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Abstract: Global urbanization significantly impacts the thermal environment in urban areas, yet
urban heat island (UHI) and urban heat wave (UHW) studies at the mega-region scale have been
rare, and the impact study of urbanization is still lacking. In this study, the MODIS land surface
temperature (LST) product was used to depict the UHI and UHW in nine mega-regions globally
between 2003 and 2020. The absolute and percentile-based UHW thresholds were adopted for both
daily and three-day windows to analyze heat wave frequency, and UHW magnitude as well as
frequency were compared with UHI variability. Results showed that a 10% increase in urban built-up
density led to a 0.20 ◦C to 0.95 ◦C increase in LST, a 0.59% to 7.17% increase in hot day frequency, as
well as a 0.08% to 0.95% increase in heat wave number. Meanwhile, a 1 ◦C increase in UHI intensity
(the LST differences between the built-up and Non-built-up areas) led to a 2.04% to 92.15% increase
in hot day frequency, where daytime LST exceeds 35 ◦C and nighttime LST exceeds 25 ◦C, as well as
a 3.30% to 33.67% increase in heat wave number, which is defined as at least three consecutive days
when daily maximum temperature exceeds the climatological threshold. In addition, the increasing
rates of UHW magnitudes were much faster than the expansion rates of built-up areas. In the
mega-regions of Boston, Tokyo, São Paulo, and Mexico City in particular, the increasing rates of
UHW hotspot magnitudes were over 2 times larger than those of built-up areas. This indicated that
the high temperature extremes, represented by the increase in UHW frequency and magnitudes,
were concurrent with an increase in UHI under the context of climate change. This study may be
beneficial for future research of the underlying physical mechanisms on urban heat environment at
the mega-region scale.

Keywords: urban heat phenomena; UHI intensity; UHW frequency; built-up density; mega-region

1. Introduction

It is projected that the population in the urban areas will reach 5 billion by 2030 [1].
Accelerating global urbanization processes have led to the agglomeration of adjacent urban
areas known as mega-regions. Numerous land surface modification has also triggered the
conversion of vegetated surfaces to buildings or impervious surfaces [2–4]. This has exerted
increasingly stronger impacts on the ecosystem, biodiversity, and local climate, and has
brought about many negative environmental repercussions, such as urban heat phenom-
ena [5]. Specifically, urban heat island (UHI) phenomena, where urban areas tend to have
a higher near-surface air temperature (NSAT) or land surface temperature (LST) relative to
the surrounding hinterland [6–8], have been widely used to demonstrate the magnitude of
urban heat phenomena. Meanwhile, urban heat wave (UHW) phenomena, defined as events
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associated with particularly high and sustained NSAT, have also been used to quantify the
frequency, intensity, and duration of urban heat events [9–12]. These urban heat phenomena
have a large impact on human life, health, and well-being in a variety of ways. Consequently,
the understanding of urbanization processes and the resulting urban heat environment—both
their patterns and intensity—are of particular importance to natural resource use, public
health, and global environmental changes [13–15].

NSAT is normally measured at thermometer shelters 1.5–2 m above the ground at
weather stations with high accuracy and temporal resolution [16,17]. However, these
data are heavily dependent on the regional infrastructure for weather data collection.
They are collected as point samples whose distribution is rarely designed to capture
the range of climate variability within a region. The spatial information available on
air temperature is thus often limited, especially in areas with rugged terrain and harsh
environments. The need for spatial information and real-time access to data has thus
driven many researchers to look for satellite-based methods. Meanwhile, LST is in-
stead retrieved from thermal infrared or microwave spectral measurements. It is avail-
able from spaceborne radiometers and provides a synoptic spatial perspective that can
be very important in the modeling and monitoring of UHI processes at different spa-
tial scales [18]. With advances in technology, communications, and computing power,
data from satellite sensors have become easily accessible. In particular, with the advan-
tages of wide coverage and short revisit intervals, various thermal infrared remote sen-
sors, such as the Advanced Very High Resolution Radiometer (AVHRR) [19,20], Mod-
erate Resolution Imaging Spectroradiometer (MODIS) [21,22], Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) [23,24], and Landsat Thematic
Mapper [25,26], have been used to measure LST intensity to quantify urban heat phe-
nomena. Generally, though the NSAT and LST feature different measurement techniques,
diurnal phases, and responses to atmospheric conditions [27], LST is strongly consistent
with NSAT. Many previous studies have also retrieved high-solution NSAT data from
MODIS products over different ecosystems, and the difference between LST-retrieved
NSAT and LST ranges from 0~1.73 ◦C [28,29], implying that LST can also provide a reli-
able measure of the near-surface thermal state that is spatially distributed and temporally
consistent [30,31].

However, most of the satellite-based urban heat phenomenon studies have focused
on the magnitude and intensity of UHI based on LST gradient [32–34], while LST data
have rarely been used to quantify the frequency and duration of urban heat events. One
reason is that measuring the duration or frequency of urban heat events normally requires
consecutive availability of NSAT data at a sub-daily scale to depict diurnal temperature
dynamics. As a result, the utility of 90–100 m Landsat/ASTER thermal data with 16-day
temporal resolution is limited in detecting urban heat frequency or intensity without a series
of downscaling [35], sharpening [36], image fusion [37], and disaggregation [38] methods
to enhance the temporal resolution. By contrast, MODIS LST data provide great potential
with 1 km spatial resolution and 12 h temporal resolution, but also pose considerable
challenges in computational burden. The challenge may be met with the assistance of
cloud-based computation platforms such as the Google Earth Engine (GEE) [39], which has
a large volume of global satellite imagery storage and high computing capability. This may
dramatically improve the quantitative analysis and understanding of the frequency and
intensity of urban thermal phenomena.

