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Abstract: Adaptive filtering algorithms can be used on the time-domain processing of navigation
receivers to suppress interference and maintain the navigation and positioning function. The filter
length can affect the interference suppression performance and hardware utilization simultaneously.
In practical engineering, the filter length is usually set to a large number to guarantee anti-jamming
performance, which means a high-performance receiver requires a high-complexity anti-jamming
filter. The study aims at solving the problem by presenting a design method for the optimal filter
order in the time-domain anti-jamming receiver, with no need for detailed interference information.
According to interference bandwidth and jam-to-signal ratio (JSR), the approach designed a band-
stop filter by Kaiser window for calculating the optimal filter order to meet interference suppression
requirements. The experimental results show that the time-domain filtering processing has achieved
good interference suppression performance for engineering requirements with optimal filter order in
satellite navigation receivers.

Keywords: Global Navigation Satellite System (GNSS) receiver; time-domain anti-jamming; adaptive
filter processing; Kaiser window; optimal filter order

1. Introduction

With the development of satellite navigation systems, navigation interference and
anti-interference have become necessary means of navigation confrontment and compe-
tition [1,2]. Narrowband interference (NBI) and wideband interference (WBI) are critical
issues for receivers’ acquisition and tracking processing, which are classified by interfer-
ence bandwidth [3,4]. NBI has become the most common method in preventing receivers’
positioning because of its advantages of low power and easy realization [5]. Time-domain
anti-jamming processing is one of the most common techniques to suppress narrowband
interference in navigation receivers [6]. It takes advantage of the difference between the
signal and interference in the frequency spectrum and designs a filter to filter out the
interference signal in the time domain [7] to ensure the normal ranging and positioning
function [8]. With the development of digital signal processing in navigation applications,
navigation receivers often face different hardware problems such as speed, design scale,
and power consumption during digital signal processing, which put forward high require-
ments of filter complexity [9]. However, the main parameter affecting the filter complexity
is the filter length [10], which heavily relies on engineering practices instead of being
adjusted according to the actual interference suppression requirements. The hardware
resources of satellite navigation receivers are usually limited, so the hardware complexity
of adaptive filters should be reduced as much as possible while meeting the anti-jamming
requirements [11]. Therefore, the research of low complexity time-domain anti-jamming
filters is an essential subject for navigation receiver applications.

The adaptive algorithm concludes mainly with two branches: the adaptive algorithm
based on non-parametric spectrum estimation and the adaptive algorithm based on linear
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prediction. The former obtains the power spectrum of the received signal and then designs
a transverse filter to significantly attenuate the interference signal’s frequency band [12,13].
While the latter directly estimate the pole position of the filter through the signal and
suppresses the interference signal through linear prediction [14]. The adaptive algorithms
based on linear prediction, such as least-mean-square (LMS) algorithm [15], Recursive-
least-square (RLS) algorithm [16], Levinson-Durbin algorithm [17], Burg algorithm [18],
can be used in the time-domain anti-jamming navigation receivers and have achieved good
results in anti-narrowband interference [19]. The four kinds of algorithms are all based on
the MMSE (Minimum Mean Square Error) criterion to calculate the inverse of the sampling
matrix to obtain the optimal weight vector. Although the inversion methods are different,
the weight vectors after convergence are all close to the Wiener solution [20]. The LMS
algorithm is often used in practical engineering applications due to its simple algorithm,
small calculation amount, and easy convergence [15].

The interference suppression performance can usually be improved by increasing
the filter length, but more calculations are required for the hardware [10]. Based on the
LMS algorithm, the variable-tap-length algorithm based on optimal order selection is
derived to solve the high complexity caused by undetermined filter order. Segmented
Filter LMS algorithm and Gradient Descent LMS algorithm searched for the optimal filter
order adaptively by the iteration step [21,22]. Fractional Tap-length LMS removed the
restriction that the filter length must be an integer, adding flexibility to the filter order
variation [23]. Refs. [24,25] proposed algorithms for updating both the iteration step and
filter order. However, when the anti-jamming performance is very categoric, such as 5 dB,
the existing algorithm cannot adjust the filter length adaptively according to the actual
requirements. Therefore, it is usually set to a large number to guarantee anti-jamming
performance. This study presents an optimal design method for adaptive filter order in
time-domain anti-jamming processing based on the Kaiser Window.

