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Abstract: Exploring the spatial distribution of land use/cover change (LUCC) and ecosystem carbon
storage under future climate change scenarios can provide the scientific basis for optimizing land
resource redistribution and formulating policies for sustainable socioeconomic development. We
proposed a framework that integrates the patch-generating land use simulation (PLUS) model and
integrated valuation of ecosystem services and tradeoffs (InVEST) model to assess the spatiotemporal
dynamic changes in LUCC and ecosystem carbon storage in Guangdong based on shared socioeco-
nomic pathways and representative concentration pathways (SSP-RCP) scenarios provided by the
Coupled Model Intercomparison Project 6 (CMIP6). The future simulation results showed that the
distribution patterns of LUCC were similar under SSP126 and SSP245 scenarios, but the artificial
surface expanded more rapidly, and the increase in forest land slowed down under the SPP245
scenario. Conversely, under the SSP585 scenario, the sharply expanded artificial surface resulted in a
continuous decrease in forest land. Under the three scenarios, population, elevation, temperature,
and distance to water were the highest contributing driving factors for the growth of cultivated land,
forest land, grassland, and artificial surface, respectively. By 2060, the carbon storage in terrestrial
ecosystems increased from 240.89 Tg in 2020 to 247.16 Tg and 243.54 Tg under SSP126 and SSP245
scenarios, respectively, of which forest ecosystem carbon storage increased by 17.65 Tg and 15.34 Tg,
respectively; while it decreased to 226.54 Tg under the SSP585 scenario, and the decreased carbon
storage due to forest destruction accounted for 81.05% of the total decreased carbon storage. Overall,
an important recommendation from this study is that ecosystem carbon storage can be increased
by controlling population and economic growth, and balancing urban expansion and ecological
conservation, as well as increasing forest land area.

Keywords: carbon storage; climate change; land use/cover change; scenario simulation; PLUS model;
InVEST model

1. Introduction

Global climate change, caused by emissions of greenhouse gases (GHG) such as car-
bon dioxide (CO2) [1,2], has greatly affected ecosystems processes and patterns [3,4], with
unpredictable implications on global ecology, human survival, and economic development,
and has become one of the major challenges facing all of humanity [5–7]. With the ac-
celerated pace of industrialization, the economic development driving force is gradually
shifting from agriculture to industry and services, and urbanization levels are increasing,
resulting in dramatic changes in land use/cover change (LUCC), which not only has a
significant impact on terrestrial ecosystems functions, but also directly affects the carbon
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storage of terrestrial ecosystems [8–10]. Changes in carbon storage in terrestrial ecosys-
tems have far-reaching implications for the global ecosystem’s carbon cycle, concentration
of CO2 in the atmosphere, and global climate change [11]. At present, one of the most
eco-friendly and efficient energy conservation ways to mitigate climate change and the
greenhouse effect is to increase carbon storage in terrestrial ecosystems, as it would reduce
the amount of CO2 in the atmosphere and contribute a significant role in mitigating global
warming [12,13]. Forests, as the main body of terrestrial ecosystems, contain the highest
carbon storage of terrestrial ecosystems, which not only regulate the global carbon balance,
improve and maintain the regional ecological environment [14,15], but also the change
of forest ecosystem carbon storage largely affects the change of carbon storage in terres-
trial ecosystems [16]. However, forest degradation and deforestation caused by human
activities and climate change pose a significant challenge to sustainable development. In
2015, “Transforming Our World: The 2030 Agenda for Sustainable Development” proposed
17 sustainable development goals (SDGs) that aim to address the three dimensions of
development—social, economic, and environmental—in an integrated manner. Among
them, SDG 15: life on land, aims to protect and restore terrestrial ecosystems such as forest,
wetland, dryland and mountain ecosystems, and to promote sustainable management of
forests and halt deforestation, which contributes to increasing carbon storage in forest
ecosystems and mitigating climate change [17].

As the world’s largest developing country, China has experienced unprecedented
urbanization and significant landscape change over the past several decades [18], with
the urbanization rate increasing dramatically from 17.92% to 59.58% [19]. Rapid economic
development and intensive land exploitation have resulted in a steady decrease in carbon
storage of terrestrial ecosystems, which also further exacerbates climate warming [20,21],
especially in reform and opening-up frontier provinces like Guangdong. According to
the China forest resources report, the per capita forest coverage in Guangdong province
is only 0.15 ha per person. Moreover, the area of arboreal forest in Guangdong province
in 2018 was 7,809,800 ha, with a large proportion of young forests, which reached 51.29%.
With the proposed goal of carbon neutrality in China, improving the carbon storage and
carbon sequestration capacity of terrestrial ecosystems has become a topical issue for
research from various disciplines. Indeed, as early in 1999, China has launched the Grain
for Green Program (GCP) and aims to increase the forest cover and mitigate soil erosion
by converting cultivated land to forest land [22,23]. Over the past two decades, China’s
GCP has contributed more than 4% of the global net increase in green area, with forests
contributing 42% of the green area [24]. Therefore, accurate assessment of future changes in
LUCC and terrestrial ecosystem carbon storage, especially forest ecosystems, is essential for
optimizing regional ecosystems’ service functions and formulating policies for sustainable
socioeconomic development [25,26].