Therefore, the first research goal in this study is to apply the high spatial resolution
and moderate temporal resolution MODIS LST data to measure the frequency and intensity
of urban thermal events based on the GEE platform. As there is a strong correlation
between LST and NSAT, we used LST as a surrogate of NSAT to depict UHW using a
similar definition. To distinguish it from traditional NSAT-based UHW delineation, the
LST-based UHW evaluation is referred to as the pixel-based UHW evaluation in this
study. The definitions of UHW in previous studies include a number of percentile-based,
absolute, duration-based, or range-based NSAT thresholds [10,40–43], which are largely
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subject to the context and location. For example, aside from the 17 extreme temperature
indices listed in Climate Change Detection and Indices (ETCCDI) [44], more than 20
other UHI/UHW indices exist, which were specifically designed to depict certain impact
communities (e.g., human mortality, wildlife, agriculture, and transport). The robustness
and transferability of these indices have not been verified in many areas due to the lack of
high-quality observations [45]. Different indices were adopted in these studies, making the
inter-comparison between urban heat phenomena studies difficult [46]. Therefore, there is
an urgent need for integrating remote sensing data sets based on an empirically verified
theoretical foundation upon which general indices of LST-based UHI/UHW are applicable
and transferable to different impact communities or study areas. The theoretical framework
will potentially enable comparisons of past, current, and future urban heat phenomena,
as well as the spatial magnitude, temporal intensity, and frequency of different LST-based
urban heat scenarios.

At the same time, previous satellite-based analyses indicated that different land use
and land cover characteristics, such as impervious surface area (ISA), urban green space
coverage, and landscape diversity of urban metropolis [47–51], are the most influential
factors on the magnitude of UHI [52–54]. In particular, ISA, defined as anthropogenic
features through which water cannot infiltrate into the soil (e.g., roads, driveways, side-
walks, parking lots, rooftops, etc.), has proved to be the primary driving factor for the
increase in temperature [55–57]. Previous studies have also shown that ISA accounted
for over 60% of the total LST variance of urban settlements within forests at mid-to-high
latitudes globally [58,59]. The relationship between LST and ISA has been used as a
potentially powerful tool for quantifying the contribution of land cover changes induced
by human activities to urban heat phenomena [60–62].

As the ongoing global urban expansion strongly directs the evolution of city networks
into a new spatial scale—the mega-region scale [30,31]—urban heat phenomena represented
by LST features have been shown to be more pronounced in the ISA. For example, the
generally quasi-linear relationship between LST and the built-up density (depicted by ISA
fraction) has been examined in the most densely populated cities in the United States [62]
and China [63], but very few studies have focused on the spatiotemporal trends of urban
heat intensity and frequency, as well as their relationship with ISA fractions at the mega-
region scale. It is worth exploring whether the relationship between urban heat phenomena
and built-up density adopts a similar quasi-linear or a non-linear pattern. Therefore, there
is a strong impetus to systematically evaluate the spatiotemporal trends of urban heat
phenomena with ISA fractions in different mega-regions [64–67].

This study aims to analyze the spatiotemporal patterns of urban heat intensity and
frequency based on LST data from MODIS in 9 mega-regions globally between 2003 and
2020. Further, the influence of ISA fractions on UHI/UHW is evaluated using an urban
built-up density product [68]. Two key research questions addressed are:

1. What is the added value of coupling UHI and UHW analysis in characterizing urban
heat phenomena using remote sensing data?

2. What is the influence of ISA fractions on UHI/UHW phenomena?

This study is among the first studies to evaluate urban heat frequency in depth with re-
motely sensed LST data using indicators originally developed for NSAT. We specifically focus
on exploring the spatiotemporal interaction of urban heat intensity and frequency patterns, as
well as its relationship with built-up density in representative mega-regions globally.

2. Study Area and Data
2.1. Study Area

The magnitude of population (over 10 million) and geographical expansion are two
typical defining features of mega-regions [69–71], but the delineation of the geographical
boundary of a mega-region is still vague. Based on a comprehensive literature review, nine
representative mega-regions across the globe with a population larger than 20 million by
2000 were selected. Out of the nine mega-regions, three are located in coastal deltas; we
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thus named them after their respective deltas, the Yangtze River Delta (YRD), the Pearl
River Delta (PRD), and the Nile Delta. The other six mega-regions contain mega-cities
with a population over 10 million; we therefore used the mega-city‘s name to refer to the
mega-region, including Paris, Mexico City, Tokyo (mainly from Tokyo to Osaka), São Paulo
(mainly from São Paulo to Rio de Janeiro), Jakarta (mainly from Jakarta to Surabaya), and
Boston (mainly from Boston to Washington). The province-scale geospatial data from the
GADM dataset (https://gadm.org/ (access on 5 July 2021)) were used to determine the
geographical boundaries of the nine mega-regions (Figure 1). These regions feature different
climate types, including tropical climate (Nile Delta, Jakarta), subtropical climate (PRD,
São Paulo, Mexico City), and temperate climate (YRD, Boston, Tokyo, Paris), with the mean
summer temperature (estimated from MODIS LST product (MYD11A1)) ranging from
19.31 ◦C to 33.17 ◦C. Based on the urban built-up area data provided by Gong et al. [68], the
highest growth rate of built-up density between 2000 and 2018 was seen in the mega-region
of YRD (53.56%), followed by the mega-regions in the Nile Delta (31.45%), Paris (28.43%),
PRD (18.51%), Boston (14.87%), Mexico City (13.44%), Jakarta (13.15%), São Paulo (5.36%),
and Tokyo (4.02%). The highest growth rate of population density between 2000 and 2015
was in the mega-region of PRD (44.50%), followed by the Nile Delta (31.76%), Mexico
City (25.76%), YRD (23.88%), Jakarta (20.82%), São Paulo (18.41%), Paris (10.36%), Boston
(8.44%), and Tokyo (0.96%), based on the geostatistical data from Gridded Population of
the World (V4) [72]. More details are shown in Table S1 in the Supplementary Materials.

Figure 1. The 9 mega-regions selected and their built-up (BU) areas from 2000 to 2018.

