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Abstract: Traditional ship identification systems have difficulty in identifying illegal or broken ships,
but the wakes generated by ships can be used as a major feature for identification. However, multi-
ship and multi-scale wake detection is also a big challenge. This paper combines the geometric and
pixel characteristics of ships and their wakes in Synthetic Aperture Radar (SAR) images and proposes
a method for multi-ship and multi-scale wake detection. This method first detects the highlight pixel
area in the image and then generates specific windows around the centroid, thereby detecting wakes
of different sizes in different areas. In addition, all wake components can be located completely based
on wake clustering, the statistical features of wake axis pixels can be used to determine the visible
length of the wake. Test results on the Gaofen-3 SAR image show the special potential of the method
for wake detection.

Keywords: ship wake; wake detection; specific windows; multi-ship; multi-scale; Gaofen-3

1. Introduction

With the development of the marine industry, there are many ports, a huge increase of
ships, complicated waterways and rapidly changing sea conditions in marine countries in
the world, which greatly increases the risk of ship encounters. Moreover, the exploitation
of marine resources has also caused problems such as illegal invasion, illegal fishing and
illegal smuggling. Therefore, more and more attention has been paid to marine ship
monitoring in the whole sea area. SAR has been widely used in ship detection [1,2], oil
spill detection [3], change detection [4–7] and other fields [8,9] and plays an important role
in ship detection due to its wide observation range, short observation period, strong data
timeliness and high spatial resolution [10]. At present, SAR image ship detection includes
ship body detection and ship wake detection. Compared with the detection of ship body
alone, the detection of wake is more valuable in terms of detectability and researchability.
First, the wake lasts for a long time: under certain conditions, the wake on the sea can
stretch over tens of kilometers, which is often dozens of times the length of the ship [11,12].
In addition, wakes generated by ships in different motion states have different geometric
and pixel features. Detection of wakes can not only locate ship targets indirectly, but also
determine their sailing speed, track, ship type and other information according to the
geometric features of the wakes [13–15].

In fact, the linear structure is the main feature of each wake component in the SAR
image. These linear features have a certain length and width, and there are narrow regions
of bright or dark. Therefore, wake detection can proceed from this linear feature and
transform the problem into one of line detection. The Radon transform (RT) or Hough
transform (HT) has shown excellent performance in this field [16,17]. In addition, the
limited regional characteristics of ship wakes can be transformed into a target detection
problem; the rapidly developing deep learning method has also been applied to wake
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detection. Kang et al. [18] detected ships as well as wakes from SAR images using deep
learning based on Convolutional Neural Networks (CNN). The detection rates under
adverse weather conditions were 68.4% and 60.0%, respectively. However, deep learning
methods usually require a large amount of data support, and there are not enough open
wake data sets hindering the rapid development of this method [19,20]. Therefore, most
of the current research is based on the traditional wake detection method of RT or HT.
Considering that SAR images are seriously disturbed by speckle noise or clutter, a lot of
work is focused on image data preprocessing to make the wake characteristics more obvious.
Jin et al. [21] proposed a spatial wavelet correlation technique for ship wake detection.
After multi-scale edge extraction and spatial correlation, the wake is extracted effectively
and the edge of the wake is sharpened significantly. Courmontagne et al. [22] introduced
Stochastic Matched Filtering into wake detection, and Arnord-Bos et al. [23] applied it to
maximize the signal-to-noise ratio after processing. Biondi [24] considered the polarization
information of SAR images and adopted Low-rank Plus Sparse Decomposition followed
by RT to perform clutter suppression and extract the interesting wake components. Yang
et al. [25] constructed the wake structure dictionary in an analytical way and decomposed
the image into structural components including ship wake and sea texture components,
which suppressed the marine clutter noise in a disguised way and had a significant effect
on ship wake detection in SAR images with complex backgrounds. Additionally, much
research is devoted to improving these traditional methods to make them have better
applicability and robustness. Copeland et al. [26] proposed line RT: intensity integration is
done on short segments instead of on the whole image, which can detect and locate wakes
that are obviously smaller than the image dimension. There are also some scholars who
use local RT, or a combination of sliding windows for global wake detection [27,28] so as to
realize the detection of local short wake. However, this kind of local processing algorithm
often consumes a lot of time and computation power, which is not conducive to the real-
time detection of wake. Apart from these methods, the circular scanning method [29],
the image energy method [30] and the pixel screening method [31,32] also have good
performance in the field of wake detection.