Previous studies have shown that LUCC, which affects the carbon storage of ecosys-
tems, is influenced by a combination of climate change and socioeconomic develop-
ment [27,28]. The latest Coupled Model Intercomparison Project 6 (CMIP6) has shown
that by coupling shared socioeconomic pathways (SSP) and representative concentration
pathways (RCP), it can provide multiple future global climate change scenarios for re-
searchers [29,30], which could be used to predict future LUCC, changes in carbon storage,
and dynamic distribution of ecosystems services, etc. For example, one study used a
scenario-based land use change assessment framework to simulate the land use demand
and spatial distribution of land use in China [31]. Wang et al. [28] have integrated the
system dynamics (SD) model, patch-generating land use simulation (PLUS) model, and in-
tegrated valuation of ecosystem service and tradeoffs (InVEST) model into a framework to
simulate the dynamic distribution of LUCC and carbon storage at the urban level. Another
study predicted global soil erosion rates and assessed future global soil regulating services
for the period of 2015–2070 under three SSP-RCP scenarios [32]. Furthermore, Li et al. [33]
have simulated the spatial and temporal distribution of land use in Central Asia under the
SSP-RCP scenarios based on future land use demand, and comprehensively evaluated the
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level of ecosystems services in the region. However, most of these studies have focused on
the dynamics of LUCC at the global, national, or city scale, and these methods may not be
effective for the effects of environmental variables on LUCC at regional scales, including
population, economic, and climate variables. Thus, there is still a significant uncertainty in
the assessment of future LUCC and ecosystem carbon storage changes at the regional scale.

Current land use simulation models—such as the CA (cellular automata)–Markov
model [34], ANN-CA model [35], CLUS-S model [36,37], and FLUS model [33,38,39]—were
widely applied to simulate the spatial distribution of LUCC. However, these models have
certain limitations, i.e., not permitting the simulation of multiple land use types, particularly
natural land use types, in a dynamic spatiotemporal manner, neither can effectively identify
the factors affecting LUCC, which limits the application of LUCC simulations under future
climate change scenarios. The recently developed PLUS model retains the advantages of
adaptive inertial competition and roulette wheel competition mechanisms of the CA model,
and can combine future predicted variables to calculate the development potential of each
land use type by random forest (RF) algorithms, so that it can more accurately simulate
changes of land use distribution [40]. Furthermore, the InVEST model was widely used to
investigate the impact of dynamic distribution of LUCC on carbon storage in terrestrial
ecosystems (including forest ecosystems) due to its simple input parameters, high generality
and stability, and high confidence [28,34,39]. However, previous studies assumed that
the forest carbon density does not change with time and is a constant [33,34,41], which
is obviously not consistent with objective facts [42], and affects the accuracy of model
predictions of forest ecosystem carbon storage. Therefore, it is essential to obtain accurate
estimations of the values of future forest carbon density and use them as input parameters
of the InVEST mode, as this could improve the accuracy of forest ecosystem carbon storage
estimation. Indeed, the combination of the PLUS model and the InVEST model could more
accurately estimate the changes of terrestrial ecosystem carbon storage caused by LUCC.

In this study, we used an integrated simulation framework of the PLUS model and
InVEST model to simulate the spatiotemporal distribution patterns of LUCC in the study
area based on future population, economy, climate variables, and land use demand under
three SSP-RCP (SSP126, SSP245, and SSP585) scenarios, and quantitatively assessed the
distribution changes of carbon storage. In particular, we aimed to: (1) simulate the spatial
distribution of LUCC in Guangdong province during the period of 2020–2060 based on
the PLUS model; (2) analyze the impact of each driving factor on LUCC distribution;
and (3) assess the spatiotemporal distribution patterns of ecosystem carbon storage in
the study area under different climate change scenarios. Overall, the results of this work
provide a new insight that could provide policy makers with recommendations for future
land resource reallocation and socioeconomic development policies in the study area, and
to provide data to support increasing forest carbon sequestration and meeting carbon
neutrality goals.

2. Materials and Methods
2.1. Study Area

The study area was Guangdong province, which is located in the southeast coastal
areas in China, ranging from 20◦13′N–25◦31′N and 109◦39′E–117◦19′E, with a total area
of 179,725 km2 (Figure 1). The elevation of Guangdong province is high in the north and
low in the south, and the elevation decreases gradually from the mountains in northern
Guangdong to the coastal areas in the south, showing a geomorphic feature with mountains
in the north [43], hills in the middle, and mainly plains in the south. Over the past four
decades, the forest area of Guangdong province has increased from 59,840 km2 in 1980 to
105,241 km2 in 2020, with an annual growth rate of 1.90%, and the forest coverage rate was
58.66% [44,45]. In addition, according to the China forest resources report (2014–2018), the
national forest coverage rate is 22.96% and the forest area is 2.2 million km2. Guangdong
province ranks eighth in terms of forest coverage, with Fujian province and Jiangxi province
ranking the top two [46]. In 2018, the area that can be afforested in Guangdong province
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was 12,042 km2. If all the afforestable areas in Guangdong province are afforested artificially,
the maximum forest coverage in Guangdong province could reach 65.26%, which could
increase nearly 6% from 2020. In contrast, by 2020, the cultivated land area of Guangdong
province was 25,941 km2, which decreased by 15,320 km2 compared with 1980 [44]. The
soil types in Guangdong province include limestone soils, purplish soils, fluvo-aquic soils,
humid-thermo ferrditic, lateritic red earths, red earths, and yellow earths, etc. [47]. As
China’s largest economic province, Guangdong province has a resident population of 126
million in 2020 and regional gross domestic product (GDP) reached 11.07 trillion RMB, up
2.3% from the same period last year [44]. In general, carbon emissions strengthen as GDP
rises, the huge population and GDP may represent huge per capita carbon emissions [48].
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Influenced by the southeast and southwest monsoon, the climate of Guangdong
province from north to south is central subtropical, southern subtropical, and tropical
climates, respectively [42]. The annual average temperature of Guangdong province is
22.3 ◦C. The average temperature is approximately 16 ◦C to 19 ◦C in January and 28 ◦C to
29 ◦C in July. The average annual precipitation in Guangdong ranges from 1300–2500 mm,
with a provincial average of 1777 mm. The spatial distribution of rainfall basically also
shows a tendency toward low precipitation in the north and high precipitation in the south.
Adequate water and heat conditions have contributed to a wide variety of vegetation and
vegetation communities in Guangdong province, including northern tropical seasonal
rainforest, subtropical monsoon evergreen broadleaf forest, typical evergreen broadleaf
forest in middle subtropics, coastal tropical mangroves, shrublands and grasslands, etc. [42].

