gravity variations (dgIDF, dgFL) are estimated through the gravity forward
modelling method (see Supplementary Materials).

2.2.2. Estimating BMB and BWSV through Iteration Method

Based on the initial value of dgFL, dgIDF, and dgIVM, we calculate dgBMB according
to Equation (3) and estimate initial BMB (mBMB, expressed by equivalent water height,
EWH) using a layered gravity density inversion method (see Supplementary Materials).
Then, a 300 km gaussian smoothing is applied on mBMB, in order to match the spatial
resolution of GRACE. It is worth noting that the layered gravity density inversion method
is applied based on the assumption that basal water migrations occur within a thin layer in
the ice-bed interface. In this process, BMB is estimated by solving the inversion problem
of the thin layer’s density. However, the initial BMB result is ‘unrealistic’ because the
thin layer assumption ignores the volume variations caused by basal water migrations
as water is nearly incompressible. The increase/decrease in basal water caused by basal
water migration would lead to the lift/drop of the overlying ice [2,18]. Following the same
logic, the basal ice-water volume changes induced by basal melting/freezing could result
in the ice sheet’s lift/drop as well. These ice sheet’s lift/drop processes, referred to as
ice sheet movement (IVM) in this paper, are also included in surface height variations
(dhIVM in Equation (2)), and will in turn affect BMB estimation. To solve this problem,
we developed an iteration method described as follows. First, we combined initial EWH
of BMB and modelled basal melting rate data (mBM, see Section 2.4.4) to estimate dhIVM:
in basal melting region (where mBM > 0), BMB is expressed in the form of liquid water,
and the associated dhIVM is expressed by dhIVM = mBMB; in basal freezing region (where
mBM = 0), BMB is experienced in the form of ice, and the associated dhIVM is expressed by
dhIVM = mBMB ∗ ρice/1000. Second, dhIVM is used to recalculate the IVM-induced gravity
variations dgIVM. This process can be simplified by only updating the dhIVM term in
Section 2.2.1. Third, the subsequent procedures in Sections 2.2.1 and 2.2.2 are implemented
iteratively, until the mBMB is stable (the total BMB differences between two consecutive
iterations is smaller than 5 Gt/yr). Finally, BWSV is estimated through the combination
of mBMB and mBM: in basal melting regions, BWSV is mainly subject to liquid basal water
migrations and the melting of the ice base, and can be expressed by mBWSV = mBMB +mBM;
in basal freezing regions, mBWSV is 0 because liquid water would not occur in these regions.
The flowchart of the iterative procedure is shown in Figure 2.
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Figure 2. Flowchart for estimating BMB and BWSV. In upper pane, initial values of dgFL and dgIDF
are calculated through surface density discrimination and gravity forward modelling method. In
middle pane, dgBMB are abstracted from the total gravity variations dgAnt, and be used to calculate
mBMB through layered gravity inversion method. In lower pane, mBMB and basal melting data are
combined to obtain dhIVM, then the obtained dhIVM are used to update the relevant variations in the
first step for iteration until the BMB result is stable.

2.3. Uncertainty Estimation

Uncertainty estimation is performed according to the following three steps. In step 1,
uncertainty of each input dataset is converted to corresponding gravity uncertainties (terms
in the right side of Equation (5)). Among them, δdgGravi is derived from the calibrated errors
of spherical harmonic coefficients provided by CSR, JPL, GFZ, and errors of degree 1&2
(see Section 2.4.1), through the method that modified from Wahr et al. [35]; δdgAlti is
derived from the standard deviations of height variations that relate to satellite altimetry
and inter-campaign biases corrections (see Section 2.4.2) and corresponding firn density,
through the error propagation law of the gravity reduction of cylinder model [32]. Similarly,
δdgFDM, δdgGIA, δdgGPS are derived height variations errors related to FDM, GIA models
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and GPS observations (see Sections 2.4.3 and 2.4.4), through the method above mentioned.
In step 2, gravity uncertainty of BMB (δdgBMB) is estimated through Equation (5). This
uncertainty estimation method does not strictly follow the procedure in Section 2.2 because
the uncertainty of the iteration procedure itself is difficult to assess.