Many of the above algorithms are essentially wake extraction under the condition
of known wake. However, the actual situation is often that we cannot know how many
ships and wakes are contained in the SAR image, and the scale of the wakes cannot be
determined in advance. In real SAR ocean background images, a single image may contain
many wakes of different sizes and positions, and the wakes usually occupy a small area.
Therefore, most of these algorithms cannot effectively deal with the problem of multi-ship
and multi-scale wake detection in unfamiliar images. This article from the ship and its
wake pixel features and geometric characteristics, puts forward the Specific Window Search
method for wake detection, a series of search windows with different sizes and orientations
are generated around the highlighted pixel (ship or other man-made objects) field of the
image. Each window is scored based on improved RT to screen out the area containing
wake components and determine whether the highlighted pixel point in the center is a ship.
Then, the turbulence and Kelvin wakes are located by clustering analysis of the candidate
locations based on the geometric characteristics of wakes in the region containing wakes.
Finally, we extract the pixels on the main axis of the retrieved wake and determine the
beginning and end points of the wake based on statistical analysis characteristics and pixel
gradient characteristics. As we know, separately detecting ships or wakes can only locate
the position or judge the passage of the ship. Only by paired detection of ship and wake
can we make better use of their geometric relationship to conduct parameter inversion
research [33,34]. This is also the core of the algorithm, which uses highlighted pixels to
quickly locate the wake, and the detected wake lines help to determine whether the center
is a ship. We have applied the algorithm to SAR images collected by Gaofen-3 [35] and
tested multiple images with different backgrounds and styles in the data set to complete
wake line localization and length measurement. The main contributions of this paper are
as follows:
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1. A specific window search method different from pre-selected box generation and
sliding window search is proposed for the multi-ship and multi-scale wake detection
problem. Search sub-windows are generated based on a limited number of highlighted
pixel regions in the image, thus greatly reducing the area to be detected.

2. Combining the geometric features of the ship and the wake, we develop the correlation
detection of the ship and the wake, which are detected in pairs rather than separately,
and help in the inversion of the ship navigation information.

3. Based on the angle characteristics between wake components, a new clustering
method is proposed to locate different wake components (turbulence and Kelvin
wake) of the same ship, and measure the shortest visible length of the wake.

4. We create SAR wake data set containing different types of Gaofen-3 and validate our
method on these data.

The rest of the paper is organized as follows. Section 2 introduces in detail the specific
window search detection algorithm we propose, including the wake location strategy and
wake length measurement method. Section 3 presents the Gaofen-3 SAR data and analyzes
the results through several groups of experiments and comparison. Section 4 concludes the
paper with a summary and puts forward some suggestions for future development.

2. Materials and Methods

In this section, we will show the ship and its wake characteristics in SAR images, detail
our specific window search algorithm for wake detection and propose some strategies for
getting as many potential locations as possible. Our search algorithm has the following
design considerations:

First of all, it is necessary to capture all the ship wakes, which are the identity features
generated by the movement of the ship. Accurately identifying all the wake features is the
main goal of the algorithm.

Second, the scale of the wakes generated by ships are not the same under different
motion states, which are affected by the ship’s speed and shape as well as the sea conditions.
The acquisition of wakes of all different scales is helpful for the subsequent inversion of
ship motion information.

Finally, our algorithm is different from the traditional sliding window search algorithm.
The goal of a specific window search is to generate a certain number of windows under a
specific target, so as to locate the actual position of the wake. This set size is much smaller
than the traditional algorithm, so the efficiency of our algorithm will be greatly improved.