To meet the goal of peaking carbon emissions and carbon neutrality, Guangdong
province has designated the development goals and targets of the 14th Five-Year Plan: to
build a model area for the convergence of rules, a concentration area for upscale elements,
a source of scientific and technological industrial innovation, a linkage area for internal
and external circulation, and a support area for security development, and to take the lead
in exploring the effective paths conducive to the formation of a new development pattern.
In indeed, steady increase in carbon storage in terrestrial ecosystems is one of the effective
ways to reach the goal of carbon neutrality [28].
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2.2. Data Acquisition and Preprocessing

The data for this work include LUCC data, socioeconomic data, and meteorologi-
cal data. The data sources for the spatial data used in this study are shown in Table 1.
Specifically, the 2000, 2010, and 2020 LUCC data were obtained from the GLOBELAND30
dataset (30 m spatial resolution) produced by the National Geomatics Center of China
(http://www.globallandcover.com, accessed on 27 December 2021). We obtained GDP,
population density, and soil types data (all with 1-km spatial resolution) from the Data
Center for Resources and Environmental Sciences of the Chinese Academy of Sciences
(https://www.resdc.cn, accessed on 28 December 2021). A digital elevation model (DEM)
data (at 30 m spatial resolution) was obtained from the ASTER GDEM 30 M dataset of
the Geospatial Data Cloud (http://www.gscloud.cn, accessed on 27 December 2021). The
slope data was obtained by processing the DEM data using ArcGIS 10.7 software.

Table 1. Spatial driving factors of the land use change in this study.

Category Data Year 1 Original
Resolution Data Resource

Land use/cover data Land use/cover data 2000, 2010, 2020 30 m GLOBELAND30 dataset

Socioeconomic driver

Population 2015 1000 m https://www.resdc.cn, accessed
on 28 December 2021GDP 2015 1000 m

Distance to governments
2020 30 m https://lbs.amap.com, accessed

on 27 December 2021Distance to train stations
Distance to highways

2020 30 m
OpenStreetMap

(https://www.openstreetmap.org,
accessed on 27 December 2021)

Distance to primary roads
Distance to secondary roads

Distance to tertiary roads
Distance to trunk roads

Distance to settlements 2018 30 m https://www.webmap.cn,
accessed on 1 March 2022

Climatic and
environmental driver

Distance to water 2020 30 m Land use/cover in 2020
DEM

2009 30 m ASTER GDEM 30 M datasetSlope

Soil types 1995 30 m https://www.resdc.cn, accessed
on 28 December 2021

Average annual temperature
2000–2020 1000 m http://www.geodata.cn, accessed

on 27 December 2021Average annual precipitation
1 The driving factors collected were allowed to be inconsistent with the time period of the land use data [49],
but the time period was as close as possible to the time period of the LUCC data.

In addition, current roads vector data were obtained from the OpenStreetMap
(https://www.openstreetmap.org, accessed on 27 December 2021). The location data of all
levels of governments and train stations were obtained from the lbs.amp.com (https://lbs.
amap.com, accessed on 27 December 2021). The settlement data were obtained from the Na-
tional Catalogue Service for Geographic Information (https://www.webmap.cn, accessed
on 1 March 2022). Temperature and precipitation data (both 1 km spatial resolution) were
obtained from the National Earth System Science Data Center (http://www.geodata.cn, ac-
cessed on 27 December 2021). After a series of data preprocessing in ArcGIS 10.7 software—
including projection transformation, Euclidean distance, resampling, and clipping—all of
the above data were converted to raster data with the same projected coordinate system
and a spatial resolution of 30 m.

2.3. Methods

The research framework of this paper consists of two parts: the PLUS model for
simulating LUCC data and the InVEST model for estimating ecosystem carbon storage
(Figure 2). Specifically, we used the PLUS model to simulate the distribution of LUCC
in Guangdong province from 2020 to 2060 based on population, GDP, temperature, and

http://www.globallandcover.com
https://www.resdc.cn
http://www.gscloud.cn
https://www.resdc.cn
https://lbs.amap.com
https://www.openstreetmap.org
https://www.webmap.cn
https://www.resdc.cn
http://www.geodata.cn
https://www.openstreetmap.org
https://lbs.amap.com
https://lbs.amap.com
https://www.webmap.cn
http://www.geodata.cn
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precipitation data under different SSP-RCP scenarios, as well as the InVEST model to assess
the spatiotemporal variation of ecosystem carbon storage caused by LUCC.
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2.3.1. Future Climate Scenarios Based on the CMIP6

The Coupled Model Intercomparison Project (CMIP) has evolved over five phases
into a major international multi-model climate research activity [50–52], which has not only
introduced a new era in climate science research, but also facilitated national and interna-
tional climate change assessments [29]. Compared to CMIP5, CMIP6 combines different
SSP-RPC scenarios [53,54], which emphasizes the driving effect of different socioeconomic
development patterns on climate change [30,33].

