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Abstract: MDT recovery over coastal regions is challenging, as the mean sea surface (MSS) and
geoid/quasi-geoid models are of low quality. The altimetry satellites equipped with the synthetic
aperture radar (SAR) altimeters provide more accurate sea surface heights than traditional ones
close to the coast. We investigate the role of using the SAR-based MSS in coastal MDT recovery,
and the effects introduced by the SAR altimetry data are quantified and assessed. We model MDTs
based on the multivariate objective analysis, where the MSS and the recently released satellite-only
global geopotential model are combined. The numerical experiments over the coast of Japan and
southeastern China show that the use of the SAR-based MSS improves the local MDT. The root mean
square (RMS) of the misfits between MDT-modeled with SAR altimetry data and the ocean data
is lower than that derived from MDT computed without SAR data—by a magnitude of 4–8 mm.
Moreover, the geostrophic velocities derived from MDT modeled with the SAR altimetry data have
better fits with buoy data than those derived from MDT modeled without SAR data. In total, our
studies highlight the use of SAR altimetry data in coastal MDT recovery.

Keywords: coastal mean dynamic topography; synthetic aperture radar altimeter; multivariate
objective analysis; mean sea surface; geostrophic velocities

1. Introduction

The information of coastal mean dynamic topography (MDT) plays an important role
in disciplines such as oceanography and climatology. For example, MDT information is
crucial for studying sea level change and climate change. In addition, the geostrophic
current is an oceanic current in which the pressure gradient force is balanced by the Coriolis
effect. The geostrophic current velocity can be obtained from the first derivatives of MDT,
which is useful for understanding heat and energy transport mechanisms over offshore
regions [1–3]. The accurate MDT model also facilitates the unification of land—sea vertical
data [4–6]. Moreover, the knowledge of coastal MDT facilitates human activities such
as fishing and oil/gas explorations, economic development, and offshore engineering
construction [7]. For marine ecology, MDT influences coastal carbon cycling, salinization
of freshwater systems, and the marine ecological environment [8]. MDT also affects the
coastline change and coastal erosion [9], and it can provide a scientific decision basis for
environmental protection and management over coastal areas [10].

The determination of accurate coastal MDT depends on the quality of the mean sea
surface (MSS) and the geoid/quasi-geoid, and the latter is usually derived from a global
geopotential model (GGM) or a regional model enhanced by combining local gravity data.
The combination of sea surface heights (SSHs) derived from multiple satellite altimetry
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missions can compute a mean sea surface model with an accuracy of 2–6 cm over open
seas [11,12]. Conversely, the dedicated spaceborne gravimetric missions, such as the Gravity
Recovery and Climate Experiment (GRACE) [13,14] and Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) missions [15–17], significantly improve the global
gravity field at a long wavelength. The use of satellite altimetry data and a geoid model
enable the ocean state modeling in a global scale from space [18,19]. However, MDT
recovery over coastal regions is a challenging issue; in particular, the satellite altimeter-
derived mean sea surface model is usually of low quality when close to the coast due to
severely contaminated waveforms and deteriorated geophysical corrections [20–22].

However, the recently launched altimetry missions, such as Cryosat-2 and Sentinel-
3A/3B, which are equipped with the synthetic aperture radar (SAR) altimeters, can provide
more accurate SSHs close to the coast, compared to the data observed from the conventional
radar altimeter. The CryoSat-2 applies three different modes, the low-resolution mode
(LRM), SAR mode, and SAR interferometry (SARIn) mode, in different areas. The coastal
elevations derived from the SAR altimetry are much closer to ocean model simulations and
in situ data [23,24]. The Cryosat-2 altimetry satellite uses SAR mode at some specific area,
such as the polar region or a coastal area, whereas the Sentinel-3A/3B mission operates
in the SAR mode all around the world. Compared to the data derived from the LRM
mode, the use of SAR mode that applies the delay doppler technology can obtain data
with higher along-track spatial resolution (~300 m), which also allows obtaining more
accurate SSHs close to the coast [25–27]. The accuracy of SSHs derived from SAR altimetry
is better than that retrieved from the standard LRM altimetry by a magnitude of several
centimeters over coastal regions [28,29]. Moreover, compared to the LRM data, for which
the measurements of closer than ~10 km from the coast are generally unreliable, the SAR
mode altimeters can provide measurements that are reliable up to a few hundred meters
from the coast. As a result, the newly released mean sea surface model that is computed
with SAR altimetry data may show better performance than the one developed without the
SAR data, especially over coastal regions.