This paper introduces a design method of the optimal adaptive filter order based on
prior interference knowledge. Section 2 introduces the mathematical model of time-domain
anti-jamming filters, and an improved LMS algorithm is used in time-domain adaptive
processing to suppress the interference. The analysis of filter order deduced from the
Kaiser window is detailed in Section 3. In Section 4, a digital filter is designed through
the Kaiser window based on interference characteristics, and the interference suppression
performance is analyzed with the filter order. Section 5 demonstrates and analyses the
experimental results from both simulations and practical tests. Finally, Section 6 concludes
the paper.

2. Mathematics Model
2.1. Navigation Receiver Model

The structure of a satellite navigation receiver includes two parts: radio frequency
front-end (RFFE) processing and baseband digital signal processing (DSP) [26]. Naviga-
tion receivers generally add an anti-jamming module to suppress interference such as
narrow-band interference [27]. As shown in Figure 1, the receiver RFFE performs analog
signal processing on the antenna received signal, including low-noise amplifier (LNA),
down-conversion (DC), amplifier, and analog to digital converter (ADC). The baseband
DSP includes digital down-conversion (DDC), anti-jamming, acquisition and tracking,
navigation, and positioning [28].
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Figure 1. Navigation receiver structure.

Suppose that the intermediate frequency (IF) signal, noise, and interference received
from an antenna and processed after DDC are s[n], n[n] and j[n], respectively, and they are
all complex signals [29]. Then the signal before anti-jamming can be expressed as [27].

x[n] = s[n] + j[n] + n[n] (1)

The carrier-to-noise ratio (CNR) is an essential parameter for evaluating navigation
signal quality. Different from communication systems, navigation systems take ranging
and positioning as the ultimate goal [30,31]. Therefore, the CNR can evaluate the receiver
performance while there is no need to consider the decoding processing as performed
in communication systems [32]. The ideal CNR after the anti-jamming filter is the CNR
without interference, which can be expressed as [6].

[C/N]0 =
C
N
· BN =

∫ ∞
−∞ Ss( f )d f∫ ∞
−∞ Sn( f )d f

· Bn, (2)

where Ss( f ) and Sn( f ) are the power spectral densities of the IF signal and noise, respec-
tively.

The weight vector of an anti-jamming filter can be defined by [28].

WM = [w0, w1, . . . , wM], (3)

where M is the order of the time domain filter, then the filter length can be expressed as [33].

N = M + 1 (4)

The output signal after the anti-jamming filter can be expressed in the time domain
as [33].

y[n] = x[n] ∗WM =
M

∑
k=0

x[n− k]WM[k] (5)

The frequency response of the anti-jamming filter can be written as [33].

H( f ) = DTFT[WM] (6)

The estimated CNR after anti-jamming is a vital indicator to estimate the interference
suppression performance, which can be expressed as [6].

[C/N]ajm =

∫ ∞
−∞ |H( f )|2Ss( f )d f∫ ∞

−∞ Sy( f )d f −
∫ ∞
−∞ |H( f )|2Ss( f )d f

(7)



Remote Sens. 2022, 14, 48 4 of 15

2.2. Time Domain Adaptive Anti-Jamming Filter Model

The time-domain adaptive anti-jamming technology can achieve good interference sup-
pression performance for narrow-band interference, and it can be embedded in navigation
receiver DSP independently with a small processor [33]. The classical least-mean-square
(LMS) algorithm is used most often in adaptive filters because of its characteristics of small
calculation and simple implementation, which uses MMSE as the optimal criterion and the
steepest descent of the gradient to minimize the mean square of the error signal [34].

However, increasing the filter length cannot guarantee the improvement of anti-
jamming performance for a classical LMS filter. The iteration step limits the effect of
filter order on anti-jamming performance. In terms of the general relationship, as the
order increases, the filter transition band is compressed, the null is deepened to obtain
better interference suppression performance, and the room for improvement of higher
performance will gradually be limited in the meantime. Therefore, the estimated CNR
increases rapidly with the filter order and then tends to be stable with no significant
increase. However, the steady-state error of the interference suppression performance
is also affected by the iteration step, the convergence condition of which is inversely
proportional to the filter order. Therefore, with the same iteration step, the interference
suppression performance of adaptive filters does not increase monotonically with the filter
order, but there are inevitable fluctuations, as shown in Figure 2.
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Figure 2. Estimated CNR after anti-jamming filter of LMS algorithm.