δdgBMB =
√

δdg2
Gravi + δdg2

Alti + δdg2
FDM + δdg2

GIA + δdg2
GPS (5)

In step 3, mass uncertainty of BMB (δmBMB) is derived from δdgBMB, through the
inversion of the error propagation law of the gravity reduction of the cylinder model. Then,
δmBWSV is estimated as follows:

δmBWSV =
√

δm2
BMB + δm2

BM (6)

where δmBM is the standard deviation of basal melting rate.

2.4. Input Data Processing
2.4.1. Gravimetry

Exterior time-varying gravity variations of AIS (dgAnt in Equations (1) and (3)) are
available from three Release 06 (RL06) monthly GRACE gravity field solutions provided
by CSR, JPL, and GFZ. Each of the solutions is represented by fully normalized Stokes
potential coefficients with degree and order up to 60. In pre-processing process, the degree
one coefficients are added to of each GRACE solutions using values generated from the
approach of Swenson et al. [36]. The C20 coefficients are replaced by the values derived
from satellite laser ranging [37]. Striping errors are suppressed by P4M6 smoothing [38] and
300 km Gaussian smoothing together. The leakage-out errors and amplitude dampening
are restored by multiplying a scaling factor [39]. It is known that the BMB only occurs in
AIS; therefore, leakage-in errors corrections were not performed in this study. Then, the
linear term was abstracted by utilizing a least-squares adjustment function containing four
parameters (constant term, linear term, and annual periodic term). The linear term of AIS
gravity variations dgAnt is expressed as follows:

dgAnt =
GM
R2 ∑max

n=2(n− 1)
1

1 + kn
∑n

m=0Pnm(cos(θ))[∆Cnm cos(mφ) + ∆Snm sin(mφ)] (7)

where GM is the geocentric gravitational constant, R is the mean Earth radius, kn is the
load Love number of degree n [30], P nm are the normalized associated Legendre func-
tions, ∆Cnm, ∆Snm are modified harmonic coefficients, and θ and φ are the colatitude and
longitude of the gravity point, respectively. Equation (7) is derived from the fundamental
equation of physical geodesy [40]; therefore, the obtained gravity variation dgAnt can be
considered as the free-space anomaly variations in geoid. Correspondingly, the gravity
forward/inversion in this study can also be considered as the removal of the variation of
terrain correction from the free-space anomaly variations and its reverse application.

The uncertainties in the gravity variations are estimated by utilizing the method
of Wahr et al. [35]. The calibrated errors of the harmonic coefficients are available from
CSR, JPL, and GFZ, respectively; the coefficient errors of degree 1&2 are replaced by the
associated standard deviations of Cheng and Swenson [36,37]. Figure 3a–f shows the linear
gravity variations trend over AIS and corresponding uncertainties. The observation period
is consistent with the satellite altimetry simultaneous observation period, in order to avoid
sampling error.
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2.4.2. Altimetry

Surface height variations of AIS are derived ICESat observations spanning from
February 2003 to October 2009. The object of ICESat is to measure height variations of
ice sheet with the accuracy ≤ 1.5 cm/yr at the spatial resolution of 100 × 100 km2 on
AIS [41]. Accordingly, we utilized a block crossover analysis method [42,43] to estimate
AIS height variations, and the size of the block was set to 100 × 100 km2. In pre-processing,
the crossover points with height variations greater than 10 m/yr are deleted in order to
eliminate errors that arise from the small-scale surface roughness, undetected forward
scattering, or interpolations between successive footprints [44]. Afterward, a 3σ criterion
test is performed in each block to reduce the residual errors [45]. The linear surface
height variations trends are substracted by utilizing the least-square adjustment method
in Section 2.4.1.