The launch of the satellite altimetry missions equipped with the SAR altimeter pro-
vides a solid basis for coastal MDT recovery; however, little attention has been paid to
coastal MDT recovery by combing the SAR altimetry data, especially for the use of recently
released data from Sentinel-3A/B. To the best of our knowledge, no existing literature has
quantified the effects on coastal MDT modeling introduced from the SAR altimetry data
retrieved from Sentinel-3A/B. This study focuses on coastal MDT refinement by using SAR
altimetry data. In particular, we investigate the role of the recently released SAR-based
MSS model in coastal MDT refinement and verify and quantify the impact of SAR altimetry
data. We model the local MDT based on the multivariate objective analysis (MOA) method,
by which the mean sea surface and geoid/quasi-geoid models are combined. Moreover, a
recently released satellite-only gravity field model computed with GRACE/GOCE data
instead of a combined model (also known as a high-degree model computed by additionally
merging terrestrial and marine gravity data) is used to recover the geoid/quasi-geoid, since
the combined gravity field model that computed with altimetric gravity data also suffers
from the coastal problem. We mainly investigate the contribution of using a SAR-based
mean sea surface model in coastal MDT modeling, and the satellite-only gravity field model
is used, which does not have the coastal problem.

The structure of this study is as follows: In Section 2, we briefly introduce the main
principle of the MOA method. Then, the estimation of the key parameters in the MOA
method is introduced. In Section 3, the study areas and datasets used for local MDT
modeling and validation are introduced. Then, the numerical experiments are shown in
Section 4, and the local MDTs computed with and without the SAR altimetry data are
compared and assessed with independent ocean reanalysis datasets. In Section 5, the
summary of this study and a brief conclusion are given.
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2. Method
2.1. Multivariate Objective Analysis

The multivariate objective analysis method is used for local MDT modeling. The
MOA method used to be applied in meteorological application. Bretherton applied the
MOA method to MDT modeling for the first time [30]. A brief principle is introduced in
this section, and the detailed information about this method can be seen from Rio [31].
MDT estimated by the MOA method can be smoothed while preserving more detailed
signals due to the weight of this method considered and the variance and covariance of
observations. Moreover, the comparison between the MOA method with the traditionally
used filtering approach (e.g., Gaussian filter) showed that the former could deliver better
results [32–34].

MDT illustrates the removal of the geoid from the mean sea surface, which is given by:

h = η − N (1)

where h is MDT, η is the mean sea surface, and N is the geoid, which should be combined
under the same reference system and tide system. The mean sea surface and gravity field
models used in this study are referenced to the GRS80 and tide-free system.

With the MOA method, MDT could be estimated by Bretherton [30].

〈h〉(r) =
N

∑
i=1

αiO(ri), αi =
N

∑
j=1

A−1
i,j Cr,j (2)

where 〈h〉(r) is the estimated MDT value at point r, O(ri) is the raw MDT observation
computed as the difference between the mean sea surface and geoid/quasi-geoid, A is
the covariance matrix of the observations, and C is the covariance vector between the
observed and estimated MDT. Assuming that the mean dynamic topography is isotropic
and homogeneous, then the covariance of the observations at points i and j only depends
on the distance dij between these two points [32].

A = (
〈

σ2
〉

C(dij) +
〈
εiε j
〉
)

i,j=1,N
, Cr = (

〈
σ2
〉

C(drj))
j=1,N

(3)

where σ2 represents the prior MDT variance, εi denotes the error of the observation located
at i. In this study, we assume that the errors of the observation are uncorrelated with one
another. C(r) denotes the prior covariance function of MDT, and the covariance function
suggested by Arhan and De Verdiere [35] is used in this study.