In this paper, the LMS algorithm of filter vectors’ zero-padding iteration can be used
to alleviate the insufficient convergence of the adaptive algorithm, facilitating studying the
relationship between the anti-interference performance and filter order, the structure of
which is shown in Figure 3.
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The error signal between the filter output signal and the input signal is defined as
e(n),which can be expressed as [21].

e[n] = x[n]− y[n] (8)

The adaptive algorithm adjusts the filter coefficients WM according to the error signal
and filter order, and the gradient vector of the mean square error can be expressed as [21].

∇WM E
{
|e[n]|2

}
= 2RXWM − 2rXd, (9)

Suppose that the initial value of WM is set to WM,0, and the filter weight vector change
iteratively along the negative gradient direction by the step µ, which can be expressed
as [21].

Wl+1
M = Wl

M − µ∇WM E
{
|e[n]|2

}
, (10)

where l is the number of adaptive iterations, and the maximum number of iterations is L.
Different from the classical LMS algorithm, the initial value of the weight vector is obtained
by the adaptive weight vector after the convergence of the filter of M− 1 orders.

WM,0 =
[

0 WM−1,L 0
]
, (11)

where the initial number of the filter order is the minimum value of 2.
Substituting Formula (9) into Formula (10) to get [21].

Wl+1
M = (I− 2µRX)Wl

M + 2µrXd (12)

In practical applications, the instantaneous mean square error is usually used instead
of the mean square error, and finally the recursive formula of the LMS algorithm can be
obtained [21].

Wl+1
M = Wl

M + 2µe∗[n]x[n] (13)

3. Analysis of Filter Order

The purpose of the study is to adaptively design the shortest anti-jamming filter
according to interference characteristics, which should meet specifications requirements
in the meantime. Since the algorithm parameters cannot be set directly according to the
interference, the window function changing with interferences can be used to design a filter
to achieve interference suppression.

The method by window function is a time-domain design method for digital filters.
By adopting window functions with different finite time widths to cut the infinite length
sequence, the finite length sequence is obtained, and the corresponding FIR filter is realized.
The most basic window function is a rectangular window [35]. By weighting the amplitude
of the rectangular window function, more window functions with different performances
can be obtained, such as triangular window, Hanning window, Hamming window, Black-
man window, and Kaiser window. Kaiser window can adjust the width of the main lobe
and the attenuation of the side lobe by restricting filter length, which means it has good
adaptability to the interference of different power and bandwidth [36]. Other window
functions cannot control the filter performance as flexibly as the Kaiser window. Therefore,
the Kaiser window is most suitable for calculating the optimal filter order.

The Kaiser window comprises Bessel functions and contains complex and variable
window parameters α, but it can achieve the steepest window function transition zone with
the same performance. The Kaiser window function can be expressed as [37].

ω(n) =
I0

(
α

√
1−

(
1− 2n

N−1
)2
)

I0(α)
, n = 0, 1, . . . , N − 1, (14)
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The Fourier transform of Kaiser window function can be derived to be [37].

W(ω) =


2τsinh

[
α
√

1−(ω/ωa)
2
]

−I0[α]α
√

1−(ω/ωa)
2 |ω| ≤ ωa

2τ sin
[
α
√

(ω/ωa)
2−1

]
I0[α]α
√

(ω/ωa)
2−1

|ω| > ω

, (15)

where, α = ωaτ, fa = ω/2π, and I0(x) is the zero-order first-class modified Bessel function,
which is defined as:

I0(x) = 1 +
∞

∑
k=1

[
(x/2)k

k!

]2

, (16)

A typical Fourier transform of a Kaiser window (for α = 8, τ = 2) is shown in Figure 4.
The normalized window width is the precise transition zone of the Kaiser window, which
is normalized by the product of the window width and the transition zone.

D = ∆ f · (2τ), (17)

where ∆ f is the transition bandwidth and 2τ is the window span, which are defined as
follows.

∆ f = fs − fp, (18)

2τ =
N − 1

f s
, (19)

where fs is the stop-band cut-off frequency, and fp is the pass-band cut-off frequency.
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α is a parameter for adjusting the shape of the Kaiser window. The larger α, the
narrower the window width and the increase of the main lobe width. Both α and the nor-
malized window width D can all be expressed by the minimum stop-band attenuation [38].

α =


0.1102(As− 8.7) , As > 50
0.5842(As− 21)0.4 + 0.07886(As− 21), 21 < As < 50
0 , As < 21

, (20)

D =

{
(As− 7.95)/14.36 As > 21
0.9222 else

, (21)
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The optimal filter order of the filter designed by the Kaiser window can be obtained
by Formula (19) and Formula (21).

