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Abstract: Exploring how urban form affects the Particulate Matter 2.5 (PM2.5) concentration could
help to find environmentally friendly urbanization. According to the definition of geography, this
paper constructs a comprehensive urban form evaluation index system applicable to many aspects.
Four urban form metrics, as well as road density and five control variables are selected. Based on
2015 data on China’s 340 prefecture-level cities, the spatial regression model and geographically
weighted regression model were used to explore the relationship between the urban form evaluation
index system and PM2.5 pollution. The main results show that the spatial distribution of PM2.5 in
China follows an increasing trend from northwest to southeast. Urban form indicators such as AI, LPI,
PLAND, LSI and road density were all significantly related to PM2.5 concentrations. More compact
urban construction, lower fragmentation of urban land, and lower density of the road network are
conducive factors for improving air quality conditions. In addition, affected by seasonal changes, the
correlation between urban form and PM2.5 concentration in spring and winter is higher than that
in summer and winter. This study confirmed that a reasonable urban planning strategies are very
important for improving air quality.

Keywords: urban form; PM2.5; landscape metrics; geographically weighted regression

1. Introduction

In the past several decades, with the rapid urbanization and industrialization across
many regions of the world, atmospheric pollution became increasingly serious and is
already a major social problem [1,2]. Especially in China, as the largest developing country,
the rate of urbanization increased from 17.9% to 54.8% in years between 1978 and 2015 years
and continues to increase [3,4]. The average Particulate Matter 2.5 (PM2.5) concentration in
cities reached 62 µgm−3, 60.8 µgm−3, and 57 µgm−3 in 2013, 2014, and 2015, respectively.
China became the most PM2.5-polluted area in the world [5]. PM2.5 is considered one of the
most important pollutants because of its indirect impacts on health, agriculture production,
atmospheric visibility, and climate environment [6,7]. In 2001–2006, 165 prefectures’ annual
PM2.5 levels had far and away beyond the national atmosphere quality standard of China
(NAQSC, annual average < 35 µgm−3) [8]. Many studies showed that PM2.5 is a key
atmosphere pollutant threatening public health [9,10]. An increase of PM2.5 concentration
by 10 µg/m3 causes a 0.40% increase in all-course mortality, a 1.43% increase in deaths
caused by respiratory failure, and a 0.53% increase in deaths caused by cardiovascular
failure [11]. It is estimated that PM2.5 pollution caused 1.2 million premature deaths in
China in 2010 and nearly 35% of worldwide deaths [12].

To explore the factors that affect PM2.5 concentration can help to better analyze the
effects of PM2.5 pollution. A number of literatures showed that human activities and
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natural factors act on PM2.5 pollution concentrations either through direct or indirect
influences. These influences may be social economy [2,13], the industrial structure [5],
climate change [14], seasonality [15], or the prevalence of monsoons [16]. For example,
Xu found that economic growth had the large impact on PM2.5 [5]. Most studies found a
clear reverse “U-shaped” curve between economic development levels, urbanization, and
atmosphere pollution, and with improving economy levels, most cities are at a stage of
increasing pollution levels [2,17]. It was confirmed that PM2.5 pollution is influenced by
seasons and regions, and the highest levels were found in winter despite differences in
temperature and relative humidity among different regions. He and his colleague applied
the global regression model, and found that increased fossil energy consumption leads to
an increase in PM2.5 concentrations, while elevation, precipitation, temperature, and GDP
per capita are all likely to reduce the impact of PM2.5 pollution [18].

Moreover, many studies showed that urban planning exert a positive effect on the
reduction of PM2.5 levels over recent years. Examples for these factors are a reasonable
urban form, the moderate reduction of road density, building density, population ratios,
and improving green spaces [19]. Of course, there are also studies that used comprehensive
indicators in the urbanization process to explore the impact on PM2.5, for example, the
Liveability and Health Index (LHI) [20]. Urban form, which includes a city area as well as
its shape and layout, can be defined as urban land use organization and human activity
arrangement [21], and it is usually measured by several landscape indicators of a city.
PM2.5 pollution is affected by vehicle use, green land, pollutant diffusion, and the heat
island effect [22]. Research proved that higher urban compactness and less fragmentation
(i.e., the largest patch index (LPI)) can reduce PM2.5 pollution in China [23,24]. However,
other studies argued that motor vehicles are the main cause of atmospheric pollutants
emission in cities, and there is a strong correlation between PM2.5 and mortality in the
traffic emission [25]; thus, a more compact development alone may still increase local PM2.5
concentrations and also cause more population to be affected by PM2.5 [26]. In the USA,
controlling the population, the level of urbanization, and the mixing of different land cover
types were found to be important influencing factors between pollutant levels and atmo-
spheric quality [27,28]. In addition, the distance from the main road, the standard deviation
of the building floor, and the average floor are the main urban morphological characteristics
that affect the spatial variation of a variety of pollutants [29]. In the above analysis, because
of the complexity of socioeconomic and natural conditions, the relationship between urban
form and PM2.5 may be inconsistent and complex. Scientific urban planning can effectively
reduce urban PM2.5. Therefore, it is necessary to explore the effect of urban form on PM2.5.