2.1. Specific Windows Search by Highlighted Pixel Points

Wakes generated by ships during navigation can generally be divided into Kelvin
wakes, internal wave wakes, turbulent wakes and V-narrow wakes, and they show different
geometric characteristics [36], as shown in Figure 1a. Actually, ship wakes in SAR images
are mainly turbulent wakes and Kelvin wakes, with Kelvin wakes accounting for about
17% of wakes. Turbulent wakes are the most common wake type and exist in almost all
ship wakes [37]. They are characterized by dark or bright narrow lines that stretch for tens
of kilometers in length; these ships generally show the highlight point or region.
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core idea of the specific window search is to generate a specific window based on the 
highlighted pixels for the target search. The steps of specific window generation are as 
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adopted in this paper is performing morphological processing on the binarization target 
image to eliminate discrete noise points and enhance the potential ship target area. 
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ent lengths can be detected. In addition, to cover the offset d due to the Doppler shift, an 
overlap width of 2d is set between the windows. The offset d can be calculated by [40,41]: 

Figure 1. Various wakes of ships and their geometric relations: (a) The geometry of the wake pattern
produced by ships; (b) The relationship between ship direction and wake region: I, II, III and IV
represent the wake region caused by the maximum Doppler shift in four directions, α and α’ are the
angle of two tracks respectively.

In addition, due to the ship’s movement and the SAR system, a Doppler shift effect
will appear in the imaging process, resulting in a special geometric relationship between
the ship and the wake [38,39], as shown in Figure 1b. In the imaging mode of the ascending
left view, the ships travel toward each other in 2 tracks with different angles and 4 different
directions. The regions where wakes are generated (shown by turbulent wakes) are divided
into four different regions. Taking a ship heading northeast, as an example, the ship target
is located in the coordinate center, and its turbulent wake must be generated in area I.
Therefore, unlike other targets on the sea surface, the pixel features and spatial geometric
features of ship targets and wakes are very obvious. It is precisely by combining the
pixel and geometric features between the ship and the wake that we use the highlight
pixel algorithm to form the basis of our specific window search, so as to avoid irrelevant
interference features and improve the specificity of the target search. The core idea of the
specific window search is to generate a specific window based on the highlighted pixels for
the target search. The steps of specific window generation are as follows:

The first thing we need to do is to detect the location or potential location of the ships.
However, in addition to ship targets, artifacts on the sea surface, islands and other speckle
noises are also displayed in the highlighted pixel areas. Therefore, we need to do image
preprocessing to eliminate the influence of these non-ideal factors. In this way, the real
position of the ship can be determined as accurately as possible, and the computational
load of the subsequent algorithm can be reduced.

We preset a constant false alarm rate and obtain all potential ship target areas through
the pixel filtering algorithm. Then, for the potential target points, the method adopted
in this paper is performing morphological processing on the binarization target image to
eliminate discrete noise points and enhance the potential ship target area.

After obtaining the position of the potential ship target, according to the geometric
relationship between the ship and the wake in the SAR image described above, specific
windows are successively generated around the centroid of the highlighted pixel area of the
ship target in order to cover different areas where the ship wake exists. Figure 2 shows an
example of the specific window, and the corresponding specific window can be generated
similarly for multiple wakes.
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Figure 2. Schematic diagram of Specific Window distribution.

The length of the subwindow is set as a multi-scale window, so that wakes of different
lengths can be detected. In addition, to cover the offset d due to the Doppler shift, an
overlap width of 2d is set between the windows. The offset d can be calculated by [40,41]:

d =
vmRs cos θin

Vs
(1)

where vm denotes the maximum velocity of the ship, Vs is velocity of the satellite, Rs is the
slant range distance and θin is the incidence angle. These satellite-related parameters used
in the experiment are all from Gaofen-3.

Each detection window is represented by a subwindow in the set Wi = {wi
j,k} and

the corresponding score si
j,k. The scoring rules will be described in detail below, where i

represents the set of windows generated by the i-th pixel pi = (xi, yi), and (j, k) = ({S1, S2,
S3}, {±π/4, ±3π/4}) determine the scale and orientation of subwindow respectively.

The key problem of the algorithm is to find the location and measure the length of
the wake. Therefore, some strategies are designed to make the location and length more
accurate.

2.2. Wake Localization Strategy

The size and location of the window covering the object varies in the image. However,
within a set of windows in a highlighted pixel area, some windows cover objects more
accurately than others. An appropriate window facilitates subsequent standardization of
wake features with varying scales. In the wake localization stage, for each subwindow, we
evaluated the possibility of a window covering an object by an improved RT, based on its
internal pixel integration, while considering its position and size [16]. The localization stage
includes first determining the window orientation, that is, finding the window directions
that can accurately cover the wake position in the four directions, and then accurately
marking the wake position of each scale or each component in the window.