The formal errors of the estimated MDT are expressed as [32]:

ε(r) = σ2 −
N

∑
i=1

N

∑
j=1

A−1
i,j Cr,iCr,j (4)

Theoretically, the mean of MDT values to be estimated should be zero in the use of
the MOA method, but it is difficult to satisfy this condition in local MDT recovery. Thus,
a large-scale prior MDT that is obtained by applying a Gaussian filter to the raw MDT is
removed from the raw MDT. In this way, the mean of the remaining residuals is close to
zero, and the residuals are then treated as the observations in MDT modeling.

The MDT value at each grid point is estimated based on the surrounding points when
using the MOA method. The key parameters in using the MOA method are the error of
the observations, the prior variance of the observations, and the covariance between the
observations. The flow chart of MDT modeling through the MOA method is shown in the
Figure 1. To begin, we apply the Gaussian filtering to the raw MDT to obtain a large-scale
MDT. Then, this large-scale MDT is removed from the raw MDT to compute the residuals.
After that, we use the MOA to improve the residual MDT, and the large-scale MDT and the
improved MDT are added to reconstruct the final MDT.
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Figure 1. Flow chart of MDT modeling form the MOA method. The flow chart of observations error
estimation is shown in the dashed rectangle.

2.2. Error Estimates of Observations

The error information of the observations is one of the key factors in MDT modeling
by using the MOA method. Based on the error propagation, the error of MDT can be
estimated using the error information of the mean sea surface and geoid. The mean sea
surface errors are mainly due to the orbit errors and errors in various range corrections [21].
The error information of the mean sea surface model is usually released with this model;
however, this error was derived from the least square collocation and cannot be regarded
as the realistic error estimate of the mean sea surface model. Moreover, the formal error
of geoid height derived from a satellite-only gravity field model can be estimated using
error propagation if the full error variance–covariance matrix of this model is known [36].
However, not all the error variance–covariance matrices of gravity field models are publicly
available. Moreover, the estimation of geoid errors from the error variance–covariance
matrix of spherical harmonic coefficients involves heavy computation load, which increases
as the maximum d/o of the gravity field model increases. In this study, we use an informal
approach to estimate the geoid errors, the principle of this method is introduced below [37].

Option 1: The informal error of a gravity field model can be estimated by the method
introduced by Bingham et al. [37]. Based on the available reference models, a set of root
mean square (RMS) differences between the model by which the error would be estimated
and the reference model is computed. These RMS differences are referred to as informal
errors. The calculation principle is expressed as Equation (5):

< φL − φL
′ >=

√
(εφL)2 + (εφL ′)

2 (5)
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where φL is the model to be evaluated, φL
′ is the reference model, L is the degree in which

the model can be expanded, < ∗ > means calculating the root mean square, εφL and εφL
′

represent the error of the model to be estimated and the reference model, respectively;
when εφL >> εφL

′
, εφL

′
can be ignored. Then, Equation (5) can be rewritten as Equation (6):

εφL ≈ < φL − φL
′ > (6)

The error of the model to be estimated can be expressed as the RMS of the difference
between the model to be estimated and the reference model. In addition, when using this
method, the model should have enough data points. The root mean square difference
of each grid point is calculated by using the mean value of the RMS difference in the
sub-windows around the grid point. The size of the sub-window can be determined by
comparing the results of different sub-windows.

We calculate a set of informal geoid error and mean sea surface error based on a set of
high-degree gravity field models and reference mean sea surface models. Similarly, we use
several reference MDTs to compute the error of the raw MDT. We choose one of the best
combinations as the error of the model. The method for determining the best combination
is as follows: The errors of the mean sea surface, geoid and MDT are denoted as, εH , εN

and εη , respectively. Based on the error propagation theory, another error estimate of MDT
(Eη) can be calculated by the error of the mean sea surface and the geoid

Eη =

√
(εH)

2
+ (εN)

2 − 2εHN (7)

where εHN is the cross-covariance between the mean sea surface and geoid. Since the data
sources of geoid and mean sea surface models development were obtained from satellite
gravimetry and satellite altimetry, respectively, and we assume there is no correlation
between the two datasets, it can be approximated as

Eη =

√
(εH)

2
+ (εN)

2 (8)

When 〈εη − Eη〉 = min, the combination is the best.
Option 2: The error of a gravity field model can be estimated by comparing with the

independent reference gravity field models. The reference gravity field model can be set
as the mean of the high-degree gravity field models. Then, the RMS differences between
the geoid heights derived from the reference gravity field model and the geoid heights
calculated from the satellite-only gravity field model we use in this study are taken as
the errors of the gravity field model [32]. It is notable that this informal error does not
consider the factors such as the omission error of a gravity field model (the unmodeled
signals beyond the maximum expansion degree), which may lead to a smaller result than
the true values.