The ICESat inter-campaign biases (ICB, the different biases from one ICESat campaign
to the next one) have important effects on the long-term elevation change rate, and have
been estimated in several studies. For example, Zwally et al. [46] computed the ICB by
using concurrent radar altimetry on the same surface in open water and thin ice in leads
and polynyas in Antarctic sea ice pack. Richter et al. [47] and Schroeder et al. [48] detected
the ICB based on the near-zero surface height changes and hydrostatic equilibrium for
the snow surface above Lake Vostok and its surroundings in East Antarctica (EA). Other
studies estimated the ICB through the assumption of near-zero elevation changes regions in
EA. However, these ICB results vary largely due to utilizing different areas and calibration
methods across the globe, and none of them has been endorsed by the ICESat Science Team,
NASA, or NSIDC, which leads to additional uncertainty in estimating height variations of
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AIS. To reduce the uncertainty caused by ICB, we utilize the average ICB correction from
Zwally et al. [46], Richter et al. [47] and Schroeder et al. [48], to avoid the artificial selection
of different areas and calibration methods.

Figure 4 shows the linear surface height variations trend over AIS and associated
uncertainties, with a grid size of 100 × 100 km2. In order to match with the GRACE spatial
resolution, a 300 km Gaussian smoothing filter is applied to the surface height variations
before gravity forward modelling calculation.
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2.4.3. GIA Models and GPS Data

Uncertainty in GIA has been considered as an important error source in evaluating
the mass redistribution process. Many researchers have been worked on modelling GIA
through various methods [49]. In this study, three GIA models (ICE-6G, IJ05_R2, and W12a)
are used to account for the secular deformation of solid Earth [50–53]. Among them, ICE-6G
is global GIA model that is constrained by geological and geodetic observation data includ-
ing GPS, ice thickness, relative sea level histories, and the age of marine sedimentation. The
associated uncertainty is estimated to be 0.89 mm/y according to the difference between
the uplift rate derived from ICE-6G and that observed by 42 GPS sites [51]. IJ05_R2 and
W12a are regional GIA models constrained by extensive geological and glaciological data.
Uncertainty in IJ05_R2 is estimated to be 1.40 mm/y according to the difference between the
uplift rate derived from IJ05_R2 and that observed by six GPS stations with the observation
period over 3000 days [52]. Uncertainty in W12a is estimated according to the difference
between the provided upper and lower bounds of uplift rate. The three representative GIA
models, derived from different Earth models and observations, show significant differences
in spatial distribution compared with other GIA models, but are in good agreement with
the GPS observations in Antarctica, which we assume are suitable for investigating the
effect on BMB and BWSV results.

In order to ensure the consistency of the study period, we utilized sparse GPS observa-
tions to force the GIA predicated uplift rates. The 57 GPS sites used here are selected from
the 118 GPS sites given by Sasgen et al. [54], based on the selection criteria that the observa-
tion period is consistent with our study period and the associated errors are smaller than
the uplift rate. Figure 5a–c shows the predicated uplift rates predicted by ICE-6G, IJ05_R2,
and W12a, as well as the uplift rate observed by 57 GPS sites and their uncertainties.
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Figure 5. GIA predicated uplift rates from (a) ICE-6G, (b) IJ05_R2, (c) W12a, and uplift rates observed
by 57 GPS sites and associated uncertainties during 2003–2009. The color of the circle donates the
uplift rate and the radius donates the associated uncertainties.