2.2. Data

In this study, the LST product (MYD11A1) from MODIS Aqua [73,74] between 2003
and 2020 under clear-sky (99% confidence) condition was used. The data were provided
daily at 1 km resolution. The quality control procedures included removing cloudy images
using the quality control band of MOD11A1 data to only keep the pixel with quality flag = 0
(good data quality) and average emissivity flag = 0 (average emissivity error ≤ 0.01). The
LST observations at the overpass time of 13:30 and 01:30 local time were taken as proxies of
the daytime and nighttime temperature. The data accuracy was shown to be better than
1 K for most cases, and the difference with in situ measurements was generally less than 5%
in urban areas [75,76]. Pixels with water bodies, or those with no value or of bad quality,
were masked out through quality control prior to evaluation. The seasonal UHI and UHW
features were then calculated for the summer months between 2003 and 2020 for each
mega-region, respectively. Here, summer months were defined as December to February
of the following year in the mega-region of São Paulo, and as June to August in the other
mega-regions.

https://gadm.org/
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Urban built-up area data were provided by Gong et al. [68] with annual maps of global
artificial impervious areas between 2003 to 2018. This product is derived at 30 m resolution
from cloud-free Landsat TM images, and the classification accuracy is generally higher than
0.9 for most mega-regions. Here, the data of 2018 were assumed representative for 2019
and 2020. More details about the built-up area product can be found in Gong et al. [68].

3. Methodology

This study measures the urban heat environment based on LST data from the MODIS
daily composite product in nine mega-regions between 2003 and 2020. The urban heat
environment was evaluated using four indicators (Table 1). These indicators were designed
to measure the intensity and frequency of UHI and UHW, and aimed (1) to evaluate a
number of pixel-based urban heat indicators on their feasibility across different climates
and (2) to facilitate a spatially consistent comparison of patterns and trends of observed
thermal phenomena among different mega-regions.

Table 1. Indicators used to characterize UHI and UHW patterns.

Feature Indicator Definition Reference

UHI Intensity
mean LST mean LST in the urban areas of

each mega-region
[26,77]

LST standard
deviation

LST standard deviation in the
urban areas of each mega-region

UHW Frequency

Combined hot
days and

tropical nights
(CHT)

Seasonal occurrence of summer
days with maximum

temperatures exceeding 35 ◦C
and minimum temperatures

exceeding 20 ◦C
[10,31,41,43,78]

Heat wave
Number (HWN)

A heat wave event is defined as
at least 3 consecutive days when

daily maximum temperature
exceeds the climatological

90th/97.5th percentile, and is
anomalously warm compared to

the historical mean LST.

3.1. Urban Heat Island Evaluation

In order to demonstrate the UHI and UHW trends induced by rapid urbanization, we
first aggregated the 30 m resolution built-up area data to 1 km resolution and calculated
an urban built-up density index (UDI), which was then used to delineate built-up areas
(UDI > 0). The magnitude of UHI was defined as the total built-up areas, and the intensity
of UHI was evaluated by comparing the LST differences in the built-up areas and Non-
built-up areas (UDI = 0). The UDI data were further categorized into 10 levels, with UDI
values ranging from 0 to 1 with an increment of 0.1. The mean and standard deviation (std)
of LST, as well as the LST correlation with UDI, were calculated for each UDI level. The
formulas of UDI and UHI are shown as follows:

UDIpixel−based = ∑ ISA(30m)/ ∑ Area(1km) (1)

UHI = T(UDI > 0) − T(UDI = 0) (2)

3.2. Urban Heat Wave Evaluation

The analysis of UHW intensity and magnitude depends to a large extent on the
definition of heat waves. Here, two indicators were adopted to characterize heat wave
events: the combined hot days and tropical nights (CHT), and the heat wave number
(HWN). The CHT indicator is based on an absolute LST threshold, which represents
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the average number of days with daytime temperature exceeding 35 ◦C and nighttime
temperature exceeding 20 ◦C [12]. The HWN, on the other hand, is a relative indicator that
measures heat wave intensity, and depends on the temperature threshold determined by
the LST climatology of the study area. Here, a heat wave event is defined as a spell of at
least three consecutive days with daytime temperature exceeding the local 90th percentile
or 97.5th percentile of the study period [78]. The HWN thresholds were determined by:

T97.5 = Tseasonal_mean + 2 Tseasonal_std (3)

T90 = Tseasonal_mean + 1.28 · Tseasonal_std (4)

where Tseasonal_mean and Tseasonal_std are the historical (2003–2020) average LST and
standard deviation of each pixel. T90 and T97.5 are the 90th and 97.5th percentiles of the
LST climatology of each mega-region from 2003 to 2020. To eliminate the impact of cloud
contamination on the LST data availability, the derived CHT and HWN were normalized
by the number of valid observations per season for each pixel. The UHW intensity was
defined as the value of CHT and HWN, and the UHW magnitude was defined as the area
with at least one heat wave event.

3.3. The Hotspot of Urban Thermal Environment

Percolation theory was originally developed in statistical physics and mathematics to
model the emergent structures of urban clusters on a random graph [79]. Urban researchers
have used percolation theory to model urban boundaries and to understand the critical
phenomena of cities [78,80]. We applied percolation theory to delimit hotspots of urban
thermal environment using LST, CHT, HWN90th, and HWN97.5th, separately. As shown
in Figure 2, for an L × L lattice, each pixel can be occupied with probability p (e.g., LST,
CHT, or HWN), and adjacent occupied pixels form a cluster. The size of the largest cluster
remains stable for small p values. As p becomes larger, the size of the largest cluster starts
to increase rapidly and gradually becomes stable again at a certain point, following a
power-law distribution. This point is called the critical point, or the percolation threshold.
Here, we consider the threshold at this critical point to be the optimal threshold. Once the
optimal threshold was determined, we were able to delineate the hotspots of urban thermal
environment based on different indicators.