Investigating PM2.5 concentration is important for research. A large number of ex-
periments used to study the relationship between PM2.5 and urban form to identify better
approaches for reducing atmosphere pollution. Most studies used linear regression models
to analyze the urban form indexes that are related to PM2.5 pollution and estimated the
coefficient of form indexes in the model [30]. In addition, spatial econometric models and
the Environmental Kuznets curve (EKC) hypothesis were used to study the socioeconomic
and natural factors on urban atmosphere pollution [13,31]. Most studies mainly obtained
urban form data through urban land use data and calculated the urban landscape pattern
index to represent specific characteristics of the urban form. Most models selected class area
(CA), number of patches (NP), patch density (PD), LPI, area-weighted mean shape index
(AWMSI), percentage of landscape (PLAND), aggregation index (AI), landscape shape
index (LSI), contiguity index (CONTIG), effective mesh size (MESH), interspersion juxta-
position index (IJI), and other landscape pattern indexes [32,33]. PM2.5 data are obtained
in three main ways: monitoring real-time data through environmental observation sites,
monitoring through experimental instruments, and estimating PM2.5 concentrations using
atmospheric aerosol optical depth (AOD) data obtained from remote sensing images [34].
The latter can compensate for the shortcomings of experimental technology and ground
monitoring sites and provides large-scale and real-time continuous observation data [35].
Although many studies explored the correlation between urban form and PM2.5 pollution
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at different scales from different-sized cities to urban agglomerations to countries, more
specific urban form indicators need to be analyzed in the case of China. For example, there
is a lack of variables explaining the effects of local meteorological conditions on the spatial
aggregation and dispersion of PM2.5 pollution. The geographical conditions of China are
complex, and the urban forms of different geographical locations vary greatly; therefore, it
is necessary to develop more specific urban form indicators to evaluate the shape of cities
from different aspects and to measure the urban forms of China more adequately.

To develop more effective urban development strategies that can alleviate air pollution,
as well as integrate the strengths and weaknesses of previous scientific research, this paper
assesses the relationship between urban form and PM2.5. For this, multisource data is used
to establish an index system of urban form. Estimates of PM2.5 concentrations are based
on AOD data. Based on 340 prefecture-level cities in China, the linear regression model is
applied to study the correlation between urban form and PM2.5. Next, a geographically
weighted regression (GWR) model is used to analyze the geographical differentiation of
the impact urban form exerts on pollutant emissions. PM2.5 concentration data and other
natural factors are derived from satellite-derived data. Then, a comprehensive evaluation
system of urban form indicators was established by using land use data and road network
data. Next, the results of the linear regression method and GWR model between urban form
and PM2.5 concentration are analyzed. The paper ends with a discussion of the research
results and presents relevant policy implications.

2. Data and Methods
2.1. Data Sources

Data were collected on the scale of 340 prefecture-level cities to explore the effect of
urban form on PM2.5 concentration of this study. Table 1 provides the data framework and
variables abbreviations for the study. By reference to other research findings as well as
our own experimental results [21,36], this research assumes that the urban form will affect
the PM2.5 concentration through road density, AI, LPI, PLAND, LSI, population density,
per capita GDP, and the proportion of secondary industry. Compared with that of other
studies, these indicators are combined from the perspective of urban form and economic
development. Then, these eight aspects are combined to quantify urban form indicators. In
China, different regions have large climatic differences. Both temperature and precipitation
significantly impact atmosphere pollution [37], and therefore, these are used as explanatory
variables.

Table 1. Abbreviation summary.

Category Variable Name Abbreviation

Independent variable Fine particles matter PM2.5

Explanatory variable

Aggregation index AI
Largest patch index LPI

Percentage of landscape PLAND
Landscape shape index LSI

Road density RD
GDP per capita PCGDP

Population density PD
Proportion of the secondary

industrial output-value SIP

Temperature TEM
Precipitation PRE

Methods

Geographically weighted
regression GWR

Ordinary least squares OLS
Spatial error model SEM
Spatial lag model SLM
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2.1.1. PM2.5 Concentration Data Estimation

Many studies used AOD to estimate the concentration of PM2.5 pollution, and many
experiments proved a significant correlation between PM2.5 levels and satellite-obtained
AOD. Therefore, satellite remote sensing AOD is an effective tool for PM2.5 pollution
monitoring. In this study, MERRA-2 was mainly used to estimate PM2.5 levels. The
dataset was compiled by NASA’s Goddard Earth Science Data and Information Ser-vice
Center (GESDISC, https://daac.gsfc.nasa.gov/ (accessed on 10 August 2021)), used an
upgraded version of the Goddard Earth Observing System Model, Version 5 (GEOS-5)
data assimilation system. The spatial resolution of MERRA2 data is 0.5◦ × 0.625◦, and the
temporal resolution is daily. Combined with the GEOS-5 model, the annual and monthly
averages of near-surface PM2.5 concentrations were obtained from the AOD observations
in the MERRA-2 data set. For data verification, 200 prefecture-level cities were selected,
and their urban pollution point data from the China National Environmental Monitoring
Centre were compared to the satellite data. As shown in Figure 1, data verification found a
high correlation coefficient (R2 = 0.688) between the PM2.5 obtained by satellite and field
observations. Thus, satellite data can be used to analyze spatial distribution characteristics.
Because of the lack of collection and estimation of nitrate aerosols in the adopted data
sources and models, the overall PM2.5 value is low (accounting for only 20% of the PM2.5
level on severely polluted days), but this was shown to impose little influence on the overall
spatial distribution pattern [38].
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Figure 1. Scatter plot of observation data vs. satellite-retrieved PM2.5 data. Note: ** indicate
significance levels at 5% levels.