To consider a range of possible futures, we use simulations from three SSP-RCPs:
SSP126 (integrated scenario of SSP1 and RCP2.6): sustainability—taking the green road,
which presents sustainable socio-economic development with a low level of GHG emissions
and emphasizes more inclusive development. Land use is strongly regulated, e.g., forest
land is well preserved. SSP245 (integrated scenario of SSP2 and RCP4.5): middle of the
road pathway, which represents the world follows a middle road of the socioeconomic and
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technological development, and with a medium level of GHG emissions. Land use change
is incompletely regulated, i.e., forest land would still be potentially destroyed, although
the probability is slowly decreasing over time. SSP585 (integrates scenario of SSP5 and
RCP8.5): high-end forcing pathway, which is characterized by rapid resource-intensive
development and material-intensive consumption patterns, as well as very high level of
fossil fuel use and high GHG emissions [55,56].

In this work, we consider four driving factors that affect LUCC in future climate
change scenarios, including population, GDP, temperature, and precipitation. The popula-
tion [57] and GDP [58] data were obtained from the kilometer-scale grids data of the SSPs
future climate change scenarios, respectively. Previous studies [59] have provided future
temperature and precipitation data for SSP126, SSP245, and SSP585 scenarios based on the
MRI-ESM2-0 model [60].

2.3.2. Simulation of LUCC under Different Scenarios Provided by CMIP6

The PLUS model is a simulation model of future land use/cover change integrated
with a rule-mining framework based on a land expansion analysis strategy (LEAS) model
and a CA based on multi-type random patch seeds (CARS) model [40]. At first, the LEAS
model overlays the land use data from two periods, extracts the image elements with
changed status from the later land use data, represents the change area of each land use
type, and then uses the RF algorithm to explore the relationship between each land use
type and multiple drivers to obtain the transition rules for each land use type, i.e., the
development potential of each land use type. In the LEAS model, the number of regression
trees refers to the number of trees generated by RF, sampling rate defaults to 0.01, indicating
that 1% of the pixels will be used for model training, and mTry is the number of driving
factors [40]. In this work, the number of regression trees, sampling rate, and mTry were
determined to be 50, 0.01, and 16, respectively, after conducting several experiments.

Subsequently, for simulating the evolution of multiple land use types, the CARS model
combines the traditional CA model with a patch generation and a descending threshold
mechanism to perform future land use simulation based on the available LUCC data and
the development potential of each land type. When the neighborhood effect of a single land
use type is equal to zero, the mechanism generates ‘seeds’ to the development probability
of each land use type. With the development potential restraints, PLUS will automatically
generate simulated patches [40]. Previous studies have shown that the PLUS model can
integrate the effects of various spatial factors with the dynamics of geographic units to
simulate land use change in order to obtain higher accuracy and more realistic landscape
patterns [28,61].

The demand for LUCC under different climate change scenarios (Figure 3) was esti-
mated based on historical land use data (i.e., LUCC data for Guangdong province in 2000,
2010, and 2020) [33] and the Markov chains method [62,63], and used it as the future land
use demand input parameter for the PLUS model. Historical data for 2020 were used to
evaluate the accuracy of the land use demand. In addition, 16 types of factors affecting
LUCC (Figure 4) as the predictor variables (including population density, GDP, distance to
government, distance to settlements, distance to water, distance to train station, distance to
highways, distance to other roads, DEM, slope, soil type, temperature, and precipitation)
input into the RF model to determine the development potential of each land use type. We
then obtained the simulation results of LUCC in 2020 by running the PLUS model based on
2000 and 2010 LUCC data and the above 16 driving factors, and compared it with the actual
2020 LUCC data (Figure 5) for assessing the accuracy of the model. The overall accuracy
and Kappa coefficient were used to assess the simulation accuracy of the PLUS model. If
the accuracy of the simulation results is sufficient, the driving factors and the land use
demand of Guangdong province from 2020 to 2060 (at 10-year intervals) under different
scenarios are input into the PLUS model to predict the spatiotemporal changes of future
land use distribution based on the LUCC data in 2020.
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2.3.3. Estimation of Carbon Storage Based on the InVEST Model

The Carbon Storage and Sequestration module of the InVEST model can spatially
integrate land use change and terrestrial ecosystem carbon storage dynamics directly,
making it possible to assess the impact of past to present land use change on terrestrial
ecosystem carbon storage in the study area as well, as to simulate changes in terrestrial
ecosystem carbon storage under future land use change scenarios [37,64]. Specifically, the
InVEST model based on the average carbon density of four carbon pools (aboveground,
belowground, soil, and dead organic matter) for each land use/cover type, and multiplied
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by their corresponding area to calculate ecosystem carbon storage [34]. The calculation
formulas for carbon storage are

Ci = Cabove + Cbelow + Csoil + Cdead (1)

Ctotal =
n

∑
i=1

Ci × Ai, (i = 1, 2, · · · , n) (2)

where i represents the land use type, Ci represent the total carbon storage per unit area
of each land cover type (kg/m2), Cabove is the aboveground carbon density, Cbelow is the
belowground carbon density, Csoil is the soil organic carbon density, and Cdead is the dead
organic carbon density. Ctotal is the total carbon storage of the ecosystems and Ai is the
area of each land cover type. We obtained carbon density data for the four carbon pools of
different land use types were obtained from previous studies (Table 2) [42,45,65], where
Csoil refers to the soil organic carbon density at 1 m depth. Notably, the forest carbon
density data are not constant, and we obtained a growth rate of 1.96% per decade for forest
carbon density (including aboveground and belowground carbon density) in Guangdong
province based on previous studies [42,45]. In addition, we assessed the economic value of
sequestering a ton of carbon (1284.63 RMB, derive from social cost of CO2 = 349.88 RMB),
assuming the annual rate of change in the price of carbon to be zero and the market discount
rate of 3% [41].