Figure 2. Schematic of the percolation-based clustering method; (x1,y1) and (x2,y2) define the percola
tion threshold at which the giant component emerges.
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4. Results
4.1. The Trends of Urban Heat Phenomena in the Built-Up and Non-Built-Up Areas

The temporal dynamics and variability of the mean LST in the study area from 2003 to
2020 were first assessed (Figure 3). Linear regression showed an increasing trend in the
mean LST in eight mega-regions except Jakarta. An increasing trend was also found in the
UHI intensity (mean LST difference between the built-up and Non-built-up areas) in all
nine mega-regions, which was significant (p < 0.05) in all regions except for Mexico City and
Paris. The largest annual average UHI intensity was seen in Tokyo (6.59 ◦C), followed by
the mega-regions of PRD (3.64 ◦C), São Paulo (3.23 ◦C), Boston (3.19 ◦C), Jakarta (3.12 ◦C),
YRD (2.70 ◦C), Mexico City (1.94 ◦C), and Paris (1.37 ◦C). Meanwhile, the largest increasing
rate of UHI intensity was seen in Paris (11.35%), followed by YRD (10.84%), Nile (9.10%),
PRD (8.83%), Jakarta (5.29%), Tokyo (4.04%), São Paulo (1.63%), Boston (1.15%), and Mexico
City (0.79%). The UHI intensity in the summer daytime was generally higher than that in
the summer nighttime in these mega-regions (shown in Figure S1 in the supplementary
material). This result is consistent with previous research, such as Ayansina [81] and
Zhou [82]. The UHI intensity can be attributed to the varying mechanisms underlying the
daytime and nighttime UHI effects. Within the mega-region, the densely vegetated areas
which are mainly located in the area with (UDI = 0) play a crucial role in cooling the earth
surface via transpiration during the daytime. Comparatively, vegetation demonstrates
a weak effect over nighttime because transpiration is significantly reduced at night [82].
Consequently, the UHI intensity (i.e., LST difference between impervious surface areas and
non-impervious surface areas) during the daytime are normally larger than that during
the nighttime.

Different from the other mega-regions, the Nile mega-region exhibited an evident ‘cold
island effect’ (UHI intensity < 0), where the urban area has a lower temperature than the
surrounding areas. Previous studies have also reported the ‘cold island effect’ in some arid
and semi-arid environments, such as in Athens [83,84]. This may be caused by the fact that
the major land cover types in this mega-region are bare soil and sparse vegetation [85,86].
Based on the MODIS yearly land use product (MCD12Q1.006), over 75% of the area is
covered by bare soil from 2003 to 2020. During the daytime, the open plain mainly covered
by sparse vegetation or bare soil becomes heated faster than the densely built-up areas,
which are mainly covered by materials with higher thermal inertia, such as concrete and
asphalt [87]. In addition, bare soil has a lower albedo (typical value around 0.17) than
concrete (typical value around 0.55), leading to higher net radiation in the Non-built-up
areas. A dense building envelope with specific orientation, or building external walls
with high-reflectivity materials in hot-arid climates, can also reduce heat gains from solar
radiation and create a cooler environment through reducing cooling load accordingly [88].
During the nighttime, urban areas tend to be cooler as well, as a result of the lower thermal
inertia of the soil compared to concrete [8,89].

The mega-region of Mexico City also demonstrated a ‘cold island effect’ in the night-
time. The region features a distinct wet season and dry season, and temperatures remain
fairly constant throughout the year. The wet season lasts from May to October and features
heavy rainfalls. The ‘cold island effect’ in the nighttime is possibly induced by the relatively
high vegetation cover and soil moisture in the wetland and nearby buffer zones in the
rainy season. Similar nighttime heat island phenomena were also found in Mexico City in
previous research [90].

The mean CHT trends in the nine mega-regions are shown in Figure 3. Out of the nine
mega- regions, eight (except for Paris) showed a positive CHT trend, and the trends were
significant in three mega-regions (Nile, YRD and São Paulo). The largest increase in CHT
intensity between 2003 and 2020 was seen in the Nile mega-region (126.27%), followed by
the mega-regions in YRD (88.11%), São Paulo (73.46%), Tokyo (49.73%), Jakarta (19.86%),
PRD (12.97%), Boston (4.12%), and Mexico City (3.52%). It is worth pointing out that the
CHT value in 2003 in Paris was significantly higher than that from other years, as a result
of an extreme heat wave event that occurred in Western Europe in 2003. If the 2003 value is
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excluded, the CHT intensity in Paris would also demonstrate a significant positive trend,
with an increase of 11.95% from 2004 to 2020 in the built-up area. In addition, except for
the mega-region of Mexico City, the increasing rate of CHT intensity in the built-up area
was also higher than that in the Non-built-up areas.

Figure 3. Time series of mean LST, CHT, HWN90th and HWN97.5th in the summer daytime from
2003 to 2020 in the 9 mega-regions in the built-up and Non-built-up areas. Error bars are graphical
representations of the standard deviation of four indicators in the mega-region (B = Built-up area,
N = Non-built-up area).

The trends of HWN90th are shown in the third column of Figure 3. Similarly to the
trends of CHT, five out of the nine mega-regions (Nile, Tokyo, Paris, YRD, and São Paulo)
also demonstrated an increasing trend of HWN90th intensity from 2003 to 2020 in the built-
up areas, but only one of them was significant (Nile). The largest increase in HWN90th
intensity was seen in the Nile mega-region (13.24%), followed by the mega-regions in YRD
(7.58%), Tokyo (5.01%), São Paulo (1.92%), and Paris (0.01%). The HWN90th increased
more rapidly in the built-up areas than in the Non-built-up areas. Though HWN90th
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fluctuated in the mega-regions of Boston, PRD, Jakarta, and Mexico City over the study
period, the HWN90th values in the built-up areas were almost always higher than those in
the Non-built-up areas. Nile is the only mega-region with higher HWN90th values in the
Non-built-up areas, which is consistent with the trend of the UHI intensity. The temporal
trends of HWN97.5th are consistent with the results using HWN90th (shown in the fourth
column of Figure 3).

4.2. Influence of Built-Up Density on UHI/UHW Phenomena

To further evaluate the influence of built-up density on the urban heat phenomena, the
mean LST within the mega-regions was calculated at 10 levels with UDI from 0 to 1 with an
increment of 0.1 (e.g., Level 1 indicates areas with 0 < UDI < 0.1). The box plot of mean LST
within each UDI level during the study period is shown in Figure 4. The Pearson correlation
coefficient (R2) was used to quantify the strength of the relationship between UDI and LST.
A positive correlation between UDI and the mean LST was observed in all mega-regions.
The R2 ranged between 0.1 and 0.8 and was significant (p < 0.01) in all mega-regions except
for Nile. It is worth noting that the UDI ~ LST relationship was still positive in the urban
areas in the mega-region of Nile, despite the ‘cold island effect’ observed.