2.1.2. Urban Form Data

Urban form can be defined as the physical characteristics of urban built-up areas,
such as their size, shape, and density. Related research on the relationship between urban
form and atmospheric quality showed that atmospheric quality is closely related to the
fragmentation, size, shape, accessibility, and continuity of the urban form [23]. The land-
scape patch index is widely used to describe the characteristics of urban land use, as it
can scientifically represent the urban form. In the landscape patch of construction land,
total built-up area (TA), patch density (PD), mean patch area (MPA), PLAND, LPI, area
weighted mean fractal dimension (AWMFD), edge density (ED), LSI, and AI were used to
represent the fragmentation, size, shape, accessibility, and continuity of the urban form [39].
Those indices were calculated based on the land use and land cover dataset (1 × 1 km),
obtained by remote sensing classification from Landsat 8 data of 2015.

https://daac.gsfc.nasa.gov/
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However, multiple collinearity among these indexes is high. To avoid downstream
problems, four indicators were selected based on a variance inflation factor of less than
7.5 [40]. AI indicates the degree of land concentration, and values range within 0–100 (the
higher the value, the better the urban land use connectivity). LPI represents the proportion
of the maximum patch area to the total land area, with a value range of 0–100 (the higher
the value, the lower the city continuity and fragmentation). PLAND is used to measure
the size of the area occupied by urban construction land in the whole urban landscape,
with a value range of 0–100. LSI indicates the complexity of the shape of a city (the larger
the value, the more fragmented urban construction land). These above-mentioned four
indicators (i.e., AI, LPI, PLAND, and LSI) represent the expansion of urban construction
area, the compactness and fragmentation of construction form, and the complexity of the
internal landscape.

In addition, road density is used as a representation of the scale of the urban road
network, which is a good measure of urban traffic accessibility. A large amount of traffic
increases the concentration of atmosphere pollution, especially in areas next to roads; car
exhausts discharge into the atmosphere, and the movement of cars transports dust from
the ground into the air, which causes atmospheric pollution [41]. The road network of
China was downloaded from OpenStreetMap (https://www.openstreetmap.org/ (accessed
on 10 August 2021)) and computed through ArcGIS 10.x platform. Table 2 provides the
calculation method and simple description of 5 urban form indexes.

Table 2. Main urban form indexes in this study.

Index Formula Description

Aggregation index AI =
[

gii
maxgii

]
× 100 Measure of the natural connectivity of urban construction land

Largest patch index LPI =
maxi

j(aij)
TA (100) Measure of the superiority of urban construction land landscape

Percentage of landscape PLAND = pt =
∑n

j=1 amn

P × 100
Measure of the proportion of urban construction land in the

entire urban landscape

Landscape shape index LSI = 0.25 ∑m
k=1 e∗ik√

TA

Measure of the fragmentation and complexity of urban
construction land

Road density RD = (length)km
(area)km2 Measure the ratio of road length to area in city

2.1.3. Control Variables

The level of air pollution emissions was influenced by many variables indirectly
related to urban form. Therefore, it is necessary to employ a more accurate statistical
assessment of the association between urban form and air pollution using control variables.

As socioeconomic data, this paper mainly selects GDP per capita, population density,
and the secondary industry proportion (SIP). GDP per capita refers to the economic de-
velopment of a city. Economic development is the ultimate goal of urban development.
According to the EKC, China’s economy is ahead of the EKC peak; thus, economic devel-
opment causes more energy consumption and construction activities, which may be the
main source of urban PM2.5 pollution [42]. Population density is defined as the number of
people per unit of land area, and a significant correlation between population density and
atmospheric pollution was found [22]. This paper mainly adopts the population density of
urban built-up areas, which is an important indicator of the current status of urban popula-
tion distribution. SIP refers to the proportion of the output value of the secondary industry
within the total industrial output value, which is an important source of urban atmospheric
pollutants. The secondary industry encompasses many energy-intensive industries, mainly
fossil-fuel power plants, steel mills, cement plants, and chemical plants [2]. The Overall
Energy Balance Sheet for National Bureau of Statistics showed that nearly 70% of China’s
energy consumption is concentrated in the secondary industry. Therefore, compared with
that of other industries, the secondary industry emits more atmospheric pollutants [43].

https://www.openstreetmap.org/
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The data of these three indicators all originate from the “China City Statistical Yearbook”
of 2015, where missing and partially imputed data were replaced with relevant data from
adjacent years (which was the case in 1.5% of the sample).

As natural factors, temperature (TEM) and precipitation (PRE) were selected to mea-
sure the city’s climatic characteristics. Meteorological factors play an important role in the
concentrations of PM2.5 in China (more precipitation and the lower the temperature, the
lowed the concentration of pollutants) [37]. Latitude and longitude grid data of China were
extracted from the acquired MERRA-2 data set, and interpolation processing and regional
statistics at 340 prefecture-level cities were performed in the ArcGIS 10.2 software.

2.2. Statistical Models

China has obvious characteristics of regional differentiation, and atmosphere pollution
also presents typical regional characteristics. Air pollution between regions has a strong
spatial correlation; thus, the air pollution concentration of a city will affect the air quality of
nearby cities.

As typical global linear regression model, the ordinary least squares (OLS) model
is a common method to quantify the statistical relationship between independent and
dependent variables. OLS can be used to study the correlation between urban form and
PM2.5. However, the OLS model ignores the influence of spatial heterogeneity, which may
lead to evaluation bias [39]. Because of the existing spatial correlation among influencing
factors, several spatial regression models were selected to solve the problem by controlling
these potential spatial correlations. This paper used the spatial lag model (SLM) and the
spatial error model (SEM). SLM explains the influence of variables of the surrounding
area by adding lag variables to the model, while SEM considers the spatial dependence of
dependent variables (that may otherwise be missed) by adding error terms to the model.
The OLS model can be described as:

S = βn +
ρ

∑
m=1

βmαm + ε (1)

where S is the dependent variable, βn is the intercept, βm is the regression coefficient
corresponding to the explanatory variable m, and ε is the random error value. This model
can represent the intensity of the relationship between PM2.5 and urban form indicators.