In order to derive a realistic error of the prior MDT, three schemes are designed below.
The process flow of estimating the prior MDT error is shown in the right of Figure 1 (the
dashed rectangle).

Scheme 1: The informal error of the gravity field model is estimated by Option 1.
Then, the prior error of MDT can be obtained from the error propagation of the mean sea
surface and gravity field model, as seen in Equation (8). Additionally, a prior MDT is used
to compare with the raw MDT, and the RMS differences between the two models can be
used to estimate the error of the observation [32]. However, this error information can be
overestimated due to the variability of the mean circulation by the prior MDT. Therefore,
these two errors estimated are compared for each grid point, and the observation error is
set to the larger one.

Scheme 2: This scheme is similar to Scheme 1, except that the informal error of the
gravity field model is estimated by Option 2.
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Scheme 3: The calculation method is similar to that in Option 1 [37]. When we choose
the best combination in Option 1, the reference models are selected. Then, the error of MDT
can be estimated by Equation (8).

3. Data and Study Area

We select two study areas, which are located on the coast of Japan (29–40◦N, 128–144◦E)
and southeastern China (18–30◦N, 110◦ to 126◦E). The surface currents over these two
areas are shown in Figure 2 (image adapted from GEBCO World Map 2014, available at
www.gebco.net (accessed on 25 May 2021)). Both of the areas contain parts of the Kuroshio.
The Kuroshio brings high temperatures and high salinity seawater of the equatorial Pacific
Ocean to the vast offshore areas, which have a huge impact on the ocean, meteorology,
and hydrology of these sea areas. The Kuroshio plays an important role in the climate
and environment of neighboring countries, especially for China and Japan [38]. The ocean
states of the Kuroshio current are more complicated than other areas because of the great
water transportation, heat exchange, and ocean variation, which all lead to the difficulty
of modeling MDT and geostrophic currents over these areas. Moreover, there are many
islands over these two coastal areas, and MDT modeling there is challenging. However, this
provides a good opportunity for investigating the performance of using the SAR altimetry
data in MDT modeling. Sections 3.1–3.4 describe the datasets used in this study.

Figure 2. The study areas, which are enclosed in the red dashed polygon. The solid blue line
represents the Kuroshio current, and the solid yellow line shows the Tsushima current.

3.1. Mean Sea Surface Model

In this study, the series of mean sea surface models developed in Technical University
of Denmark (DTU), namely DTU15MSS, DTU18MSS and DTU21MSS, are used and com-
pared in local MDT modeling. These three models are global ones, which map the mean
ocean state at a spatial resolution of 1′ × 1′. DTU15MSS was computed by using 4 years
(2010–2014) of Cryosat-2 data, 1 year (2012–2013) of Jason-1 data, and other satellite altime-
try data over 20 years. It is notable that the Cryosat-2 applies the LRM mode in the study
areas; as a result, no SAR altimetry data were used in computing DTU15MSS. Compared to

www.gebco.net
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DTU15MSS, the main improvement of DTU18 MSS is that this model combined the 3 years
(2015–2018) SAR altimetry data from Sentinel-3A and improved Cryosat-2 data [39], which
especially improved the signals over coastal regions. Furthermore, the derivation of DTU18
MSS was based on an updated tide model, i.e., FES2014, with an accuracy of about 1 cm
in open areas and ~7 cm over coastal areas [40]. For the derivation of DTU21MSS, more
than 5 years of Sentinel-3A data and 2 years of Sentinel-3B data were used, and an updated
waveform retracker, i.e., the SAMOSA+ physical retracker [41], was used to preprocess the
Cryosat-2 data [42]. This may further improve the quality of the MSS model over coastal
regions.