Table 2. Carbon densities of each land ues type (2020) used in InVEST model (kg/m2).

Land Use Types Cabove Cbelow Csoil Cdead Sources

Cultivated land 1.45 0.10 7.95 0.10 [45,65]
Forest land 2.28 0.83 15.84 0.65 [42,45,65]
Grassland 0.11 0.52 6.28 0.19 [45,65]
Shrubland 0.31 0.20 8.14 0.70 [65]
Wetland 0 0 8.19 0 [65]

Water 0 0 0 0 /
Artificial surface 1 0 0 0 0 /

Other 0.02 0 5.80 0 [65]
1 Notably, the artificial surface mainly includes artificial infrastructure such as buildings, impervious surfaces and
infrastructure, and cultivated land is not part of the artificial surface.

3. Results
3.1. Simulation of LUCC under Different Scenarios and Accuracy Assessment

The land use status in 2020 was simulated based on the LUCC data in 2000 and 2010
using the PLUS model, and the simulation results were compared with the actual LUCC
data in 2020. The assessment results show that the overall accuracy of the PLUS model was
93.34%, and the Kappa coefficient was 0.89, which indicates that the PLUS model has a
high simulation accuracy and could be reliably applied to predict future LUCC [33].

Subsequently, the spatial and temporal distribution of LUCC in 2030, 2040, 2050, and
2060 (Figure 6) under different climate change scenarios was simulated using the PLUS
model based on the land use demand and LUCC data in 2010 and 2020, and the statistics
for each type of land use are shown in Table 3. The results indicated that the distribution
of LUCC data showed a significant difference under different climate change scenarios.
Specifically, under the SSP126 scenario, cultivated land, grassland, and shrubland showed
different degrees of decrease. In contrast, the artificial surface area was rapidly increasing,
encroaching on the previous cultivated and grassland areas. The forest land was effectively
preserved, the area increasing from 95,939.51 km2 in 2020 to 103,583.88 km2 in 2060, with a
growth rate of 1.84% per decade. In addition, wetland areas have slowly decreased, while
water and other land types remained essentially unchanged.
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Table 3. Statistics of each land use type under different scenarios (km2).

Land Use Types
SSP126 SSP245 SSP585

2030 2040 2050 2060 2030 2040 2050 2060 2030 2040 2050 2060

Cultivated land 41,209.63 39,389.27 36,854.29 32,964.14 41,478.84 39,679.46 37,193.65 33,125.88 41,907.50 41,609.79 42,518.38 43,550.52
Forest land 97,211.42 98,536.66 100,459.61 103,583.88 96,815.41 97,979.54 99,601.01 102,423.78 95,670.26 94,364.20 91,876.67 88,866.33
Grassland 12,796.31 12,515.64 12,174.49 11,480.47 12,867.80 12,692.54 12,404.31 11,835.97 12,792.12 12,155.74 11,004.67 9717.45
Shrubland 2272.03 2162.64 2054.88 1949.88 2294.53 2215.77 2126.88 2021.88 2254.03 2090.64 1829.88 1588.16
Wetland 83.14 82.76 81.56 79.75 83.21 82.87 82.09 81.28 82.56 82.07 80.66 79.36

Water 8336.35 8334.64 8334.64 8334.64 8336.56 8334.64 8334.64 8334.64 8334.63 8334.63 8334.63 8334.64
Artificial surface 15,851.87 16,739.16 17,801.37 19,368.14 15,884.30 16,775.99 18,018.44 19,937.72 16,719.66 19,123.86 22,116.58 25,625.74

Other 18.28 18.26 18.19 18.15 18.38 18.24 18.01 17.90 18.28 18.10 17.56 16.85
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Under the SSP245 scenario, the expansion patterns of cultivated land, grassland, and
shrubland were similar to the SSP126 scenario, but with a slower decreasing tendency than
the SSP126 scenario. Forest land was also well preserved; however, its growth rate has also
slowed to only 1.58% per decade. The slightly accelerated artificial surface expansion, and
water bodies and other land types generally similar to the SSP126 scenario.

In contrast to the other scenarios, the area of cultivated land changes from a decreasing
tendency in the period of 2020–2040 to an increasing tendency in the period of 2040–2060
under the SSP585 scenario. The area of grassland and shrubland showed a sharper de-
creasing tendency. As a result of the rapid expansion of the artificial surface, forest land
was ineffectively preserved and its area shows a decreasing tendency with decrease of
8898.22 km2 by 2060. Under the SSP585 scenario, the rapidest expansion of the artificial
surface is observed in Guangdong province, where the artificial surface area expands nearly
1.7 times in 2060 compared to 2020.

3.2. Spatiotemporal Patterns of Carbon Storage
3.2.1. Spatiotemporal Variation of Carbon Storage in Terrestrial Ecosystems

Changes in terrestrial ecosystem carbon storage caused by LUCC under different
scenarios from 2020 to 2060 in Guangdong province were assessed using the InVEST model
(Figure 7). Significant differences in carbon storage under different scenarios (Table 4).
Under SSP126 and SSP245 scenarios, carbon storage continuously increases positively and
maintains a continuous tendency to increase. The carbon storage increases from 240.89 Tg
in 2020 to 247.16 Tg (SSP126) and 245.33 Tg (SSP245) in 2060, with an increase of 6.27 Tg
and 4.44 Tg, respectively. Compared to the SSP126 scenario, the increase in carbon storage
is slightly lower under the SSP245 scenario. While the carbon storage shows a negative
increase and continuously decreases under the SSP585 scenario, which decreases from
240.89 Tg in 2020 to 226.54 Tg in 2060, with a total decrease of 14.35 Tg.