The SLM model can be expressed as:

y = β0 + µ
p

∑
i=1

Wiy +
p

∑
i=1

βixi + ε (2)

where µ is the regression coefficient of the spatial lag term, representing the influencing
degree of adjacent spatial units on the spatial unit. This value has certain directivity, and
the larger the spatial influence degree, the greater the spatial influence degree. W is the
spatial weight matrix of n × n, and Wi is the spatial lag dependent variable of the spatial
weight matrix W. The parameter β mainly reflects the influence of the independent variable
on the dependent variable and the effect of spatial distance on each spatial unit. In this
model, inverse distance was used as the weight of the spatial lag term.

The SEM model can be represented as follows:

y = β0 +
p

∑
i=1

βixi + ω
p

∑
i=1

W ′ iε (3)

where y is the dependent variable. W is the spatial weight matrix, where the inverse distance
was used to calculate the spatial error matrix. β0 is a normal distributed random error
vector. Parameter βi is the influence coefficient of independent variable x on dependent
variable y, and W ′ i is the spatial error coefficient of the dependent variable vector, which
represents the spatial autocorrelation of the spatial error.
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All results of the three regression models can be used to explain the relationship
between dependent and independent variables, and the statistical results can be compared
by the measurement coefficient (R2) and Akaike information criterion (AIC) in the model.
Both values can be measured relative to a model that is more suitable for this paper. The
higher the R2 value, the smaller the AIC value, indicating that the model is more suitable.
All calculation procedures are conducted in Geoda 2017 software.

2.3. Geographically Weighted Regression

In this study, atmospheric pollution presents typical regional characteristics. In other
words, the air quality between neighboring cities is geographically closely related. Re-
gression analysis assumes that the regression parameters have no relationship with the
geographic location of the sample data, and the spatial characteristics are not considered.
The research results do not reflect geographic location characteristics well. In addition,
as a spatial autocorrelation index, the results of the bivariate Moran index of PM2.5 and
10 indicators are statistically significant (e.g., LPI, AI, and PLAND) and have obvious
spatial autocorrelation.

To identify the influence of spatial location, GWR is used to assess the influence of
urban morphology of different regions on PM2.5 concentration. GWR is an extension of the
OLS linear regression model. It uses local regression, embeds spatial position information
of the data into the regression parameters, establishes the local weight of the spatial position
matrix, and estimates the regression parameters point by point through the local weighted
least squares method, to quantify spatial heterogeneity. The model construction is expressed
as follows:

yi = βo(ui, vi) +
n

∑
z−1

βz(ui, vi)xiz + εi (4)

where the dependent variable yi represents the PM2.5 concentration of city i, βo(ui, vi)
represents the constant term of city i, xiz represents the explanatory variable, βz(ui, vi)
represents the regression parameter of the independent variable at the data sampling point,
and εi Represents the accumulation error term.

The parameter β f (ui, vi) can be estimated by the following formula:

β f (ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)y (5)

where β f (ui, vi) is the parameter estimation value of (ui, vi), W(ui, vi) is an n × n spatial
weight matrix, the nondiagonal original element value of which is 0, and the diagonal
element data is the spatial weight of the observation data of city i. The choice of the
spatial weight function is the core of GWR model estimation, and directly determines
the correctness of the model parameter estimation. To avoid estimation error caused by
less sample data around individual sampling points, this model uses the Gaussian kernel
function as the spatial weight function:

Wij =

{ [
1− (dsi/dmax)

2
]2

0

dsi ≤ dmax
otherwise

(6)

where dsi represents the distance between sampling points s and i, and dmax represents the
maximum distance between neighboring cities and the city to be assessed.

For the GWR model, bandwidth is important for determining the spatial weight calcu-
lation scheme. The smoothness of the model is controlled by bandwidth. Different spatial
weighting functions are used to obtain different bandwidths. Fotheringham proposed how
to obtain the optimal bandwidth [44]. The standard is the best bandwidth when the AIC of
the GWR model is smallest. Therefore, AIC is used to determine the bandwidth.



Remote Sens. 2022, 14, 7 8 of 19

The formula of the AIC is shown in the following:

AIC = −2InLθL,x + 2q (7)

where L
(
θ̂L, x

)
is the likelihood function of the model, θ̂L is the maximum likelihood

estimation of θ, x is a random sample, and q is the number of unknown parameters. The
GWR tool in ArcGIS 10.2 was used to build the model.