3.2. Choice of Global Geopotential Model

As mentioned above, we use a recently released satellite-only gravity field model
instead of a combined model to recover the geoid/quasi-geoid, since the combined grav-
ity field model also suffers from the coastal problem. In this study, a recently released
GRACE/GOCE combined gravity field model, i.e., GO_CONS_GCF_2_DIR_R6 (DIRR6),
calculated by the direct approach, is used to model local MDT [43]. The computation
of DIRR6 used the reprocessed GOCE gravity gradients with the recalibrated orbit and
performed a low-pass filtering of 0–125.0 mHz on the observation equation. The satellite
laser ranging data were also used to solve the low-degree spherical harmonic coefficients.
The comparisons with high-quality GPS/leveling data show that the accuracy of DIRR6 is
better than that of the other GOCE-based gravity field models [44].

3.3. Synthetic/Ocean MDT Models

In order to assess MDT solutions modeled with different datasets, several synthetic/ocean
numerical models, i.e., Simple Ocean Data Assimilation 3 (SODA3) [45], Ocean and sea-ice
Reanalysis System (ORAS5) [46], Copernicus, and CNES-CLS18MDT [47], are introduced.
SODA3 was developed through ocean reanalysis with enhanced model resolution, observa-
tions, forced data, and active sea ice capabilities. This model maps ocean conditions from
1980 to 2017 with a horizontal resolution of 1/4◦. The SODA3 applied MOM5/SIS models
to assimilating sea surface temperature and salinity profiles from World Ocean Database
2013. ORAS5 is an ocean reanalysis product recently released by ECMWF and is based on
Ocean ReAnalysis Pilot 5 using the same ocean and sea ice models and data assimilation
techniques [46]. ORAS5 has a horizontal resolution of 0.25◦, and it provides monthly data
from 1979 to 2018. Copernicus is generated by the DUACS processing system, which has
a horizontal resolution of 0.25◦, and this model provides daily data from 1993 to 2018.
The CNES-CLS18MDT is released by Centre National d’Etudes Spatiales (CNES), with
1/8◦ spatial resolution. The CNES-CLS18MDT is a time-average model with a reference
period of 1993 to 2012. This MDT model was computed based on the combination of
CENS-CLS15MDT and the satellite-only gravity field model GOCO05s [48], the method of
modeling MDT is multivariate objective analysis. In the area of ocean currents, the in situ
hydrological profiles and buoys data were combined and fused into this MDT to improve
the signals. When assessing the geodetic MDTs modeled in this study, the reference time
periods of synthetic/ocean models are unified to the same as the geodetic MDTs by using
the approach proposed by Bingham and Haines [49], based on the aviso sea level anomalies
(SLA) (ftp://ftp-access.aviso.altimetry.fr/climatology (accessed on 18 May 2021)). These
independent synthetic/ocean datasets have been successfully applied to assessing the
altimeter-derived mean dynamic topography (MDT) [50–53].

3.4. Drifting Buoy Data

Moreover, the geodetic MDTs modeled with and without the SAR altimetry data
are assessed by using in situ buoy data in terms of geostrophic velocities. The buoy
dataset was obtained from the Atlantic Ocean and Meteorological Laboratory (AOML,
ftp://ftp.aoml.noaa.gov/phod/pub/buoydata (accessed on 25 May 2021)), where the
quality of this dataset has been well controlled by using the Kriging method to provide

ftp://ftp-access.aviso.altimetry.fr/climatology
ftp://ftp.aoml.noaa.gov/phod/pub/buoydata
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6-hour velocity measurements. We use the buoy data from 1993–2016 and the buoy-derived
signals include geostrophic, tidal, Ekman, inertial, and high-frequency non-geostrophic
currents. Since only the surface geostrophic currents can be derived from the geodetic
MDT models, and we remove the non-geostrophic component and extract the geostrophic
velocities from the buoy data for the comparison. To do this, we first remove the Ekman
current from the buoy-derived currents, where the model developed by Rio et al. [32] is
used, which was computed based on the data of the wind speed and wind stress. The
time-varying geostrophic velocity should be deducted from the buoy-derived currents;
it can be derived from SLA by equilibrium equation if we ignore the variability of the
geoid. Moreover, a low-pass filter is applied to the residual buoy currents to remove the
variability caused by tidal, inertial, and high-frequency non-geostrophic currents with
the periods smaller than 3 days [54,55]. It is noticeable that the buoy data are scattered
in space and time and often autocorrelated in both dimensions. In order to obtain the
mean geostrophic velocity, a common approach is averaging the buoy data within spatial
bins. The choice of bin size influences the accuracy of the geostrophic velocity. In this
study, the bin size is chosen as 0.25◦ [55,56]. Moreover, the error of this dataset is estimated
at each bin, which is given as the standard deviation of the observations divided by the
square root of the number of observations in the bin. Generally, the estimated error of
the buoy-derived geostrophic velocities is about 3–10 cm per second. The flow chart of
extracting the geostrophic currents from the buoy data is seen in Figure 3.