N =
As− 7.95

14.36(∆ f / fs)
(22)

4. Optimal Filter Order
4.1. Demand Analysis of Anti-Jamming Filter

Interference suppression performance is a significant indicator of anti-jamming satel-
lite navigation receivers [39]. CNR is usually used to access the interference suppression
ratio and loss of signals resulting from the anti-jamming filter [40].

The interference suppression performance of time-domain adaptive anti-jamming
filters differ from different interference characteristic of power and interference bandwidth,
and its ultimate anti-jamming performance can use the maximum estimated CNR as the
equivalent. The adaptive algorithm correlates signal characteristics in the time domain
and forms a null in the frequency band where the interference signal is located [41]. A
deeper null means a more excellent interference rejection ratio, and a narrower transition
bandwidth indicates less loss of the navigation signal.

JSR (Jamming-to-Signal Ratio) and interference bandwidth are two characteristic
parameters of interference signals, and these two parameters can be estimated effectively
by existing corresponding algorithms in the navigation receiver [42,43]. In this paper, they
are assumed to be known parameters. The difference between interference signals’ peak
power and spread spectrum signals’ level is defined as the jam-to-signal ratio, and the
bandwidth of the narrow-band interference can be expressed as.

BJ = η · (2Fc), (23)

where η is the interference relative bandwidth, 2Fc is the signal bandwidth, and Fc is the
frequency of pseudo random noise (PRN) code. While the interference relative bandwidth
is less than 20%, the interference is a narrow-band interference signal [5].

The requirements of filters for suppressing various narrow-band interferences are
analyzed. The simulation results shown in Figure 5 illustrate the frequency spectrum
of navigation signals before and after anti-jamming, with different JSR and interference
bandwidths. In order to show the bandwidth relationship between interference and receiver,
the negative frequency is retained in Figure 5. There is no symmetry in the spectrum since
all received signals are complex signals.

When the filter length is increased sufficiently, the anti-jamming performance can
be effectively improved. However, while the filter order has become overlarge, the room
for improvement in interference suppression performance is gradually compressed. In
Figure 5a–c are the spectrograms before and after the anti-jamming module of different
length filters: When the filter length increases from 9 to 19, the null is deepened, and the
transition band is narrowed, which means that the interference suppression is enhanced
while the signal loss is reduced. When the filter length increases from 19 to 29, the perfor-
mance improvement is not as apparent as before. That is, e improvement of interference
suppression performance is reduced.

The higher the interference signal power, the worse the interference suppression
performance of the same length filter and the lower the ultimate performance the finite-
length filter can achieve. Figure 5c,d are the before and after anti-interference spectrum
of the filter order under interferences of different power. While the interference power
increases, there is no apparent change in the null depth, but the transition band is widened.
The increase in navigation signal loss leads to a decrease in anti-jamming performance.
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As the interference relative bandwidth increases, the loss of navigation signals in-
creases, resulting in a more obvious reduction in the anti-jamming performance. Therefore,
the ultimate performance of the adaptive filter is reduced gradually. Pictures (c), (e), (f)
are the spectrum diagrams before and after the anti-jamming filter under different band-
width interference. The increase of interference bandwidth will not significantly impact
the transition band and null of the filter frequency response. However, the anti-jamming
performance will worsen because of the loss of navigation signal and additive noise in
the interference suppression frequency band, and the ultimate performance will also be
reduced in the meantime.

4.2. Design of Optimal Filter

The anti-jamming filter of navigation receivers is usually a band-stop filter, as shown
in Figure 6, and its minimum stop-band attenuation can be expressed as the interference
signal ratio.

As = JSR (24)

The transition band of the filter obtained from Formula (22) can be expressed as.

∆ f =
D · fs

N − 1
=

{
(As−7.95) fs
14.36(N−1) , As > 21
0.922 fs
N−1 , else

(25)

Suppose that the center frequency of interference is f J , then the normalized upper and
lower cutoff frequencies of the filter can be defined as.

ωa1 = 2π

(
f J −

1
2

BJ −
1
2

∆ f
)

/ fs , (26)

ωa2 = 2π

(
f J +

1
2

BJ +
1
2

∆ f
)

/ fs (27)
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The ideal anti-jamming filter frequency response can be defined as.