As illustrated in Figure 7, under the SSP126 scenario, the area of carbon storage
increase is mainly located in northern and western Guangdong, where the forest land
area maintains growth. The area of carbon storage decrease is mainly the artificial surface
expansion area, where cultivated land and grassland are destroyed. The carbon storage
changes under the SSP245 scenario are similar to the SSP126 scenario, with a slightly smaller
increase in carbon storage under the SSP245 scenario, which is caused by the smaller area of
forest land growth that mainly influences carbon storage changes in terrestrial ecosystems
under the SSP245 scenario. In contrast, the decreased area of carbon storage obviously
increases and was significantly larger than the increased area of carbon storage under the
SSP585 scenario, and the decreased area was mainly distributed in the area of artificial
surface expansion and forest land reduction.

Moreover, the economic value of carbon sequestration in terrestrial ecosystems for
the different scenarios is shown in Figure 8, with units of monetary value per grid cell
(RMB). The positive values indicate that carbon is being sequestered, and negative values
indicate that carbon is lost to the atmosphere. According to the economic view of the Kyoto
Protocol, forest owners should realize revenue while reducing carbon emissions [41]. In this
study, future and current carbon sequestration are treated equally, and the discount rate
and the social value of sequestered carbon are assumed to be constant, which contributes
to obtain the net present value (NPV) of sequestered carbon in any particular year. Under
the SSP126 and SSP245 scenarios, the total economic value of carbon sequestration is
8.05 billion and 5.70 billion RMB in Guangdong province during the period of 2020–2060,
respectively. Under the SSP585 scenario, the economic value loss due to carbon loss would
be approximately 18.43 billion RMB in Guangdong province during the period of 2020–2060.
This ecosystems service function expressed as a monetary value can be effective in raising
awareness of the significance of ecosystems and biodiversity, and conveying it to policy
makers [41].
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different scenarios.

3.2.2. Spatiotemporal Variation of Carbon Storage in Forest Ecosystems

In this paper, forest ecosystem carbon storage accounts for approximately 78% of
terrestrial ecosystem carbon storage. Thus, we individually assessed the changes in forest
ecosystem carbon storage caused by LUCC (Table 5). The results showed that carbon
storage in forest ecosystems had a similar change pattern to terrestrial ecosystems under
the three scenarios, but it was more drastic than terrestrial ecosystems. By 2060, forest
ecosystem carbon storage increases by 17.64 Tg and 15.34 Tg under SSP126 and SSP245
scenarios, respectively, with an annual increase of 0.44 Tg year−1 and 0.38 Tg year−1,
respectively. Under the SSP585 scenario, forest ecosystem carbon storage slightly increased
and then rapidly decreased, with the total decrease of 11.64 Tg. In addition, forest ecosystem
carbon storage accounts for up to 83.38% of carbon storage in terrestrial ecosystems by
2060 (SSP126 scenario). In the SSP585 scenario, the rapid expansion of the artificial surface
encroached on previously forested land, grassland, wetlands, etc., which resulted in a total
decrease in terrestrial ecosystem carbon storage of 14.35 Tg (Table 4), and the decreased
carbon storage due to forest land destruction accounted for 81.05% of the total decreased
carbon storage. Obviously, the changes in carbon storage in forest ecosystems largely
determine changes in carbon storage in terrestrial ecosystems.

Table 5. Carbon storage dynamic changes in forest ecosystems under different scenarios during the
period of 2020–2060.

Climate
Scenarios

Total Carbon Storage (Tg) Carbon Storage Change (Tg)

2020 2030 2040 2050 2060 2020–2030 2030–2040 2040–2050 2050–2060 2020–2060

SSP126 188.43 191.52 194.75 199.20 206.07 3.09 3.23 4.45 6.87 17.64
SSP245 188.43 190.74 193.65 197.50 203.77 2.31 2.91 3.84 6.27 15.34
SSP585 188.43 188.49 186.51 182.18 176.79 0.06 −1.98 −4.32 −5.39 −11.64

4. Discussion
4.1. Impact of Various Driving Factors on LUCC

In this study, we evaluated the dynamic distribution of LUCC in Guangdong province
from 2020 to 2060 under three scenarios of SSP126, SSP245, and SSP585. The expansion of
cultivated land, forest land, grassland, and artificial surface showed significant differences
among the three scenarios. The importance ranking of the driving factors for growth of
the four land use types in 2060 [40] is shown in Figure 9. The driving factors that ranked
first in importance for cultivated land, forest land, grassland, and artificial surface were
consistent under the three scenarios.
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For the cultivated land, we found that population density had the most influence on
the growth of cultivated land. Population growth requires more food supply, and with a
certain amount of food production, it requires additional land to supply food. Additionally,
population dynamics and economic growth largely determine the future development of
agricultural systems [66], including other basic socioeconomic conditions, such as techno-
logical changes in crops and livestock [67], investments in agricultural technology [68], and
trade of agricultural goods [69]. Therefore, it is not difficult to understand that changes
in cultivated land area are strongly influenced by population growth [70,71]. The main
driving factors of forest land change are elevation, population, and distance to water. On
the one hand, forest land in Guangdong province is mainly distributed in the higher al-
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titude mountainous areas in northern and western Guangdong [42]; on the other hand,
the impact of population density on forests is not negligible, the expansion of population
not only needs forest land to provide more forestry products, but people need to enjoy
the ecological service value attached to forest land [72]. In addition, water area is rarely
converted to natural vegetation under natural factor conditions and forest land tends to
expand to more ecologically healthy areas, which may explain the reason why distance to
water bodies is one of the main driving factors of forest land growth [73].