2.4.4. Additional Datasets

Height variations caused by the spatio-temporal evolution of AIS firn layer is available
from the Institute for Marine and Atmospheric Research Utrecht Firn Densification Model
(IMAU-FDM) [34]. To simulate temporal evolution of density and height variations of the
firn layer, the time-dependent IMAU-FDM is constrained by several datasets including
surface mass balance, surface temperature, and wind speed from the regional atmospheric
climate model RACMO2/ANT [34]. The time-dependent IMAU-FDM data period used in
this study is consistent with the ICESat simultaneous observation period, and the linear
height variations trends are subtracted through the least-square adjustment method in
Section 2.4.1. Figure 6a,b show the linear height variations trend derived from IAMU-FDM
over the study period and the associated uncertainties. For the consistency of spatial
resolution, a 300 km Gaussian filter was also performed on IAMU-FDM derived surface
height variations.
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Basal melting rate data used to identify basal melting/freezing and estimate BWSV
are available from Pattyn [11], inferred through a hybrid method that combines prior
information (such as on-site measurements, topography, accumulation, surface temperature,
geothermal heat flow data) with the ice sheet/ice stream model. Although the period of
the prior information (1980–2004, [11,55]) is different from that of this study, this period
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discrepancy has little influence on the estimation of BWSV due to the stable basal conditions
caused by the isolation of the overlying ice sheet. Figure 7a,b shows the basal melting
rates over AIS and the associated uncertainties. For the consistency of spatial resolution, a
300 km Gaussian smoothing filter was also performed on the basal melting rate to match
the spatial resolution of BMB.
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3. Results and Discussion
3.1. Basal Mass Balance Beneath Antarctic Ice Sheet

Figure 8 displays the total BMB results for each iteration related to three GIA models.
All BMB results converge to a negative value since the seventh iteration, showing the
stability of the iteration method. Among them, total result of BMB (ICE-6G) is close to that
of BMB (W12a) and about 5 Gt/yr larger than that of BMB (IJ06_R2), which indicates that
using different GIA models has less influence on BMB results.
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Figure 8. Total basal mass balance (BMB) results for each iteration over AIS.

Table 1 shows the three regional BMB rates in 18 drainage basins and associated
standard deviations (Std). Figure 9 displays the comparison of regional BMB rates among
the three results (Figure 9a), and error contributions of each input dataset (Figure 9b–d).
The drainage basins division method used for regional BMB rates statistics comes from
Rignot et al. [56] (spatial division is shown in Figure 9), and is employed in this study
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based on the spatial similarity between simulated basal water pathways and observed
ice flows. As shown in Table 1 and Figure 9a, regional BMB rates related to three GIA
models are similar in most basins, while the large difference in B9 is primarily responsible
for the discrepancy of total variation rates of the three BMB results. Among them, B5, B6,
and B9 exhibit obvious basal mass increases (regional BMB rates lager than 10 Gt/yr and
larger than associated Std), while B2, B3, and B11 display obvious basal mass decreases.
Figure 9b–d displays consistency of the regional Std for the three BMB results, with the
larger Std (greater than 5 Gt/yr) located in B3, B5, B8, B9, and B17, and the smaller Std
located in B10, B12–B15, and B18, which is mainly determined by the area of the basins.
Specifically, the main error sources in estimating BMB come from satellite gravimetry
(35%, including GRACE + degree 1&2), ICB (26%), IMAU-FDM (14%), GIA (15%), account-
ing for 90% of the total Std of BMB, while errors of GPS (6%) and ICESat (4%) have a lesser
effect on BMB. It is worth noting that errors generated by the iteration procedure itself are
difficult to assess, while these errors are considered to be small due to the convergence
of the iteration result and are therefore not contained in the uncertainties result. Overall,
regional average BMB rates (average of regional BMB rates related to three GIA models)
in the East Antarctic Ice Sheet (EAIS, including B1–B8, B17, and B18) and West Antarctic
Ice Sheet (WAIS, including B9–B12 and B16) are 11 ± 20 Gt/yr and −31 ± 8 Gt/yr, ac-
counting for 23% and 30% of the corresponding documented ice-sheet mass balance [57],
respectively. The regional average BMB rate in the Antarctic Peninsula Ice Sheet (APIS,
including B13–B15) is very low (−1 ± 2 Gt/yr). The total average BMB rate over AIS is
−21 ± 22 Gt/yr, accounting for 29% of the documented total ice-sheet mass balance rate
(−76 ± 20 Gt/yr, during 2003–2010) [57].

Table 1. Regional BMB rates in 18 drainage basins and associated standard deviations, in Gt/yr.