In order to avoid the influence of the highlighted pixel region on the subwindow pixel
integration, we mask these regions with the average pixel µ(wi

j,k) of the sea clutter in the
window. For the window set Wi, the minimum scale window determines the shortest wake
that can be detected, the Local Difference Radon transform in this scale window set wi

k
is used as its score to eliminate the fake ship highlight pixels and determine the window
orientation. The probability score si

k of each direction window is expressed by:

si
k = max Ri

k (2)
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where, Ri
k represents the Difference Radon transform. Although the actual ship wake may

be bright or dark lines, its average pixel is different from sea clutter; local pixel difference
processing can increase the contrast between wake and clutter, and, at the same time, it is
convenient to capture the position of the wake at the peak in the Radon domain, which is
defined as:

Ri
k =

∫ ∫
wi

k

∣∣∣ f (x, y)− µ(wi
k)
∣∣∣δ(ρ− xcosθ − ysinθ)dxdy (3)

The maximum value of si
k is taken as the score of the i-th window set. When the

root location of the subwindow is the fake highlight pixel centroid without wakes, the
score is approximately zero. If the value is much larger than zero, the subwindow is
judged to contain wakes. Thus, the subwindow containing the wake can be selected and its
orientation can be determined, the corresponding (i, k) is shown in Equation (5).

si = max
k=±π/4,±3π/4

si
k (4)

wi
k ⇐

{
(i, k)

∣∣∣max(maxRi
k)� 0, i = 1, 2, . . . , n, k = ±π/4,±3π/4} (5)

After completing this step, the wakes in the image are positioned by a series of sub-
windows of different sizes, as shown in Figure 3a. In addition, due to imaging conditions,
different wakes formed by the same ship may show different lengths in the actual SAR
image [13,42], as shown in Figure 3b.
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In order to accurately locate wakes at various scales and ensure that different wake
components generated by the same ship can be detected, we modified Equation (3) by
adding scale factors to standardize it; Sj represents window scale.

Ri
j(ρ, θ) = Ri

j(ρ, θ)/Sj (6)

We then need to set the appropriate threshold Tw to mark all the qualified position
information (ρ,θ); Tw is usually set to Rm/

√
2, which is given by the length relation between

the Kelvin wake and the turbulent wake. Rm is the maximum value in the Radon domain.

(ρ, θ) = arg Ri
j(ρ, θ)) > Tw (7)
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Since the number of wakes in the subwindow is unknown and the wake component
is not a line but a channel of bright/dark pixels, the position set in Equation (7) is some
cluster of points, {(ρ1,θ1), (ρ2,θ2), . . . , (ρN,θN)}.

We cluster the polar coordinate points belonging to the same wake into one category,
so that all wakes can be retrieved, and the position of the line can be accurately located.
Here, the angle is used as the criterion to distinguish different wakes. For each two detected
lines, if Equation (8) is satisfied, then the two lines are different wakes.

|θm− θn|>Φ/2 (8)

In fact, the wake has a certain width, and a single wake also corresponds to several
extreme points, that is, several lines. For each two lines, if Equation (9) is satisfied, we
consider that they to belong to the same wake.{

|θm− θn|< ε

|ρm− ρn|< w
(9)

where, Φ is the angle between the turbulent wake and the Kelvin wake and ε and w are
small values which can be set according to the actual situation.

At this point, we can divide the peak point set into different subsets which represent
the point clusters corresponding to different wakes and then calculate the center of each
point cluster, which is the precise position of each wake, where the center of the Ni-th
cluster is:

(ρ, θ)Ni =
Ni

∑
1
(ρ, θ)/Ni (10)

2.3. Wake Scale Measurement

In the following, we measure the visible length of the positioned wake. In reality, the
duration of wake formed by ship and its speed determine the length of wake, which can
also be affected by external factors such as sea conditions [42]. The process from wake
formation to being submerged in the sea clutter is represented in the SAR image as the
gradient change of the pixel gray level on the wake line [36].