Hd(ω) =

{
e−jω N−1

2 , {0 ≤ |ω| ≤ ωa1} ∪ {ωa2 ≤ |ω| ≤ π}
0 , ωa1 < |ω| < ωa2

, (28)

The frequency response of the anti-jamming filter is.

H( f )
ω=2π f
=

1
2π

[Hd(ω) ∗W(ω)], (29)
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Figure 6. Frequency response of an anti-jamming filter.

When the filter length increases, the estimated CNR will get close to the ideal CNR,
which means the shortest filter can be designed to meet the demand for anti-jamming. The
anti-jamming requirement is the maximum acceptable CNR loss, represented by 3 dB·Hz
in simulations and 8 dB·Hz in practical tests. When the difference between the C/N ratio
under non-interference conditions and the estimated C/N ratio after anti-jamming is less
than 3 dB·Hz, the anti-interference requirements are met.

∆CNR = [C/N]0 − [C/N]ajm = 10lg
{

Bn ·
∫ ∞
−∞ Ss( f )d f ·(

∫ ∞
−∞ Sy( f )d f−

∫ ∞
−∞ |H( f )|2Ss( f )d f )∫ ∞

−∞ Sn( f )d f ·
∫ ∞
−∞ |H( f )|2Ss( f )d f

}
(30)

Mmin = min{M|∆CNR ≤ 3 dB}, (31)

The optimal order of the time-domain adaptive filter is.

Mmin = min{M|∆CNR ≤ 3 dB}+ ∆M, (32)

where ∆M is the correction value between the optimal order obtained by theoretical
derivation and design and the actual optimal filter order.

5. Experimental and Analysis
5.1. Simulation and Analysis

The simulation experiment is conducted in a software receiver composed of data
generation, anti-jamming, and performance evaluation. The length of navigation signal
data is set to 1 s, and the sampling rate is set to 25 MHz. The narrowband interference
bandwidth differs from 5% to 15% of the PRN code bandwidth. The modulation method is
P-code BPSK modulation. That is, the PRN code rate is 10.23 MHz. Set the intermediate
carrier frequency to be the same as the narrowband interference center frequency, and the
interference signal ratio ranges from 30 dB to 50 dB.

Figure 7a,b verify the monition increasing relation between the interference suppres-
sion performance and the filter order. As the anti-jamming filter extends, the estimated
CNR increases, suggesting that more extended filters can generate better interference sup-
pression performance. While the filter order continued to increase, the growth rate of CNR
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slowed down. Figure 7a is the influence of filter order on the CNR under different JSR.
For the same length filter, the greater the interference power, the smaller the estimated
CNR, and the ultimate performance achieved by the finite-length filter is inversely propor-
tional to JSR. Figure 7b shows the effect of filter order on CNR under different bandwidth
interference. For the same length filter, the larger the interference signal bandwidth, the
smaller the estimated CNR, and the ultimate anti-jamming performance of adaptive filters
decreases as the interference bandwidth increases.
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Impact analysis of Interference Bandwidth Ratio.

The simulation obtains the optimal filter order for the interference suppression of anti-
jamming filters designed by the Kaiser window function, and the Monte Carlo simulations
are carried out 100 times. Figure 8 verify the interference suppression performance of
the Wiener filter under the calculated optimal order. As shown in Figure 7, the estimated
CNR after the Wiener filter of calculated optimal order can meet the anti-jamming demand
for navigation receiver, and the room for filter shortened decreases with the increase of
interference bandwidth.
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Due to the limitation of algorithm parameters, the adaptive filter may not necessarily
converge to the Wiener solution, resulting in the actual optimal filter order of adaptive
filters being longer than the Winner solution. Besides, there are generally differences in the
performance between the LMS adaptive filter and the Kaiser one because of the different
design principles. Therefore, there is an error between the calculated optimal filter order
and the actual value. When the JSR is 30 dB, the calculated optimal filter order can meet
the interference suppression demand of adaptive filters. When the JSR increases, the gap
between the calculated optimal filter order and the actual optimal filter order increases.
The optimal order of the corrected time-domain adaptive filter is:

Mmin =


min{M|∆CNR ≤ 3 dB}, JSR ≤ 30 dB

min{M|∆CNR ≤ 3 dB}+ 4, 30 dB <JSR < 40 dB
min{M|∆CNR ≤ 3 dB}+ 6, 40 dB ≤ JSR ≤ 50 dB

, (33)

Figure 9 illustrates the performance comparison between the actual optimal filter order
and the calculated value. It is shown that the interference suppression requirements can be
well met by designing digital filters based on the Kaiser window.
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5.2. Measured Data Analysis

A practical test was performed in a controlled environment with interference sources
of different power and bandwidth to verify the applicability of this approach in GNSS re-
ceivers’ real-world scenarios. The interference source controls the power and bandwidth of
interference signals, and the desired navigation signal is a Beidou B3 civil signal originating
from the No.7 satellite. Our experimental platform is depicted in Figure 10.
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Figure 10. Platform of the practical test.