Basin
BMB (ICE-6G) BMB (IJ05_R2) BMB (W12a)

Basin
BMB (ICE-6G) BMB (IJ05_R2) BMB (W12a)

Rates Std Rates Std Rates Std Rates Std Rates Std Rates Std

B1 4 4 4 5 4 4 B11 −41 3 −40 4 −45 3
B2 −10 4 −11 4 −11 3 B12 −1 1 −1 1 −1 1
B3 −10 7 −9 9 −11 7 B13 0 1 0 1 −1 1
B4 −1 4 −1 5 −1 4 B14 1 1 1 1 1 1
B5 20 7 21 8 20 7 B15 −2 1 −2 1 −2 1
B6 12 4 11 5 12 4 B16 4 4 2 5 0 4
B7 2 2 1 2 2 2 B17 0 12 0 13 3 11
B8 −6 9 −8 10 −4 8 B18 0 2 0 2 0 2
B9 9 5 18 6 15 5

B10 −4 1 −4 1 −4 1 Total −23 21 −18 24 −22 20

Figure 10 displays spatial distributions of BMB rates and associated standard devia-
tions. Red colours in Figure 10a–c are basal mass increases regions with positive BMB rates,
while blue colours are basal mass decrease regions with negative BMB rates; shadows repre-
sent unsignificant regions where the BMB rates are lower than the associated Std. As shown
in Figure 10a–c, three BMB results show similar spatial distributions with the obvious
basal mass changes occurring mainly in WAIS, marginal regions of EAIS, and Wilkes Land.
The Std of the three BMB results (Figure 10d–f) also show identical spatial distributions:
APIS and WAIS regions possess the largest Std (≥15 mm/yr), mainly from uncertainties
of satellite gravimetry (accounting for about 25% of total Std), ICB (~25%), IMAU-FDM
(~20%) and GPS (~20%); medium Std (10–15 mm/yr) are located in the marginal region of
EAIS, mainly from satellite gravimetry (~40%), ICB (~30%) and IMAU-FDM (~20%); while
the low Std (<10 mm/yr) covers a large extent the interior of EAIS, which mainly comes
from satellite gravimetry (45%) and ICB (35%).
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Figure 10. Spatial distribution of BMB related to (a) ICE-6G, (b) IJ05_R2 and (c) W12a in unit of
mm/yr, and (d–f) associated standard deviations. Shadows are regions where the absolute values of
BMB rates are lower than the associated standard deviations. SC = Siple Coast; DML = Dronning
Maud Land; EndL = Enderby Land; ASB = Aurora Subglacial Basin; IIS = Institute Ice Stream;
GVC = George V Coast; RIS = Recovery Ice Stream; SG = Slessor Glacier; RP = Rockefeller Plateau;
GSM = Gamburtsev Subglacial Mountain.
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Significant basal mass increases (with the positive BMB rates greater than the associ-
ated Std) occur mainly in the Rockefeller Plateau (RP), Siple Coast (SC), George V Coast
(GVC), Aurora Subglacial Basin (ASB), Dronning Maud Land (DML), Slessor Glacier (SG),
Recovery Ice Stream (RIS) and Institute Ice Stream (IIS), which is mainly attributed to the
low basal hydrological potential in these regions that facilitating basal water accumula-
tion (Figure S3, [58]). In some of these regions, the regional basal mass increases have
been verified by other studies. For example, basal mass increases in the SC region have
been demonstrated by revealing the basal water accumulation mechanism beneath the
MacAyeal and Whillans ice streams [2,59]; basal mass increases in RIS region are proven to
be caused by subglacial lake water discharging into the bedrock trench beneath the Recov-
ery Glaciers [60]; furthermore, some studies have found that the basal water in Gamburtsev
Subglacial Mountain (GSM) flows upward to basal ridges [61], and a similar pattern is
also revealed in our BMB result, although not significant enough. On the other hand,
significant basal mass decreases occur mainly along Amundsen Sea coast, in the interior of
EAIS, and in the Enderby Land (EndL) region. Among these, basal mass decreases along
the Amundsen Sea coast region are proven to be caused by the basal water, generated by
basal geothermal flux-induced active ice melting [62] and discharged into Amundsen Sea
through basal channels [59]; basal mass decreases in the interior of EAIS are due to the out-
ward flow of the basal water driven by basal hydrological potential gradient [58]. However,
the basal mass decreases in the EndL region lack verification and need further exploration.