Figure 3. The flow chart of extracting geostrophic velocities from buoy data.

4. Results
4.1. The Choice of the Estimation of Observation Error on MDT Modeling

In this study, we study several different schemes in order to choose a proper method for
the error estimation of input datasets in the MOA method. To do this, different MDTs are
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modeled based on the error estimates derived from different schemes discussed in Section 2.2,
with DTU18MSS as the mean sea surface model and GO_CONS_GCF_2_DIR_R6 as the grav-
ity field model to compute the geoid height. We use three reference MDTs (i.e., CLS18MDT,
DTU17MDT, CLS15MDT) to compute the error of the directly solved MDT. Similarly, from
a set of four high-degree gravity field models (i.e., EGM2008, XGM2019e_2159, GECO,
SGG_UGM_1), we calculate a set of informal geoid errors. Likewise, from three reference
mean sea surface models, we calculate a set of informal mean sea surface errors. From these
three sets, representing 735 possible combinations, we choose one of the best combinations
as the error of the model. The estimated errors based on different schemes are seen in
Figure 4, where different error estimates show heterogeneous patterns; however, the most
significant errors concentrate over coastal areas. The associated statistics are shown in
Table 1. The results show that the root mean square (RMS) of the errors estimated by
Scheme 3 is smaller than that estimated by Scheme 1 or Scheme 2. The mean of the error of
the observations estimated by Scheme 3 is large than that estimated from Schemes 1 and 2.
The reason is that the RMS of the difference is calculated in a 1◦ box, which may reduce the
maximum value and increase the mean value when estimating the observation error by
Scheme 3. The error estimated contains the reference model’s error, which may lead to the
overestimation of the error.

Figure 4. The estimated errors of the observations calculated from (a) Scheme 1, (b) Scheme 2, and
(c) Scheme 3 over the coast of Japan; the estimated error of the observations computed from (d)
Scheme 1, (e) Scheme 2, and (f) Scheme 3 over the coast of southeastern China.

Table 1. Statistics of the estimated errors of the observations from different schemes (Units: mm).

Study Area Scheme Min Max Mean RMS

Coastal area
of Japan

Scheme 1 111 810 371 397
Scheme 2 116 830 375 397
Scheme 3 115 791 376 395

Southeastern
coastal area

of China

Scheme 1 66 1315 208 274
Scheme 2 64 1449 205 273
Scheme 3 67 1135 220 272

We further compare these geodetic MDTs modeled by using different error estimates
with independent synthetic/ocean data, where the mean value of all synthetic/ocean mod-
els (i.e., SODA3, ORAS5, CNES-CLS18MDT and Copernicus) is used as the reference MDT
model, and we call it as the ocean data in the following study. This may provide sufficient
independence and redundancy to allow more robust comparison, since the ocean models
lack the formal error information, and the comparison with an individual ocean model
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may not have reliable results. Figure 5 shows the comparison results over the coastal area
of Japan, where the figures in the top panel display the misfits between different geodetic
MDTs and the ocean data. MDTs computed from the errors of observations estimated
from Schemes 1–3 are denoted as MDT_JP_S1, MDT_JP_S2, and MDT_JP_S3, respectively.
From Figure 5, we see that the differences between MDT_JP_S1/MDT_JP_S2 and the ocean
data are larger than the ones derived from MDT_JP_S3, where the discrepancies between
MDT_JP_S3 and the ocean data are extremely prominent over the regions of southwestern
area of Japan. The statistics in Table 2 show that the RMS of the differences between
MDT_JP_S3 and the ocean data 115 mm, which is lower than the results derived from
MDT_JP_S1 (MDT_JP_S2), by a magnitude of 8 mm (5 mm). The results suggest that the
observations’ error computed from Scheme 3 may be a more realistic error estimate for
the observations in the MOA method. Scheme 3 introduced many independent reference
models to obtain the most reasonable combination to estimate the error of observation.
Although there are errors in the reference models, which may lead to overestimation of the
error of the observations, the use of Scheme 3 may derive more realistic errors, compared to
the results derived from Scheme 1 (Scheme 2). Schemes 1 and 2 combine two different error
estimation methods, both of them cannot obtain a reasonable result. In particular, the error
of geoid is difficult to estimate. The error of geoid that is used in Scheme 2 is influenced by
the selection of the reference gravity field models, which may lead to the overestimation of
geoid error.