The parameters of the practical test are as follows: the data length is 1 ms; the sampling
rate is 75.12 MHz; the receiver’s bandwidth is 20 MHz; the correction value ∆M is set to be
0; the maximum CNR loss for designing the optimal filter order is 8 dB·Hz; the CNR of
undisturbed signals is 58 dB·Hz. This paper adopts six interference scenes.

Scene 1. Set interference bandwidth to 2 MHz, and JSR to approximately 50 dB.
Scene 2. Set interference bandwidth to 2 MHz, and JSR to approximately 40 dB.
Scene 3. Set interference bandwidth to 1 MHz, and JSR to approximately 50 dB.
Scene 4. Set interference bandwidth to 1 MHz, and JSR to approximately 40 dB.
Scene 5. Set interference to be single-frequency interference, and JSR to approximately

50 dB.
Scene 6. Set interference to be single-frequency interference, and JSR to approximately

40 dB.

The interference suppression performance for the above six scenarios is shown in
Table 1, which shows that the CNR loss with optimal filter order under real-world scenarios
is less than 8 dB·Hz, and the optimal filter order increases with the bandwidth and power of
the interference signal. Besides, the CNR loss (<8 dB·Hz) also increases with the interference
power, which means that the error between calculated optimal filter order and actual filter
order is minor for larger interference bandwidth and JSR. The results from signal-frequency
signals show that this approach is more suitable for narrow-band interference suppression.

Table 1. Interference Suppression Performance Comparison.

Interference
Suppression JSR (dB) Optimal Filter Order CNR loss (dB·Hz)

Single-frequency 40 31 2.907
50 41 3.503

1 MHz
40 35 2.726
50 47 4.839

2 MHz
40 45 3.571
50 59 6.198

Figure 11 illustrates the estimated CNR for the four narrow-band interference sup-
pression scenes. The interference suppression performance increases and tends to be stable
with the adaptive filter tap-length increases, accompanied by a slight decrease trend. By
comparing Table 1 and Figure 11, it can be found that the calculated optimal filter order is
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much larger than the actual one under the practical test. In all cases, the sampling rate is
75.12 MHz, larger than the Nyquist frequency, which results in the anti-jamming adaptive
filter designed through Kaiser-window longer than the actual optimal filter.
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Figure 11. Effect of the filter order on narrowband interference suppression performance.

In conclusion, we have demonstrated that the narrowband interference embedded in
navigation signals can be suppressed by the adaptive LMS filter with optimal tap-number,
ensuring a short filter to meet the anti-interference requirements of the navigation receiver.
However, this method needs to limit the sampling rate as close to the Nyquist sampling
rate as possible, especially in practical receiver applications.

6. Conclusions

The optimal time-domain adaptive anti-jamming filter based on the Kaiser window
method is proposed by analyzing the effect of the adaptive filter order on interference
suppression performance and hardware occupancy of navigation receivers. With no need
for detailed information of navigation interference, but only the interference bandwidth
and JSR, the filter designed by the Kaiser window can be used to obtain the optimal order
to meet the anti-jamming requirements, and the calculated optimal filter order is corrected
according to the test data. The algorithm is simplified by the FIR filter design method,
without knowing the specific information of interferences, and the convergence process
of the adaptive algorithm is avoided, the time cost significantly reduced, the accuracy of
the optimal order selection ensured. Through simulation analysis and practical tests, the
following conclusions have been obtained:

(1) A higher power interference scenery requires a larger optimal filter order to meet the
time-domain adaptive anti-jamming requirements.

(2) A more expansive bandwidth interference scenery requires a larger optimal filter
order to meet the time-domain adaptive anti-jamming requirements.

(3) The time-domain adaptive filter can meet navigation receivers’ 3 dB·Hz anti-jamming
requirement in simulations and 8 dB·Hz requirement in practical tests with the optimal
filter order.
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