3. Results
3.1. Spatial Distribution Characteristics of PM2.5

Figure 2 illustrates the geographic distribution of the average PM2.5 concentrations
of China’s cities in 2015, clearly indicating that the spatial distribution of PM2.5 is hetero-
geneous. Overall, cities in eastern China tend to have higher PM2.5 levels than cities in
western China, and cities in northern China have higher PM2.5 levels than cities in southern
China. Specifically, areas with highest PM2.5 levels are concentrated in the North China
Plain and Sichuan Basin, as well as in parts of the Northwest China. Among these, the high
PM2.5 level-area of the northwest region is mainly caused by the Taklamakan desert (the
world’s second largest desert), where perennial wind and sand influx causes extremely
rich suspended particulate matter; therefore, the concentration of PM2.5 in the desert area
is high. The level of economic development in the North China Plains is high. The de-
velopment of pollution-intensive industries in North China promotes regional economic
development, and therefore, man-made atmospheric pollutant emissions are very large. In
the southwest region, area with high PM2.5 pollution is mainly concentrated in the Sichuan
Basin, a region that is particularly affected by humidity and precipitation, which causes
rich suspended particles in the atmosphere. Moreover, the special structure of the terrain
is not conducive to the spread of pollutants, and the population of the region causes high
levels of anthropogenic pollution emissions. Because of its elevation, the Qinghai–Tibet
Plateau has a thin atmosphere, these conditions are not conducive for the formation and
accumulation of particulate matter in the atmosphere. Therefore, the lowest PM2.5 levels
were found in the Qinghai–Tibet Plateau. The global Moran’s I index for PM2.5 levels were
0.765 (p < 0.01), indicating a relatively strong positive spatial correlation. Local indicators
on PM2.5 spatial association (LISA) maps show similar typical distributions, with a high
PM2.5 cluster in the North China Plains and a low PM2.5 cluster in the Northeast China and
the Qinghai-Tibet Plateau regions (Figure 3). Seasonally, winter had the highest PM2.5 level,
followed by spring, autumn, and summer. However, North China has always been a region
with severe PM2.5 pollution, especially in winter, where the climate is not conducive to the
diffusion of atmospheric pollutants [45]. On a seasonal scale, winter had the highest PM2.5
level, followed by spring, autumn, and summer. However, North China was always a
region with severe PM2.5 pollution, especially in winter, where the climate is not conducive
to the diffusion of atmospheric pollutants. It is worth noting that Southern China always
had low PM2.5 pollution because of its advantageous climate (Figure 4).
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3.2. Correlations between Urban Form and PM2.5

Table 3 shows the results of global regression model analysis (i.e., OLS, SLM, and
SEM). The results of suitability statistics such as R2, AIC, and log-likelihood imply that
the spatial analysis technique is more suitable for this data. R2 values of OLS, SLM, and
SEM models are 0.601, 0.943, and 0.874, respectively. These results show that the spatial
effect is important in regression analysis and thus, ignoring the spatial effect will reduce
the effectiveness of the model. In addition, R2, AIC, and log-likelihood test results show
that the spatial lag effect is more significant.

Table 3. Global regression results.

Variable Classic OLS Model Spatial Lag Model Spatial Error Model

Coefficient t-Statistic Coefficient z-Value Coefficient z-Value

LPI −1.209 *** −4.652 −0.075 ** −0.620 −0.327 ** −2.241
AI 0.076 1.202 0.068 *** 2.826 0.0424 1.214

PLAND 0.861 *** 5.298 −0.062 ** −0.753 0.226 ** 2.454
LSI 0.226 *** 2.664 0.018 ** 0.520 0.034 ** 0.722
SIP 0.095 * 1.875 −0.006 −0.263 −0.019 −0.661

PRGDP 2.99 × 107 0.013 −1.64 ×
106 −0.174 1.55 × 105 1.176

PD 0.0004 0.430 −0.0002 −0.492 0.0003 0.694
TEM 1.737 *** 12.340 2.878 *** 17.104 0.646 *** 6.369
PER −2.341 *** −4.759 −2.038 ** −2.397 −1.013 *** −3.542
RD −0.191 −0.129 −0.214 −0.320 −1.005 −1.223

Note: ***, **, or * indicate significance levels at the 1%, 5%, and 10% levels, respectively. OLS model: R2: 0.601,
Log likelihood: −1224.72, p-value: 0.000; AIC: 2471.45. SLM: R-squared: 0.943, Log likelihood: −954.714, p-value:
0.000, AIC: 1931.43. SEM: R-squared: 0.874, Log likelihood: −1057.64; p-value: 0.000, AIC: 2139.28.

The results of OLS indicate that most urban form indicators are significantly correlated
with PM2.5 concentrations, and six urban form indicators showed significantly (p < 0.01)
positive relationships with city-level annual mean PM2.5 levels. Among these six significant
factors, LPI, PLAND, and LSI also have a significant impact. LPI has a significant negative
correlation with PM2.5 levels, indicating that a better continuity of the urban form leads to a
lower fragmentation, and a better atmospheric quality. PLAND and LSI were significantly
positively correlated with PM2.5 levels, indicating that the more complex the urban form,
the worse the atmospheric quality. AI indicators on PM2.5 concentration is not significant.
The four landscape pattern indicators indicate that the fragmentation and complexity of
the urban form exert a significant impact on PM2.5 levels, and thus, more attention should
be focused on urban form area expansion and the internal composition of fragmentation
and complexity. RD is negatively correlated with PM2.5 levels, and the higher the density
of the road network, the lower the atmospheric pollution levels. In addition, there is a
significant negative correlation between temperature and precipitation and PM2.5 pollution,
which confirms that meteorological conditions are conducive to the spread and reduction
of atmospheric pollutants. Among other control indicators, SIP has a significantly positive
impact on PM2.5 pollution, and PD and PRGDP are positively correlated with PM2.5 levels.
Therefore, the development of the secondary industry has a more significant impact on
atmospheric pollution.

The SLM model has the best regression results, indicating that urban form and atmo-
spheric pollution have clear spatial dependence. Among the major urban form indicators,
LPI was significantly negatively correlated with PM2.5 levels, AI, PLAND, and LSI were
significantly positively correlated with PM2.5 pollution, and RD was negatively correlated
with PM2.5 levels. In addition, the correlation between temperature and precipitation on
PM2.5 was significant (the more precipitation, the lower the temperature), which is benefi-
cial for reducing PM2.5 concentrations in the atmosphere. This is consistent with literature.
Therefore, clear spatial correlation exists between urban form indicators and PM2.5 levels.
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the analysis process of the global regression model analysis has limitations. The GWR
model can be used for further analysis by adding the relationship of spatial location.