The mean CHT and the mean HWN90th intensity for different UDI levels are shown
in the second and the third column of Figure 4. A consistent positive correlation (R2 =
0.47~0.99, p < 0.01) between UDI and CHT is seen in all the mega-regions from 2003 to 2020,
except for the mega-region of Mexico City. Moreover, within these positive correlations,
118 out of the 162 relationships between UDI and CHT were significant. The HWN90th
metric also exhibited a significant positive (R2 > 0.72, p < 0.01) relationship with UDI in all
mega-regions except for Nile and Mexico City. This may relate to the influence of bare soil
and wetland in these two regions. In addition, the correlations between UDI and HWN90th
are generally higher than those between UDI and HWN97.5th.

Overall, the increase of 10% in UDI corresponds to around a 0.20 ◦C to 0.95 ◦C increase
in LST, a 0.59% to 7.17% increase in CHT, as well as a 0.08% to 0.95% increase in HWN90th.
The positive correlations between UDI and LST/CHT/HWN indicate that the built-up
areas realistically represent the compound UHI and UHW effects. In addition, when taking
the four types of climate zones among the mega-regions: (1) Humid subtropical (YRD,
PRD, Tokyo, Boston, Mexico City, São Paulo); (2) Tropical rainforest (Jakarta); (3) Marine
west coast climate (Paris); (4) Desert climate (Nile), into consideration, we observed some
patterns potentially associated with climatic conditions. For example, the mega-regions in
the humid subtropics more often exhibit stronger UHI intensity (LST difference between
built-up and Non-built-up areas) [91,92]. In contrast, thanks to the moderating effect of
the ocean [93], the difference between thermal environments of built-up and Non-built-up
areas is less evident. The desert climate of the Nile delta on the other hand, contributes to
the unique ‘cold island effect’, which is the result of mixed influence of both the climate
and the landscape [94].
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Figure 4. Daytime of Mean LST, CHT, HWN90th, and HWN97.5th within each UDI level during the
study period. Each class is plotted from 18 data points which represent the areal mean LST of the
class in different mega-regions from 2003–2020, respectively.

4.3. The Spatiotemporal Patterns of Urban Heat Phenomena

The mean of LST, CHT, and HWN intensities during the study period are shown in
Figure 5. The LST, CHT, and HWN spatial patterns were generally in line with previous
studies based on in situ data or model simulations [95]. Areas with high CHT and HWN
intensities were predominantly located in the urban areas with high built-up density. The
core urban areas have marked influence on the aggregation of urban heat wave effects,
and the larger the core areas, the more significant the urban heat aggregation effect. In
particular, some urban agglomerations in the mega-regions of Boston, Tokyo, Jakarta, YRD,
São Paulo, and Mexico City have merged and evolved into urban corridors along the
coastal areas, where the CHT and HWN intensities demonstrated a declining trend from
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the multiple cores of these urban corridors to the fringe areas. In addition, though the
core urban areas of Paris were not located in the coastal area, its urban heat phenomenon
pattern also revealed a declining trend from the city center to the fringe areas.

Figure 5. Spatial distribution of mean LST, CHN, and HWN over the study period in the 9 mega-regions.

When the increasing rates of CHT magnitudes (the proportion of built-up areas with at
least one CHT event) were taken into consideration, the increasing rates of CHT magnitudes
in six mega-regions were much higher than the expansion rate of built-up areas. In the
mega-regions of Boston, Tokyo, São Paulo, and Mexico City in particular, the increasing
rates of CHT magnitude were more than 2 times higher than those of built-up areas.
However, the higher increasing rates of UHW phenomena than those of built-up areas
were not observed using the HWN indicators, except for in Paris.

The percolation-based hotspot detection result is shown in Figure 6. Different indica-
tors demonstrated different UHI and UHW clustering patterns in the nine mega-regions.
As shown in Table 2, the largest proportion of UHI hotspot magnitude (the area of the
largest cluster/the area of the mega-region) based on LST was YRD, followed by Boston,
PRD, Nile, Mexico City, Paris, São Paulo, Tokyo, and Jakarta, while the largest proportion
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of CHT-based hotspot magnitude was Nile, followed by São Paulo, YRD, PRD, Boston,
Jakarta, Mexico City, Paris, and Tokyo. In terms of HWN90th, the largest hotspot magni-
tude proportion was also found in Nile, followed by São Paulo, Boston, Mexico City, Paris,
Jakarta, Tokyo, YRD, and PRD. The spatial extent of the UHI and UHW clusters detected
using different indicators was mostly consistent in the mega-regions of Boston, São Paulo,
and Nile. In other mega-regions, such as Jakarta, Tokyo, Paris, PRD, and YRD, the clusters
aggregated more evidently over the built-up areas, despite the dissimilar hotspot patterns
using different indicators.

Figure 6. Spatial distribution of percolation-based hotspots in the 9 mega-regions in three time periods.
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Table 2. The largest proportion of UHI hotspot magnitude based on different UHI and UHW patterns.

LST CHT HWN90th

YRD 97.32% 30.59% 6.14%

Boston 97.22% 18.40% 61.34%

PRD 95.97% 29.08% 1.18%

Nile 95.67% 86.34% 80.64%

Mexico City 93.25% 10.05% 51.83%

Paris 93.06% 4.93% 27.80%

São Paulo 91.69% 46.05% 75.94%

Tokyo 88.13% 2.22% 11.89%

Jakarta 83.82% 17.76% 15.59%

The study period was further divided into three 6-year periods to analyze the percolation-
based hotspot patterns (more details are included in Tables S6–S9 in the Supplementary
Materials). We found that the average LST window width (as illustrated in Figure 2)
steadily increased in Mexico City (by 3 ◦C), Paris (by 2 ◦C), and PRD (by 2 ◦C), while it
fluctuated in the other mega-regions. Similarly, the CHT-based hotspots also demonstrated
a steady increase in six mega-regions, with the largest increase occurring in Boston (28%)
and the lowest occurring in Mexico City (7%). Though the HWN-based hotspots did not
demonstrate significant increasing trends within the three periods, the overall patterns
of UHI/CHT/HWN-based hotspots reveal that anthropogenic activities have detectable
influence on the thermal environment at the mega-region scale and should be considered
in future research which explores the mechanistic drivers of heat waves.