Measuring the length of the wake is determining the start and end positions of the
wake. Unlike sea clutter, the wake area has obvious pixel characteristics. In order to
separate the wake pixels from the sea clutter pixels, the statistical pixel characteristics of the
sea clutter in the corresponding subwindow are selected as the parameters to distinguish
the wake lines from the sea clutter [20].

µw =
∑N

i=1 ∑N
j=1 f (i, j)

N × N
(11)

σw =

√
∑N

i=1 ∑N
j=1 ( f (i, j)− µw)

2

N × N
(12)

where µw is the mean gray value of the image, σw is the gray standard deviation of the
image, and f (i, j) represents the gray value of image pixels.

A set of pixel points gn is extracted along the axis where the wake is located. Clutter
noise existing on the wake axis causes disorganized changes of pixel gradient on the axis.
Therefore, this group of one-dimensional data is processed to ensure the smoothness of
pixel values on wake lines. The processed data Gn was used to draw the gradient diagram of
its wake axis, as shown in Figure 4. The decision rule based on the statistical characteristics
of pixel gray scale is: {

|Gi− µw|≥ tσw
Dend = 0

, i ∈ [1, 2, . . . n] (13)
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The pixel segment conforming to Equation (13) is considered a wake line. Here, t can
be adjusted according to different sea conditions and imaging modes, Di = Gi+1 − Gi-1
represents the gradient of the wake axis and Dend is the gradient of the two ends of the
wake. When the gradient is zero, the wake is submerged in sea clutter, which is the shortest
wake detected.

3. Results

This paper uses the position generated by the specific window search to perform
multi-ship and multi-scale wake detection. We will introduce in detail the wake SAR image
data set used for the experiment and the execution process of wake detection and analyze
the results. The detailed steps of the experiment are as follows, Algorithm 1:

Algorithm 1: Specific Windows Search for Wake Localization and Length Detection

Input: The input is a marine SAR image with ships and their wakes, as well as a variety of other
noise.
Process:

1. After preprocessing, obtain the center of the highlighted region p = {(x1, y1), (x2, y2), . . . , (xn,
yn)}.

2. Generate a series of bounding boxes W = {W1, W2, . . . , Wn} around the center of mass, then
calculate the average value of pixels in each box and mask the highlighted pixel area, where
the Wi represents the set of windows around the i-th region, which contains windows of
different scales and locations.

3. Repeat step 4 for p = 1, ..., n.

4. Perform the Radon-based algorithm for each window in the wi
j,k. Select the peak points in

the Radon domain. Use the clustering algorithm to select the congregate points which are
very close. Calculate the gravity centers of the selected clusters.

5. For all labeled locations, measure the wake length.

Output: The output is a set of ship wake line positions with the wake lengths.

3.1. Data Set

Our data set comes from SAR images of offshore China taken by Gaofen-3 satellite, a
C-band multi-polarization SAR satellite launched by China in 2016. The orbit parameters
and load indexes of Gaofen-3 are shown in Table 1 [35].
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Table 1. Orbit parameters and load indexes of Gaofen-3 satellite.

Satellite Item Parameters

Gaofen-3

Orbit Sun-synchronous orbit
Orbit altitude 755 km

Orbit inclination 98.5◦

Revisit period <3 days (Dual-side Looking)
<1.5 days (Single-side Looking) 1

Frequency band C-band
Incidence angle 10◦–60◦

Signal bandwidth 0–240 MHz
Polarization Single/Dual/Full

Imaging modes 12
Spatial resolution 1–500 m

Swath width 10–650 km
1 10 m resolution, 100 km mapping bandwidth, 90% real-time observation area.

The imaging modes of the wake SAR images in the data set were Ultra-Fine Strips
(UFS) and Fine Strips (FS) [35]. The detailed information of the data set SAR images is
listed in Table 2.

Table 2. The detailed information of the wake data set.

Imaging Mode Resolution(m) Incidence Angle (◦)

UFS 3 × 3 20–50
FS-I 5 × 5 19–50
FS-II 10 × 10 19–50

In these images, samples containing more than two wakes are manually identified
and collected, and then the locations of wakes are marked so as to build the multi-ship and
multi-scale data set for algorithm testing, as shown in Figure 5.
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3.2. Experimental Results

We selected a 700 × 700 pixel-sized sample with multi-scale and multi-wake in the
Gaofen-3 data set, see Figure 6, and the imaging mode was ascending left view. There are
three visible wakes in the image, among which Wake #2 is small and difficult to find. The
Kelvin wake and turbulent wake in Wake #3 are visible. This image is used as an example
to demonstrate the performance of the algorithm.
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Figure 6. Representative SAR images of ship wakes.