3.3. Spatial Features of Urban Form on PM2.5

The coefficient of determination of the GWR model was 0.77, and the results of AIC
and variance analysis (F test) showed that the results of the model are statistically significant.
All 10 variables show noncollinearity and are used under the AIC minimization standard.
The GWR model is superior to the OLS model. Figure 5 shows a distribution map of the
regression fitting coefficient R2 in the regression results for prefecture-level cities. The
spatial distribution of R2 shows that the fitting results of the 10 variables of the urban form
range between 0.43 and 0.83, indicating that the 10 indicators selected in this paper exert a
stronger comprehensive impact on urban PM2.5 levels. Moreover, the R2 value in the spatial
distribution decreases from north to south. Therefore, the urban form system has a stronger
explanatory power for the urban form of the northern region. On the one hand, this paper
uses temperature and precipitation as control variables of two natural factors. They exert a
significant positive effect on reducing atmospheric pollutants. The role of climatic factors is
more significant in the south, thus reducing the concentration of urban PM2.5 pollution. On
the other hand, this may be due to a lack of estimation of nitrate levels in the PM2.5 data
used in this paper, and therefore, the impact of using a large amount of coal for heating in
winter in northern regions may be underestimated, resulting in a low degree of fitting for
northern regions. The further south a city is located, the more the explanatory power for
PM2.5 of the urban form decreases.
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In the GWR model, each urban form index has a specific regression coefficient for the
influence degree of PM2.5 levels, and each coefficient has a different spatial distribution
law (Figure 6). The spatial distribution can more intuitively depict the influencing effect
and changing trend between different urban form indicators and cities. In addition, dif-
ferent indicators exert different positive and negative impacts on PM2.5 levels, and their
proportions differ. This also indicates that the influence index is not spatially stable and
shows spatial heterogeneity (Figure 5). The directions of significant relationships were not
the same for the studied cities, even for the same factor.
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The regression coefficient of urban form index decreases in the order of RD, PLAND,
LPI, LSI, and AI. The correlation between road density and PM2.5 levels is highest. Con-
struction dust from the construction phase of roads is the main cause of PM2.5 pollution,
followed by pollution caused by motor vehicle driving, as well as more harmful gases that
are discharged during traffic congestions. The regression coefficient ranges from 7.7 to 4.0
and decreases from northeast to southwest. In China’s major urban areas, the density of
road networks is negatively correlated with PM2.5 concentrations. Improvement of the road
network system can effectively reduce traffic congestions and atmospheric pollution. The
correlation coefficient between PLAND and PM2.5 concentrations is high and negative. This
coefficient mainly measures the size of the area occupied by urban construction land in the
whole urban landscape. The influencing factor follows a decreasing trend from center to
surrounding areas. Cities where construction land is the main land use type are more likely
to cause atmospheric pollution. Developed areas in the south are less affected but may be
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affected by increasing levels of urban construction, where the application of scientific dust
reduction measures and the use of green materials are conducive for reducing emissions
of atmospheric pollutants such as building dust. Cities in part of the central and western
regions are more susceptible to the impact of the area of construction land. Therefore,
reasonable increases of urban construction area and improvement of the level of building
construction technology (e.g., green building materials and dust reduction) can reduce
PM2.5 concentrations to a certain extent. LPI exerts a significant influence on urban PM2.5
concentrations, where a continuous increase of LPI indicates that the landscape dominance
of urban construction land increases, the degree of spatial connection increases, and the
intensity of human activities also increases. The values range from −1.9 to 2.8 and increase
from north to south with the continuous development of urban construction, which causes
more atmospheric pollution. In southern China, driven by the reform and opening up
policy, the urbanization level grows faster, and human activities are more intense. This
indicates that enhancing the connectivity and dominance of urban construction land has a
significant impact on reducing PM2.5 concentrations. A higher LSI index indicates stronger
fragmentation and more complicated urban areas. Most regression coefficients between LSI
and PM2.5 concentrations are positive, with values ranging from −0.12 to 0.69, indicating
that a higher LSI value represents higher levels of PM2.5 pollution. The spatial increase from
north to south may be due to the complexity and fragmentation of the shape of the land-
scape of urban construction land, which leads to an increase of people’s daily commuting
time and distance, thus also increasing the pollution caused by the heavy use of commuting
means. The impact degree of the southern region is large, indicating that the complexity
of urban landscape in the southern region is more likely to affect the PM2.5 levels. AI is
used to measure the agglomeration and compactness of urban construction land. The
regression coefficient ranges from −0.17 to 0.31, and it changes from negative to positive
from north to south. The higher the compactness of urban construction land, the lower the
PM2.5 concentrations. Compact urban construction can shorten people’s travel distance,
improve the efficiency of land use, and reduce energy consumption. Therefore, in the
process of urban development, compact and continuous urban construction is conducive to
the improvement of urban atmospheric quality.

Among control indicators, the influences of the three socioeconomic factors on urban
PM2.5 pollution show clear spatial differences. In most urban areas, SIP has a significant
positive effect on PM2.5 concentrations, indicating that industrial activities aggravate the
PM2.5 concentrations in Chinese cities, which is consistent with the literature. The effect
of SIP on PM2.5 concentrations in southern China is strong, indicating that reducing the
proportion of output of the secondary industry in southern China can significantly improve
atmospheric quality. At the same time, the population density in the southeast coastal areas
exerts a greater impact on the PM2.5 concentrations. Economic development prompted
the migration of many people to the south to work or live. The increased population
density has caused more man-made atmospheric pollutant emissions, which strongly
impact atmospheric pollution. The overall coefficient of PCGDP is low and its influence is
weak. However, in the process of urban development, the improvement of the economic
level exerts a significant positive effect on reducing PM2.5 pollution levels.