5. Discussion
5.1. The Coupling Effect of UHW and UHI Phenomena

The correlation analysis between daytime/night-time mean LST, CHT, HWN90th and
HWN97.5th, and the global mean temperature (gridded data from 2003 to 2018 provided
by NOAA, https://www.ncdc.noaa.gov/temp-and-precip/global-maps/ (accessed on
10 March 2020)) was performed (shown in Table S10 in the Supplementary Materials).
Except for the mega-regions, it is shown that the global mean temperature during the
summer season increased by 0.34 ◦C from 2003 to 2018. The first peak was in 2005, with the
temperature having grown by 0.15 ◦C from 2003. The second peak was in 2010 with the
temperature having grown by 0.19 ◦C from 2005, and the third peak was in 2016 with the
temperature having grown by 0.15 ◦C from 2010. The increase in global mean temperature
coincides with the occurrence of natural phenomena such as ENSO or volcanism, which
are known to affect the duration of heat waves [96]. Following the increase in global
mean temperature, the frequency and intensity of the temperature extremes evaluated
by multiple indicators (including mean LST, HWN97.5th, HWN90th) also increased in
most of the mega-regions (except for Nile and Mexico City). All these indicators in the
built-up areas demonstrated a more significant trend than that in the Non-built-up areas in
correlation with the global average temperature (R2 > 0.2, p < 0.01).

Many previous studies in climatology have also demonstrated that small changes in
the mean temperature can result in disproportionally large changes in the intensity and
frequency of extreme heat events. To evaluate the regional differences in the impact of
LST variation, the temporal dynamics of mean LST, CHT, HWN90th, and HWN97.5th
are plotted in Figure 7. We calculated the pair-wise correlations between the indicators
in each mega-region (90 pairs in total). All the correlations were positive, except that of
between daytime and nighttime mean LST in Jakarta, and only two correlations were
insignificant. The variations of CHT and HWN97.5th agree very well with the mean LST
dynamics, which is consistent with earlier findings that the increase in seasonal average

https://www.ncdc.noaa.gov/temp-and-precip/global-maps/
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temperature over most regions globally can lead to increased occurrence of temperature
extremes [97]. Overall, a 1 ◦C increase in LST corresponded to a 2.04% to 92.15% increase
in CHT. The highest CHT variability was found in the mega-region of Mexico City, and
the lowest was in the mega-region of PRD. Meanwhile, a 1 ◦C increase in LST led to a
3.30% to 33.67% increase in HWN90th. The highest HWN90th variability was found in
the mega-region of Paris, while the lowest was in the mega-region of PRD. In particular,
the CHT and HWN90th variability in the built-up areas was more dramatic than that in
the Non-built-up areas, except for the mega-region of Paris. This indicates that when the
increased temperature variability is concurrent with an increase in the average temperature,
the high temperature extremes represented by the increase in UHI magnitude and UHW
frequency would occur more frequently under global warming. Similar findings have
also been reported in Diffenbaugh and Giorgi [98] based on CMIP5 data (Coupled Model
Inter-comparison Project, Phase 5).

Figure 7. Time series of mean LST, CHT, and HWN in the 9 mega-regions.

5.2. The Uncertainty of Remote Sensing-Based UHW Measurement

The absolute threshold-based CHT is a transferable indicator that incorporates daily
maximum and minimum LST information for UHW delineation, and it provides a spatially
uniform measure of heat wave patterns over the nine mega-regions. However, CHT may
not be suitable for depicting the spatial-temporal characteristics of heat wave events in
regions within the Marine west coast climate zone where the maximum temperature rarely
exceeds 35 ◦C, such as part of the Paris mega-region. For such regions, the percentile-based
HWN may be better suited to capture local UHW events, since it takes into account the
climatic differences between regions. HWN can also be further analyzed to measure the
amplitude, duration, and persistence of UHW events [41,78].

Nevertheless, percentile-based indicators such as HWN are influenced by the time
window adopted, as well as the percentile threshold selected. Expert Team on Climate
Change Detection and Indices (ETCCDI) have used several indices, such as TN90p, TN95p,
TN97.5p, to measure the percentage of days when the daily minimum temperature is
above the corresponding percentile [99,100]. These indices have been used in studies based
on both observations and model simulations in different regions [41,101]. Meanwhile,
previous studies have defined a heat wave event as 3 days [102], or 5 days [100], or
7 days [103], or 15 days [102] that consecutively meet the pre-defined standards. In this
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study, a heat wave standard similar to the one used in Perkins and Alexander [100] was
adopted, and the 90th and 97.5th percentiles of mean LST climatology were selected as the
threshold [6,102], respectively. Using the two thresholds, the average number of heat wave
events during the daytime ranges from 1.19% to 34.34%, and from 0.04% to 19.78% over
the urban areas, respectively. By contract, using a lower threshold (e.g., 80th percentile)
or longer time periods (e.g., 6 days/15 days) would result in too many or too few events
being detected. The determination of the thresholds is thus a trade-off between effectively
detecting representative UHW events and highlighting the severity of extreme UHW events.