3.2. Basal Water Storage Variations Beneath Antarctic Ice Sheet

Table 2 shows regional basal water storage variations (BWSV) rates and associated
Std. Figure 11 displays the comparison among regional BWSV rates of the three results
and associated error contributions of each input dataset. As shown in Figure 11a, regional
BWSV rates related to three GIA models are also similar in most of the drainage basins:
B5, B6 and B9 exhibit obvious basal water increases, B11 displays obvious basal water
decreases, while other drainage basins show little basal water variation. Overall, regional
average BWSV rates (average of regional BWSV rates related to three GIA models) in EAIS
and WAIS are 47 ± 21 Gt/yr and −4 ± 8 Gt/yr, respectively, while no obvious BWSV
occurs in APIS regions. The total average BWSV rate over AIS is 43 ± 23 Gt/yr, which is
22 Gt/y lower than the basal meltwater increase rate (65 Gt/yr) [11], indicating that most
of the increased basal meltwater is stored in the ice-bed interface.

Table 2. Regional BWSV rates in 18 drainage basins and associated standard deviations, in Gt/yr.

Basin
BWSV (ICE-6G) BWSV (IJ05_R2) BWSV (W12a)

Basin
BWSV (ICE-6G) BWSV (IJ05_R2) BWSV (W12a)

Rates Std Rates Std Rates Std Rates Std Rates Std Rates Std

B1 5 4 4 5 4 4 B11 −16 4 −15 4 −15 4
B2 −1 4 −2 4 −1 3 B12 0 1 0 1 0 1
B3 −2 8 −2 9 −2 7 B13 0 1 0 1 0 1
B4 4 5 4 5 4 4 B14 0 1 0 1 0 1
B5 17 7 18 8 15 7 B15 0 1 0 1 0 1
B6 11 4 11 5 10 4 B16 0 5 4 5 2 5
B7 4 2 4 2 4 2 B17 6 12 6 14 7 11
B8 2 9 1 10 3 8 B18 2 2 2 2 2 2
B9 6 5 13 6 10 5

B10 0 1 0 1 0 1 Total 38 22 48 25 43 21

Figure 11b–d displays similar regional Std among the three BWSV results, with almost
identical magnitude to the BMB results. The main error sources are also identical to that of
BMB, while its rate drops to 80% (including: 32% from satellite gravimetry, 23% from ICB,
13% from IMAU-FDM, and 12% from GIA) of the total Std, due to the introduction of basal
melting errors (accounts for 8% of the total Std of BWSV). Although the uncertainties of
the result are derived from various input data, the total Std are relatively small, which is
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attributed to: 1. the usage of the satellite gravimetry average, ICB correction average, and
GIA model average reduces the uncertainties of the input datasets; 2. the block crossover
analysis method used in satellite altimetry reduces the uncertainties of the observed height
variations; 3. the usage of surface density discrimination method avoids introducing
additional errors from regional atmospheric climate model.
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Figure 11. (a) Comparison of regional BWSV rates in 18 drainage basins, and (b–d) error contributions
of input dataset to regional standard deviations of BWSV rates.