Since we do not need to determine whether the highlights are ship targets at this
stage, we use simple morphological processing instead of the complex traditional CFAR
algorithm to obtain the highlighted pixels, and the results are shown in Figure 7a. As we
can see, although the ship target of Wake #2 is only a few pixels, we can still locate the
pixels, which is helpful for the subsequent wake localization.

For these highlighted areas detected, specific windows are generated in their centers
and the windows containing the wake are identified. We take Wake #3 with Kelvin wake
and turbulent wake as an example for coarse detection and precise location of wake.

In Figure 7b, Radon domain results of the four subwindows show that the maximum
score can be obtained at the lower left corner, so it is confirmed that this subwindow
contains wake. After standardization, the wake lines corresponding to these preliminary
candidate points are shown in Figure 7c. In the stage of fine positioning of each component
of the wake, the maximum peak point was taken as the first clustering center [43], and the
rest of the clustering centers were determined by geometric and angular relations of the
wake; we set ε as 5◦ and ω as 3 pixels. The results are shown in Figure 7d. It can be shown
that the turbulent wake and one Kelvin arm were well detected, while the other Kelvin arm
failed to be located due to weak features.

Figure 7e shows the measurement results of wake length. Parameter t is first se-
lected within a reasonable range according to experience, and then manually adjusted and
gradually optimized. Here, t is set to 0.35.

Figure 7f is the recognition result of You Only Look Once (YOLO) algorithm [44]. It
can be seen that the short wakes have missed detection due to the extremely weak wake
characteristics, and the other two wakes were detected with high confidence. It is worth
mentioning that, under the condition of no ship target information, for the multi-ship and
multi-scale wake detection task, our traditional method can also achieve the results of deep
learning methods, and doesn’t need a lot of data set as a support. Compared with direct
wake line positioning of our algorithm, the wake bounding-box of YOLO requires further
line detection in the local area. In short, our algorithm could match the detection effect of
the latest deep learning method. (It should be noted that the deep learning method here is
based on the standard YOLOv3 network training result. This result is only a preliminary
attempt of wake detection using deep learning. We have also conducted new research in
the follow-up, and the research results will be announced later.)

In current target detection tasks, the confusion matrix is often used to define some
indicators to quantitatively analyze the performance of the algorithm. For ship wake
detection, we also define the corresponding 2×2 Confusion Matrix, as shown in Table 3.
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Table 3. Confusion Matrix.

Wake Detection Prediction = 1 Prediction = 0

Actual = 1 TP FN
Actual = 0 FP TN

In the table, TP represents true positive, that is, the detected wake is a true wake; FP
stands for a false positive, that is, a fake feature is detected as a wake; FN stands for a
false negative, which means that the ship pixel is detected but the wake position is not
correctly located; TN stands for true negative, which means that the highlighted pixels of
fake-ships are detected and removed. We set the rate of Precision and Recall to evaluate
the performance of wake detection:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

In addition, our method can measure the length of visible wake, and Intersection-over-
Union (IoU) is a very appropriate indicator to evaluate our detection results and analyze
the degree of coincidence between the prediction wake line and the actual wake line. As
shown in Figure 8a, the rectangle with the wake line as the diagonal can be considered as
its position box, so that the wake detection results can be evaluated in terms of area; IoU
can be expressed as:

IoU =
Intersection

Union
(16)
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That is, the ratio of the intersection area to the union area.
We selected 30 SAR images with multi-ship and multi-scale wakes for the experiment,

including 75 visible wakes. The YOLO algorithm was also introduced for comparison, and
the experimental results are listed in Table 4.

Table 4. Quantitative comparison results (Shown as average values).