Despite the similarities, it is worth noting that the spatial patterns of HWN do not
fully coincide with those of CHT. For example, the CHT stands out in the northern part of
Mexico City mega-region, which is not seen in HWN patterns. The HWN also does not
show the aggregated effect seen in CHT in the mega-region of PRD. This is on one hand
caused by the difference of the two indicators by definition, and on the other hand caused
by the data availability of the MODIS LST product. The uncertainty of the pixel-based
UHI and UHW characteristics in this study is closely related to the amount of available
MODIS LST data, which is directly influenced by the weather conditions. The histogram of
LST data availability in the built-up and Non-built-up areas is shown in Figure S2 in the
supplementary materials. Since the UHW analysis requires consecutive revisits within a
certain time period (3 consecutive days in this study), its estimation is not only affected by
the magnitude of LST (as in the UHI analysis) but also by the temporal availability of valid
LST observations. As a result, the uncertainty of UHW analysis is expected to be larger
compared to UHI analysis. In order to reduce the uncertainty, the calculated CHT and
HWN values were normalized by the total number of days with valid LST observations to
enhance the robustness of the evaluation. Here an implicit assumption is that there are no
UHW events under cloudy-sky conditions (i.e., when no LST data are available). Clouds
strongly reflect the shortwave radiation from the sunlight, thus greatly reducing the solar
radiation that reaches the ground, which essentially limits the magnitude of the surface
temperature and subsequently reduces the possibility of heat wave events [104,105].

The earth surface thermal infrared (TIR) radiation conspicuously shows an anisotropic
behavior and has been widely recognized in the LST measurement. The effect of thermal
radiation directionality (TRD) shows that different view angles lead to different LST mea-
surements [106]. Therefore, different thermal TDR models, including radiative transfer
models, geometric models, hybrid models, 3-D models, etc., have been used to improve the
LST measurement [107,108]. To better measure the emissivity and 3-D thermal anisotropy
effects in the MODIS data, a series of building structure components, such as roofs, sunlit
or shaded walls, and so on, should be integrated into the TRD models (e.g., CoMSTIR,
SUM) to simulate the thermal infrared radiation of 3-D urban buildings [109,110]. MODIS
observations are also influenced by the anisotropy effect [111,112], which is most evident
for images with view angles of around 55◦ over complex terrains. The data pre-processing
procedure in this study was not corrected for this effect; therefore, the summer mean LST
was calculated for each mega-region to mitigate its impact in order to ensure that the
anisotropic distribution of thermal radiance was on average well represented.

Li et al. [55] demonstrated that the LST-UDI correlation depends on the zoning scale of
built-up areas or the spatial resolution of satellite images. Therefore, the scale issue should
be considered when analyzing correlations between LST and landscape features [113]. In
addition, the UDI definition in this study was based on the density of ISA instead of the
urban-rural boundary, and thus cannot further demonstrate the interaction between the
urbanization process and the urban heat hotspot. The impacts of other influencing factors
of urban heat phenomena (e.g., increased emissions of anthropogenic heat, changes to
urban geometry and landscape configuration, persistent high-pressure systems, moisture
fluxes, and seasonal climate variability) are not within the scope of this study, but should
be discussed in further studies.

Last but not the least, though there is a strong relationship between LST and NSAT, the
two temperatures have different physical meanings, magnitudes, measurement techniques,
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diurnal phases, and responses to atmospheric conditions [112,114]. In this study we directly
applied indicators developed for NSAT to measure the LST-based UHW phenomena. The
differences of UHW characteristics, especially the coupling effect of LST and NSAT under
global climate change, should be taken into consideration in the future.

6. Conclusions

Rapid urbanization has significantly reshaped the urban thermal environment, but
conventional studies using in situ air temperature observations are often constrained by
the limited coverage of the observation network. In this study, the MODIS land surface
temperature (LST) product was used as a proxy for air temperature to depict the urban
heat island (UHI) and urban heat wave (UHW) in nine mega-regions globally between
2003 and 2020. A daily window was used to calculate the combined hot days and tropical
nights (CHT) based on daily minimum and maximum temperature to depict the frequency
of absolute threshold-based UHW events, and a 3-day window was adopted to depict
the percentile-based heat wave number (HWN) in the built-up and Non-built-up areas,
respectively. On that basis, the correlation between heat wave magnitude or intensity and
built-up density was further analyzed using impervious surface area data.

From 2003 to 2020, an increase in the mean LST as well as LST spatial variability was
observed in all the mega-regions. Overall, a 1 ◦C increase in UHI intensity corresponds
to a 2.04% to 92.15% increase in CHT, as well as a 3.30% to 33.67% increase in HWN. This
suggests that under the combined influence of increasing LST as well as LST variability,
the high temperature extremes represented by the increase in UHI magnitude and UHW
frequency would occur more frequently under global warming.

The urban built-up density has a strong impact on urban heat phenomena. Overall, a
10% increase in the urban built-up density corresponded to a 0.20 ◦C to 0.95 ◦C increase in
LST, a 0.59% to 7.17% increase in CHT, as well as a 0.08% to 0.95% increase in HWN. Over
half of the impervious surface areas in the mega-regions have experienced at least one heat
wave event. The increasing rates of CHT were higher than the expansion rate of built-up
areas in six mega-regions, particularly in Boston, Tokyo, São Paulo, and Mexico City.

Percolation theory was adopted to delimit the hotspots of urban thermal environment.
Using LST as the indicator, the hotspot magnitude ranged from 97.32% to 88.13%, while
the UHW-based hotspot magnitude ranged from 86.34% to 1.18%. The increasing magni-
tude of UHI/UHW hotspots reveals that the urban expansion had—and will continue to
have—detectable influence on the thermal environment at the mega-region scale. There-
fore, the spatial correlation between the urban impervious surface and the urban thermal
environment should be considered in future research to explore the mechanistic drivers of
heat waves.