Figure 12 displays the spatial distributions of BWSV rates and associated uncertainties,
as well as the location of subglacial lakes. Red colours in Figure 12a–c are regions with
increased basal water storage that arise from basal water inflow and basal ice melting,
while blue colours are regions with decreased basal water storage that are caused by basal
water runoff. Blue dots in Figure 12a are locations of active subglacial lakes inferred from
the surface height variations of AIS [63], grey dots in Figure 12b are locations of definite or
fuzzy subglacial lakes detected by radio-echo sounding (RES) technique [64]. The spatial
distributions of BWSV (Figure 12a–c) are similar to that of BMB, and differences are located
mainly in marginal regions of EAIS where a more extensive basal water increases exists.
In WAIS and marginal regions of EAIS (for example, IIS, RP, GVC, ASB, and SG regions
in Figure 12a), the spatial distributions of increased basal water are consistent with those
of active subglacial lakes, suggesting that basal water storage in most active subglacial
lakes is increasing, despite the frequent water drainage events. These increased basal water
storages are related to the following reasons: 1. regional low basal hydrological potential
facilitates the convergence of surrounding basal water; 2. regional active melting of the
bottom of ice layer contributes to the replenishment of basal water storage. The former
reason for basal water storage increasing has also been supported by other studies, such as
the continued basal water increases in most subglacial lakes in the RP region obtained from
multi-mission satellite altimetry [65]. However, the latter reason for basal water storage
remains unverified due to its limited contribution to height variations. Besides, definite
or fuzzy lakes (grey circles in Figure 12b) are situated mainly in low-BWSV regions of
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EAIS, which could be explained by lacking active basal water migration in these regions.
However, exceptions are Concordia Subglacial lakes in Dome C (DC) region, where the
increased basal water storage might be attributed to the fierce basal ice melting in Concordia
Ridge, Concordia Subglacial Lakes, and Vincennes Basin [66], or regional ‘hydrological
depression’-induced long-term basal water accumulation.
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Figure 12. Spatial distribution of BWSV related to (a) ICE-6G, (b) IJ05_R2 and (c) W12a, and (d–f) associated
standard deviations (in mm/yr). Blue and grey dots in (a,b) represent active subglacial lakes and
definite or fuzzy subglacial lakes, respectively. DC = Dome C.

4. Conclusions

This study presents a layered gravity density forward/inversion method in combina-
tion with the iteration approach to estimate BMB and BWSV. The input datasets include
multi-source satellite data and relevant models, most of which span from 2003 to 2009. Our
results show that all the total BMB rates converge to negative values and display identical
spatial distributions, which shows the potential and stability of detecting Antarctic BMB
through the presented method.

The total BMB over AIS decreases at an average rate of−21± 22 Gt/yr (EAIS: 11± 20 Gt/yr,
WAIS: −31 ± 8 Gt/yr, APIS: −1 ± 2 Gt/yr), accounting for 29% of the mass balance rate
(−76 ± 20 Gt/yr) estimated by Shepherd et al. [57]. Spatially, obvious basal mass decreases
are located mainly along Amundsen Sea coast, the interior of EAIS, and the Enderby Land
region, while basal mass increases are situated mainly in the Rockefeller Plateau, Siple
Coast, Institute Ice Stream regions, and the marginal of EAIS. The spatial distribution of
BWSV was similar to that of BMB, with a rate of 43 ± 23 Gt/yr (EAIS: 47 ± 21 Gt/yr,
WAIS: −4 ± 9 Gt/yr, APIS: 0± 1 Gt/yr). In WAIS and marginal regions of EAIS, similar
spatial distribution between increased basal water and active subglacial lakes suggested that
the water storage in most active subglacial lakes is increasing, despite the frequent water
drainage events. Basal water storage in most regions with definite or fuzzy lakes is relatively
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stable, with exceptions in Concordia Subglacial lakes regions, where the increased basal
water storage caused by fierce basal ice melting and long-term basal water accumulation.

Major error sources in estimating BMB and BWSV come from satellite gravimetry
errors (including GRACE and coefficients of degree 1&2) and ICB correction errors in
satellite altimetry, which account for 55% of the total errors. Therefore, the errors in BMB
and BWSV results are expected to decrease substantially, provided the progress of the
harmonization of the benchmarks for different satellite observations continues.

In summary, the method presented in this paper can be used to calculate the Antarc-
tic continental BMB and BWSV, based on existing satellite observation data and several
relevant models. The results could contribute to the understanding of detailed mass vari-
ations of AIS and the changes in basal heat flux, basal effective stress, and ice dynamics
in Antarctica.

Supplementary Materials: The supporting information for gravity forward modelling method,
the layered gravity density inversion method, as well as basal hydraulic potential of AIS can be
downloaded at: https://www.mdpi.com/article/10.3390/rs14102337/s1. C.f., [67,68].
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