Reasonable increases in the area of urban construction land and improvements of the
level of construction, reducing the fragmentation of urban construction land, compacting
urban construction, improving traffic accessibility, applying a reasonable road network
density are all very beneficial factors for the improvement of urban atmospheric quality.
These can, to a certain extent, reduce the concentration of PM2.5. However, as urbanization
continues to increase, the different geographical location, scale and level of construction,
and development of the city should be considered according to local conditions, thus
providing planning and construction guidance. Urban form can affect PM2.5 concentrations
from different aspects. Urban area, geographical location, and economic development level
have an impact, and thus also need further discussion and analysis in the future.
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4. Discussion

On an annual scale, urban planning factors (e.g., the area of urban construction land,
construction fragmentation, and road network density) all exert a specific influence on
PM2.5 levels. At the same time, the economic development of a city is also closely related
to PM2.5 levels. China’s rapid urbanization led to structural changes of its economy, and
large areas of land are being used by energy-intensive and labor-intensive industries.
In addition, many people move from rural areas to cities, where the population grows
rapidly, which increases the release of large amounts of man-made atmospheric pollutants
emission. The study showed that temperature and precipitation (as control variables)
were significantly correlated with PM2.5 concentrations in 340 cities in China, and climatic
factors played a significant role for reducing atmosphere pollution. Therefore, we further
discussed this paper discusses the relationship between urban form and PM2.5 in different
seasons. Seasonality can affect atmospheric quality through changes in precipitation,
wind, relative humidity, monsoons, and other diffusion conditions [16,30]. When seasonal
variations are considered, different seasons exert different impacts on PM2.5 through
different urban form indicators. The SLM model achieved the best regression results,
and the relationship between urban form and PM2.5 in different seasons is discussed
through this model (Table 4).

Table 4. Spatial lag model results for different seasons in China during 2015.

Variable Spring Summer Autumn Winter

LPI −0.289 ** (−2.044) −0.489 *** (−3.751) −0.231(−1.522) −0.258 * (−1.775)
AI 0.054(1.581) 0.0524 * (1.681) 0.044(1.219) 0.027(−0.773)

PLAND 0.243 *** (2.793) 0.320 *** (3.943) 0.133(1.382) 0.240 *** (−2.652)
LSI 0.055 (1.210) −0.050(−1.144) 0.049(1.015) 0.026 (−0.555)
RD −1.573 * (−1.991) −0.516 (−0.703) −0.674 (−0.800) −1.728 ** (−2.139)
SIP −0.011 (−0.404) −0.015(−0.597) −0.026(−0.892) −0.015(−0.523)

PCGDP 1.04 × 105(0.813) −5.63 × 106 (−0.480) 6.06 × 106(0.449) 3.20 × 105 ** (−2.410)
PD 4.14 × 105(0.089) 0.0002(0.409) 0.0003 (0.646) 0.0002 (−0.481)

PRE −0.217 (−1.315) −0.247 ** (−2.123) −1.508 *** (−4.530) −0.392 (−1.062)
TEM 0.543 *** (7.021) 0.484 *** (6.327) 0.621 *** (6.415) 0.282 *** (−4.705)

R2 0.843 0.892 0.879 0.918
Log likelihood −1043.98 −1019.82 −1071.09 −1067.61

AIC 2111.96 2063.64 2166.19 2159.22
p-value 0.000 0.000 0.000 0.000

Note: ***, **, or * indicate significance levels at the 1%, 5%, and 10% levels, respectively.

Table 4 shows the results of the regression model, in which the R2, log-likelihood,
AIC, and other statistical results are significantly higher, indicating that the SLM regression
model in this study has a relatively good fit. This model can accurately assess the impact
of seasonal changes in the urban form on PM2.5 concentrations. In addition, the seasonal
analysis according to the GWR model shows that the regression coefficients of the impact
of each city’s form index on the level of PM2.5 pollution have different spatial distribu-
tion patterns (Figure 7). As shown in Table 4, seasonal variation significantly affects the
relationship between urban form and PM2.5 concentration.
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The four main findings of this study are summarized in the following: firstly, a signifi-
cant correlation exists between urban form and PM2.5 concentrations in all four seasons,
with the highest R2 value in winter. Secondly, the temperature and precipitation in the
control variables always exerted a significant impact on PM2.5 concentrations, while other
socioeconomic indicators had no significant impact on PM2.5 concentrations. Thirdly, the
effect of PLAND and PM2.5 concentrations is significantly positively correlated, while that
of LPI and PM2.5 concentrations is significantly negatively correlated in spring, summer,
and winter. Fourthly, a negative correlation was found between the density of urban
road network and PM2.5 concentrations. Specifically, in spring, LPI, PLAND, and RD
significantly impact PM2.5 concentrations, with regression coefficients of −0.289, 0.243, and
−1.537, respectively. In the summer, urban compactness (AI = 0.052) can decrease the PM2.5
concentration to some extent. LPI (−0.489) and PLAND (0.320) were all significantly associ-
ated with PM2.5 concentrations. In the autumn, the correlation between urban form and
PM2.5 concentrations was not significant. In the winter, PLAND (0.240) was significantly
positively correlated with the PM2.5 concentrations. LPI (−0.258) and RD (−1.728) were
significantly negatively correlated with PM2.5 concentrations.