The average annual temperature, population, and distance to water are the main fac-
tors influencing the growth of grassland. This indicates that grassland are more sensitive to
temperature response [39], and areas strongly influenced by human activities also affect the
growth of grassland [40]. The driving factors for artificial surface growth include distance
to water, population density, and elevation. The water area hinders the urban expansion,
which generally avoids or surrounds the water area by encroaching on cultivated land,
grassland, or other land use types [28,61]. Increasing population density means that urban
areas need to expand further to accommodate a greater number of people to survive. In-
deed, urban expansion is generally influenced by elevation factors, as the difficulty and
cost of urban construction was determined by topographical factors. In general, urban
expansion avoids the large topographic undulations of mountainous areas [61]. As can
be observed in Figure 6, the expanded artificial surface is mainly distributed in the areas
with relatively low topographic fluctuations, which is consistent with the general pattern
of urban development.

4.2. Impact of LUCC on Carbon Storage

This paper reveals the spatial distribution of carbon storage under different climate
change scenarios during the period of 2020–2060 in Guangdong province, and the results
showed that an obviously spatial heterogeneity in carbon storage changes (Figure 7). The
changes in carbon storage are the result of a combination of climate change, population
growth, economic development, and ecological interests. This comprehensive assessment
helps us to improve our understanding of future changes in carbon storage, especially
resulting from changes in LUCC.

4.2.1. Impact on Carbon Storage in Terrestrial Ecosystems

As expected, forest land, cultivated land, and shrubland accumulate more carbon
storage than other land use types [39]. In our study, the highest carbon density was
found in forest land, followed by cultivated land, shrubland, and grassland (Table 2).
There are significant differences in the distribution of LUCC under different scenarios,
which also result in the spatial heterogeneity of changes in carbon storage in terrestrial
ecosystems. In general, the expansion of artificial surface and the decrease in forest area
are the most significant reasons for the decrease in carbon storage in terrestrial ecosystems.
The decrease in terrestrial ecosystem carbon storage due to the expansion of the artificial
surface could be up to 186.45 Mg under the three scenarios. It seems profitable for urban
expansion by providing more jobs and rapidly increasing GDP, but it will reduce regional
ecosystem carbon storage in the long-term [74,75]. Therefore, balancing urban expansion
and ecological conservation is an important measure to maintain sustainable development.

Rapid economic development and urbanization have seriously affected the quality of
the regional ecosystems, resulting in the continuous degradation of forest land, grassland,
and shrubland, further leading to a decline in terrestrial ecosystem carbon storage in the
study area. This is consistent with previous findings that the accelerated economic devel-
opment will lead to gradual ecological degradation, and further resulting in a continuous
decline of carbon storage in terrestrial ecosystems [39]. Therefore, enhancing the quality of
socio-economic development and promoting economic development from “high speed” to
“high quality” could not only improve the value of regional ecosystems services, but also
increase the carbon storage in the ecosystems [28]. In addition, rapid climate change and
future socioeconomic and land use driving factor uncertainties may lead to very different
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LUCC dynamic changes and consequences for changes in terrestrial ecosystem carbon
storage based on LUCC [66]. Reducing the use of fossil fuels and increasing the use of clean
energy for energy conversion, such as solar and wind energy resources, would mitigate
the global warming effect, and prevent further degradation of forest land, grassland, and
shrubland, hence maintaining the balance of carbon storage in terrestrial ecosystems.

4.2.2. Impact on Carbon Storage in Forest Ecosystems

Figure 10 shows the changes in forest ecosystem carbon storage under different future
scenarios compared to 2020, with a gradual increase in forest ecosystem carbon storage
under the SSP126 and SSP245 scenarios, while the forest ecosystem carbon storage increases
by a minor amount in 2030 and then decreasing continuously under the SSP585 scenario.
Specifically, under the SSP126 scenario, it is projected that 5897.75 km2 of cultivated land
will be converted to forest land by 2060, contributing 60.42 Mg of increased carbon storage,
which is consistent with previous findings that the ecological engineering of Grain to Green
could significantly increase the carbon sequestration in Chinese soil ecosystems through
the conversion of cultivated land to forest land [76]. Additionally, 1522.73 km2 of grassland
and 426.26 km2 of shrubland will be converted to forest land. Overall, the increase in
carbon storage from conversion to forest land is expected to reach 84.36 Mg. Stable climatic
conditions and lower socioeconomic development would encourage the expansion of forest
land [77,78], and its propensity to expand towards more ecologically healthy areas [73].
Therefore, moderate urban expansion and lower GHG emissions are effective paths for
increasing carbon storage in regional forest ecosystems [28].
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Furthermore, the pattern of forest ecosystem carbon storage change under the SSP245
scenario was roughly same with the SSP126 scenario, but its total carbon storage increase
was lower than that of the SSP126 scenario. Under the SSP245 scenario, the increase in
carbon storage was attributed to the conversion of cultivated land and grassland to forest
land. Notably, under the SSP585 scenario, the rapidly expanding artificial surface and the
continuously decreasing forest land resulted in 116.32 Mg of forest ecosystem carbon storage
decrease by 2060, which is also one of the reasons for the decrease in forest ecosystem
carbon storage in Central Asia [33]. Interestingly, the forest ecosystem carbon storage in
2030 has a minor increase under the scenario of decreasing forest land area, which is likely
caused by the increase in carbon storage due to the increase in forest carbon intensity in
2030 offsetting the decrease in forest ecosystem carbon storage caused by the decreased
area of forest land. Moderate GDP and lower population growth have maintained slight
changes in LUCC and contributed to the growth of forest ecosystem carbon storage [79],
and increasing the area of forest land and grassland and slowing urban expansion are
effective measures to counteract decreasing carbon storage [34]. In addition, it can be
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seen that forest ecosystems have the greatest influence on carbon storage in terrestrial
ecosystems, and increasing the area of forest land by artificial afforestation and maintaining
the health and vitality of forest ecosystems can increase the carbon sequestration capacity
of forest ecosystems.