In this study, LST was utilized as a proxy for air temperature. Though they are closely
correlated and consistent under most conditions, their differences should be considered
in the interpretation of the results. The urban heat environment is also affected by factors
such as land–atmosphere coupling, soil wetness condition, and the enhanced greenhouse
effect, which were not analyzed in this study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14010070/s1. Figure S1: Time series of mean LST in the summer nighttime from 2003 to 2020
in the 9 megaregions in the built-up and Non-built-up areas. Error bars are graphical representations
of the standard deviation of mean LST in the mega-region (B = Built-up area, N = Non-built-up
area), Figure S2: Histogram of mean MODIS LST data available at summer time in the built-up and
Non-built-up areas, Table S1: The change of population density (2000, 2015, 2020) and built-up area
(2000, 2005, 2010) in the 10 mega-regions, Table S2: The Pearson correlation of UDI/LST pair from
2003 to 2020, Table S3: The Pearson correlation of UDI/CHT pair from 2003 to 2020, Table S4: The
Pearson correlation of UDI/HWN90th pair from 2003 to 2020, Table S5: The Pearson correlation of
UDI/HWN97.5th pair from 2003 to 2020, Table S6: The percolation results of UHI hotspot in three
time periods, Table S7: The percolation results of CHT hotspot in three time periods, Table S8: The
percolation results of HWN90th hotspot in three time periods, Table S9: The percolation results of
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HWN97.5th hotspot in three time periods, Table S10: The correlation between UHI, UHW indicator
and global mean temperature.

Author Contributions: Conceptualization, C.W. and Y.L.; methodology, C.W.; validation, C.W., W.C.
and Y.L.; writing—original draft preparation, C.W.; writing—review and editing, T.B., J.P. and D.X.;
visualization, W.C.; supervision, T.B., J.P. and D.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was financially supported by the National Natural Science Foundation of
China projects No.42001178 and No.41930646, and the Southern Marine Science and Engineering
Guangdong Laboratory (Zhuhai) project No.311021018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qiao, Z.; Tian, G.; Zhang, L.; Xu, X. Influences of urban expansion on urban heat island in Beijing during 1989–2010. Adv. Meteorol.

2014, 2014, 187169. [CrossRef]
2. Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499.

[CrossRef]
3. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities.

Science 2008, 319, 756–760. [CrossRef] [PubMed]
4. McPhearson, T.; Pickett, S.T.; Grimm, N.B.; Niemelä, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S.

Advancing urban ecology toward a science of cities. BioScience 2016, 66, 198–212. [CrossRef]
5. Xu, H.; Ding, F.; Wen, X. Urban expansion and heat island dynamics in the Quanzhou region, China. IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens. 2009, 2, 74–79. [CrossRef]
6. Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.;

et al. Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007.

7. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat
island. Int. J. Climatol. 2003, 23, 1–26. [CrossRef]

8. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
9. Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [CrossRef]
10. Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305,

994–997. [CrossRef]
11. Cubasch, U.; Meehl, G.; Boer, G.; Stouffer, R.; Dix, M.; Noda, A.; Senior, C.; Raper, S.; Yap, K.; Abe-Ouchi, A.; et al. Projections of

future climate change. In Climate Change 2001: The scientific Basis. Contribution of WG1 to the Third Assessment Report of the IPCC
(TAR); Cambridge University Press: Cambridge, UK, 2001; pp. 525–582.

12. Perkins-Kirkpatrick, S.; Gibson, P. Changes in regional heatwave characteristics as a function of increasing global temperature.
Sci. Rep. 2017, 7, 12256. [CrossRef] [PubMed]

13. Han, G.; Xu, J. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River
Delta, China. Environ. Manag. 2013, 52, 234–249. [CrossRef]

14. Seto, K.C.; Reenberg, A. Rethinking Global Land Use in an Urban Era; MIT Press: Cambridge, MA, USA, 2014; Volume 14.
15. Elmqvist, T.; Bai, X.; Frantzeskaki, N.; Maddox, D. The Urban Planet: Knowledge towards Sustainable Cities; Cambridge University

Press: Cambridge, UK, 2018.
16. Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Eklundh, L. Estimation of diurnal air temperature using MSG SEVIRI data in

West Africa. Remote Sens. Environ. 2007, 110, 262–274. [CrossRef]
17. Yang, Y.; Cai, W.; Yang, J. Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in

Northeast China. Remote Sens. 2017, 9, 410. [CrossRef]
18. Mutiibwa, D.; Strachan, S.; Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [CrossRef]
19. Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289.

[CrossRef]
20. Roth, M.; Oke, T.; Emery, W. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban

climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [CrossRef]

http://doi.org/10.1155/2014/187169
http://doi.org/10.1126/science.277.5325.494
http://doi.org/10.1126/science.1150195
http://www.ncbi.nlm.nih.gov/pubmed/18258902
http://doi.org/10.1093/biosci/biw002
http://doi.org/10.1109/JSTARS.2009.2023088
http://doi.org/10.1002/joc.859
http://doi.org/10.1002/qj.49710845502
http://doi.org/10.1126/science.1090228
http://doi.org/10.1126/science.1098704
http://doi.org/10.1038/s41598-017-12520-2
http://www.ncbi.nlm.nih.gov/pubmed/28947762
http://doi.org/10.1007/s00267-013-0097-6
http://doi.org/10.1016/j.rse.2007.02.025
http://doi.org/10.3390/rs9050410
http://doi.org/10.1109/JSTARS.2015.2468594
http://doi.org/10.1016/S0034-4257(03)00007-5
http://doi.org/10.1080/01431168908904002


Remote Sens. 2022, 14, 70 18 of 21

21. Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with
MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [CrossRef]

22. Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities.
Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [CrossRef]

23. Hartz, D.; Prashad, L.; Hedquist, B.; Golden, J.; Brazel, A. Linking satellite images and hand-held infrared thermography to
observed neighborhood climate conditions. Remote Sens. Environ. 2006, 104, 190–200. [CrossRef]

24. Stathopoulou, M.; Synnefa, A.; Cartalis, C.; Santamouris, M.; Karlessi, T.; Akbari, H. A surface heat island study of Athens using
high-resolution satellite imagery and measurements of the optical and thermal properties of commonly used building and paving
materials. Int. J. Sustain. Energy 2009, 28, 59–76. [CrossRef]

25. Rajasekar, U.; Weng, Q. Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM+ imagery.
Int. J. Remote Sens. 2009, 30, 3531–3548. [CrossRef]

26. Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing spatial and temporal trends of surface urban heat island
effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [CrossRef]

27. Jin, M.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations.
Environ. Res. Lett. 2010, 5, 44004. [CrossRef]

28. Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature
in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [CrossRef]
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