Therefore, data analysis showed that seasonal change exerts a certain influence on the
relationship between urban form indicators and PM2.5 concentrations. Especially in spring
and winter, increasing the connectivity of urban construction land and improving the
efficiency of land use within a city can effectively decrease urban PM2.5 concentrations [15].
Moreover, increasing the road connectivity also exerts a significant effect on reducing
atmosphere pollution. However, the season of autumn does not exert a significant effect on
the relationship between urban form and PM2.5 concentrations. In contrast, the indicators
between urban form and PM2.5 are more significantly correlated in spring and winter,
and relatively less in summer and autumn. Firstly, the previous analysis on an annual
scale shows that the compact and continuous urban construction land, the reduction of
urban land fragmentation, and the reasonable road network density are all conducive to
reducing urban atmospheric pollutant emissions. Secondly, seasonal changes are mainly
reflected by different climatic variables. The strong Asian monsoon during summer and
the subtropical high during autumn result in favorable weather conditions that clean the
air from atmospheric pollutants, as they enhance the mobility of the atmosphere above
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urban centers. The summer monsoon climate moves more precipitation to North China,
and at the same time increases the wind speed under the subtropical high pressure. These
meteorological conditions are conducive to reducing atmosphere pollutants [16]. Under
such climatic conditions, small changes in the structure of building areas or land areas
near the ground exert little impact on atmospheric pollutants. Finally, low temperatures in
winter and spring cause the atmospheric flow to sink and wind speeds are also lower than
in summer [15]. In addition, more coal is burnt in the north in winter, and the resulting
atmospheric pollutants cannot easily spread and remain concentrated near the ground.
Under these conditions, the irregular urban form near the ground has a more significant
impact on PM2.5 concentrations. Therefore, seasonal changes exert a significant impact
on PM2.5 concentrations. When exploring the relationship between urban form and PM2.5
concentrations, focusing on the results of spring and winter is more effective.

There are many factors that affect the PM2.5 concentration, but our research just fo-
cused on the urban form. In addition, industrial areas, greenness area, vegetation coverage,
transportation and other factors also have a significant impact on PM2.5 concentration.
Therefore, there are some limitations of this study. Firstly, more influencing factors should
be considered, such as the emission forces, change of pollution effects, LHI [20], meteoro-
logical conditions, the development levels of different cities and environmental conditions
that surround the region of interest. These factors have an important effect on PM2.5 and are
also associated with PM2.5 through interaction. They can all improve our indicator system.
By selecting typical cities for further research, further problems may be identified. Secondly,
the classification accuracy of urban land use data can be improved, and the impact of dif-
ferent land use patterns of urban construction land on PM2.5 pollution can be explored. For
example, extract the industrial area in city for research. Thirdly, experiment with different
research methods and data sources. For example, compare the remote sensing estimated
PM2.5 concentration obtained by different sensors; compare the results of different research
models; compare the impact levels of more influencing factors on the PM2.5 concentration,
and so on.

5. Conclusions

Exploring the relationship between PM2.5 pollution and urban form helps to better
understand the distribution of PM2.5 pollution, provide suggestions for urban planning,
and the government with exploring a more sustainable and environmentally friendly
development model for cities. Therefore, this study selected 340 prefecture-level cities in
China to explore the relationship between urban form and PM2.5 pollution via regression
analysis and GWR model. The following lists the main conclusions and recommendations:

Firstly, the distribution of PM2.5 pollution showed spatial heterogeneity, with an
increasing trend from northwest to southeast. Areas with high PM2.5 concentrations are
mainly located on the North China Plain, which is greatly affected by human activities.
The southwest and parts of the northwest are affected by climatic factors, and thus, their
PM2.5 concentrations are also high. The climatic and human activity conditions on the
Qinghai–Tibet Plateau are not conducive to the accumulation of PM2.5 pollution, and thus,
this area was always less polluted. Affected by seasonal changes, the PM2.5 concentration
decreases in the respective order of winter, spring, autumn, and summer.

Secondly, most urban form indicators are significantly related to PM2.5 concentration.
The results of the GWR model show that the spatial distribution decreases from north
to south, and the urban form indicators system exerts a stronger influence on cities in
northern regions. In general, better continuity is associated with a lower the degree of
fragmentation, and a higher compactness and reasonable density of the road network are
conducive to reducing the PM2.5 concentrations. In addition, meteorological conditions
are also conducive to the diffusion and reduction of atmospheric pollutants. Thirdly, on a
seasonal scale, seasonal changes impact pollution levels, but not all urban form indicators
are significantly related to PM2.5 concentrations. Affected by seasonal changes, more urban
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form indicators were significantly correlated with PM2.5 concentrations during spring and
winter compared with summer and autumn.

This research used a large data set and confirmed that a good urban form exerts a
positive effect on reducing PM2.5 concentrations. In the future development, the proportion
of the secondary industry in the urban area should be reduced, green industries should
be developed, atmospheric pollutant treatment technologies should be improved, and
pollution sources should be controlled to reduce emissions. In areas with low pollution
values, protection measures should be increased. More importantly, in urban planning, the
blind expansion of urban land should be avoided, the compactness of the urban form, the
efficiency of land use, and the transportation network in the city should be improved, and
various forms of public transportation should be offered.

There are three main limitations of this study. Firstly, many factors influence PM2.5
pollution, and the geographical location, climatic conditions, and development levels of
different cities are all different. By selecting typical cities for further research, further
problems may be identified. Secondly, the classification accuracy of urban land use data
can be improved, and the impact of different land use patterns of urban construction land
on PM2.5 pollution can be explored. Thirdly, different research methods and data can be
used to improve the accuracy of pollution source data, as well as research models, and
different data methods can be utilized to further explore the estimation of PM2.5 levels and
relevant influencing factors.
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