Wake Detection Our Method YOLO

Precision 0.91 0.94
Recall 0.89 0.87

IoU 0.82 0.74

From the table data, it can be concluded that, compared with the advanced deep learning
algorithm YOLO, the lower Precision of our method is due to some false detection caused by
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the lower highlight pixel threshold; the higher Recall indicates that the method can basically
not miss the visible wakes or different wake components. In particular, IoU is an evaluation
indicator that other traditional methods do not have, and here we achieve even better results
than YOLO, which is due to the difficulty of obtaining the pixel-level feature differences of
the wake in the feature extraction part of YOLO. Overall, the algorithm can achieve nearly the
same level of results as the advanced deep learning algorithm YOLO.

Part of the representative multi-ship and multi-scale ship wake detection results under
optimal parameters are shown in Figure 9. It is not difficult to see that Figure 9a is a
single dark wake, and this method can accurately locate the wake line and measure the
length. Figure 9b–d are all bright wakes with complex backgrounds or speck noise, among
which Figure 9b is a short wake with interference of other linear structures. The Pixel-
based approach of the algorithm greatly reduces the range of the search area, and the local
processing method can effectively avoid the influence of useless areas on the Region of
Interest (ROI), achieving good detection results. Figure 9c shows the wake of two ships
sailing in a single line, the algorithm can effectively detect the two collinear wakes, rather
than just one line running through the whole picture. Figure 9d has multiple wakes with
relatively close distances and the results show that mutual interference between the wakes
can be avoided. It should be pointed out that there is some highlighted region of the
detected fake-ship as shown in Figure 9b,d (the white arrow), which can be removed by
the algorithm through the subsequent discrimination principle, and other wakes can be
accurately detected. In fact, the result of missed detection is much more serious than false
wake alarms, and we try to ensure that all potentially highlighted pixels are detected, even
at the cost of extra computation.
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The above test cases show that there are still missed detections of multi-mode wakes
and some small wakes. In order to reduce false detections and missed detections, we still
need further improvement in the algorithm. Moreover, the parameter setting of the wake
measurement part of the algorithm is conservative, so the statistical characteristics of the
wake and sea clutter need to be more deeply explored in the wake measurement part.

4. Discussion

Multi-ship and multi-scale wake detection tests are performed using the collected
Gaofen-3 SAR data. Despite not having a priori ship positions, the results show that
the method has good capabilities for test samples with multiple wakes. Especially for
some local small-sized wakes, which can also be accurately and completely located. In
addition, we compared the results of the proposed algorithm and the YOLO algorithm,
and, in terms of recognition accuracy, the method almost achieves the effects of the deep
learning algorithm without a large amount of training data as the basis. However, some
very small-sized ships only exist as a single pixel in the SAR image, and their wakes are tiny
and fuzzy. Most algorithms can hardly achieve good results for this type of wake detection.
This is also a limitation of this algorithm because it is difficult to determine whether these
bright spots are ships or speckle noise.

In fact, our specific window search method provides a new solution in which ships
and wakes are detected as a partner instead of being detected individually and unrelatedly.
The performance of the algorithm for multi-ship and multi-scale wake detection can be
intuitively displayed in both the Radon domain and image domain. Future research work
should focus on the detection of very small wakes and the detection of wakes in more
complex environments. We need to further improve our detection logic or solve speckle
noise suppression more deeply.

5. Conclusions

This paper proposes a specific window search method for rapid detection of multi-ship
and multi-scale wakes in SAR images. We have observed that in SAR images, such as
the Gaofen-3 offshore China data set we use, there are often multiple wakes of different
positions and lengths within a certain range, and the wake targets always appear as line
features occupying a small area. Therefore, the single wake extraction algorithm can
never capture all possible ship wake positions. Aiming at the problem of multi-ship
and multi-scale wake detection, we introduce a specific window search method, which
is different from most pre-selection box generation methods for target detection, and is
also different from the sliding window style global scan search. Considering the strong
geometric correlation between ships and wakes and their typicality in pixels, we generate
a specific search sub-window based on the highlighted pixel area in the image, so that
the area that needs to be detected is greatly reduced. Through the localized Radon-based
enhancement algorithm, the real ship target area can be screened out, and the sub-window
that is bounding the wake can be determined. Subsequently, combined with the geometric
angle relationship, our method can accurately locate the wake axis, capture the different
components of the wake and then cluster the candidate wakes point clusters so as to
reconstruct all the wakes. Finally, through empirical analysis of multiple samples, and
based on pixel statistics, the shortest visible length of the wake can be measured.
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