4.3. Suggestions for Future Development

In the context of increased future climate and socioeconomic uncertainties, ecological
environments are becoming increasingly fragile and natural vegetation land use types
such as forest land are continuously degraded [28], which has resulted in a decrease in
carbon storage in the study area. Therefore, it is particularly important for policy makers to
formulate and implement policies related to socio-economic development and land use
planning in order to optimize the land use structure and increase carbon storage.

The results of this study indicate that rapid economic growth will lead to a continuous
decrease in ecosystem carbon storage and degradation of the ecological environment.
Therefore, slowing down the rate of economic growth and reasonably planning urban
development could improve the value of ecosystem services in the study area. Reducing
the use of fossil fuels and increasing the proportion of clean energy use will not only
mitigate the effects of climate change, but also prevent further degradation of forest land
and grassland. In addition, various stakeholders should pursue the acceleration of the
construction of provincial key public welfare forests, ecological demonstration villages,
and demonstration rural road forestry networks, and programs to nurture unestablished
forest land, replanting and replenishing them to encourage them to become forest land
as soon as possible. Furthermore, insisting on the implementation of GCP, and artificial
afforestation of unused land and forestable land, and maintaining the health and vitality of
forest ecosystems, could improve the carbon sequestration capacity of forest ecosystems.

4.4. Strengths and Uncertainties

This paper provides a new approach for the future LUCC spatial simulation and
carbon storage assessment based on population, GDP, and climate variables (temperature
and precipitation), and land use demand under the SSP-RCP scenarios, combined with
PLUS and InVEST models (Figure 2). We used the GDP, population, temperature, and
precipitation change data generated by the SSP-RCP scenarios and future land use demand
as simulation parameters for PLUS model, which produced a reasonable spatial distribution
of LUCC (Figure 6). Unfortunately, the PLUS model assumes fixed transition rules during
the LUCC simulations for each land use type, and these rules may change in the coming
decades [40]. Moreover, only three climate change scenarios (SSP126, SSP245, and SSP585)
generated by the MRI-ESM2-0 model were used in this work, and the differences in climate
projections generated by different general circulation models (GCMs), which is one of the
challenges for our future work [80,81].

Moreover, although the InVEST model has been widely used for multi-scale carbon
storage assessment; however, this pattern also has limitations. For example, the InVEST
model has a limitation that it cannot effectively estimate water and unused land carbon
storage [39]. Indeed, the carbon loss due to the interconversion of each land use type and
the seasonal variation of LUCC was not taken into account in the calculation of regional
carbon storage in the InVEST model, which is also one of the sources of uncertainty in
this work [82]. Furthermore, we collected carbon density data for all the land use types in
the study area as much as possible, and assumed decadal trends in forest carbon density
based on previous studies [42,45] to minimize uncertainty in carbon storage assessment.
However, the carbon density values and their corresponding land use type areas can only
approximately estimate the carbon storage of a regional ecosystems [83,84], and we will
devote more efforts to address this challenge in future work.

In this study, we revealed a range of possible future spatiotemporal distribution pat-
terns of LUCC and dynamic changes of carbon storage in Guangdong province, although
with certain limitations. The results of this work can provide supporting data for re-
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sponding to future climate change and formulating policies for sustainable socioeconomic
development, and meeting the goals of carbon peaking and carbon neutrality.

5. Conclusions

By integrating the PLUS and InVEST models, we simulated the spatiotemporal dy-
namic distribution of LUCC and ecosystem carbon storage in Guangdong in the future
(2020–2060) under the SSP126, SSP245, and SSP585 scenarios. The results of the future land
use simulation indicated that land use changes varied under different scenarios. Under the
SSP126 scenario, cultivated land, grassland, and shrubland were decreasing in varied de-
grees, the artificial surface was slightly expanded, and forest land was effectively protected;
The overall change patterns of LUCC under the SSP245 scenario were similar to the SSP126
scenario, but the artificial surface expanded more rapidly and the increase in forest land
slowed down under the SPP245 scenario; and under the SSP585 scenario, forest land is not
effectively preserved and the artificial surface area sharply expanding, which encroaches
on the previous grassland and forest land areas.

Under the three scenarios, population, elevation, temperature, and distance to water
were the highest contributing driving factors for the growth of cultivated land, forest land,
grassland, and artificial surface, respectively. During the period of 2020–2060, terrestrial
ecosystem carbon storage in Guangdong province was increased from 240.89 Tg in 2020
to 247.16 Tg and 243.54 Tg in 2060 under SSP126 and SSP245 scenarios, respectively; and
decreased under the SSP585 scenario, with a total decrease of 14.35 Tg. Forest ecosystem
carbon storage is the main source of carbon storage increase, which can effectively offset
the decrease in ecosystem carbon storage due to artificial surface expansion and other
vegetation land type area reduction. Overall, forest land is the most influential land use
type for carbon storage in terrestrial ecosystems, and the carbon sequestration capacity of
forest ecosystems can be increased by increasing the area of forest land through artificial
afforestation. Moreover, the results not only can provide a new insight into the redistribu-
tion of land resources and economic development strategies at the regional scale, but also
support data to meet China’s carbon neutrality goals.
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