Figure 5. Differences between the modeled MDT derived from (a) Scheme 1, (b) Scheme 2, and (c)
Scheme 3 and the ocean data. (d–f) Corresponding formal errors estimated from the MOA over the
coastal area of Japan.

Table 2. Statistics of the differences between the estimated MDT and the ocean data (Units: mm).

Area Scheme Min Max RMS

Coastal area of
Japan

Scheme 1 −465 250 123
Scheme 2 −460 233 120
Scheme 3 −445 224 115

Southeastern
coastal area of

China

Scheme 1 −454 154 80
Scheme 2 −478 146 79
Scheme 3 −454 149 77

Moreover, the formal errors of these MDTs can be estimated by the MOA method,
which are shown in the figures in the below panel of Figure 5. The formal errors of different
MDTs concentrate over coastal regions, and this is in line with the comparison results with
the ocean data, where the prominent misfits of these geodetic MDTs against the ocean data
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are located over the coastal areas. The formal errors of MDT_JP_S1 range from 11 to 30 mm,
with an RMS value of 17 mm, and the most prominent errors are concentrated over the
northern and eastern coast of Japan, reaching a magnitude of ~30 mm. The formal errors of
MDT_JP_S2 is similar to MDT_JP_S1, with an RMS of 17 mm, while the formal errors of
MDT_JP_S3 range from 11 to 31 mm, with an RMS of 15 mm, which is slightly smaller than
that derived from MDT_JP_S1/MDT_JP_S2, by a magnitude of 2 mm. The formal errors of
these MDTs show similar patterns with the differences between the estimated MDTs and
ocean data. For example, both of them show larger differences in the southern coast of
Japan (138◦ E, 34◦ N) and smaller differences/errors in the southwestern coast of Japan
(129◦ E, 32◦ N). However, on the northeastern coast of Japan, the formal errors and the
differences between the modeled MDTs and ocean data show different patterns, the formal
errors are large where the differences are small. The reason is that the formal errors are
influenced by the error of the observations. This generally agrees with the results derived
from the comparisons with the ocean data, where MDT modeled from the observations’
error computed from Scheme 3 shows a better fit with the ocean data, compared to the
results derived from the other two schemes.

MDTs computed from the errors of observations estimated from Schemes 1–3 in the
southeastern coastal area of China are denoted as MDT_SECN_S1, MDT_SECN_S2, and
MDT_SECN_S3, respectively. Similar to the case over Japan, the misfits between the
geodetic MDT computed from the errors of observations estimated from Scheme 3 are
smaller than those derived from Scheme 1 (Scheme 2); see the figures in the top panel of
Figure 6. The discrepancies of MDT_SECN_S3 against the ocean data are extremely large
along the coast of Guangdong in China, which reach a magnitude exceeding 30 cm. The
reason may be due to the overestimation of the error of the observation estimated by Scheme
1 (Scheme 2), which estimates errors by comparing the errors derived from two method and
induce more errors of the reference models. Similar as the results derived from the regions
over Japan, the solution derived from the errors of observations estimated from Scheme 3
shows a better fit with the ocean data than those derived from the other two schemes. The
statistics in Table 2 show that the RMS of the difference between MDT_SECN_S3 and the
ocean data is 77 mm, which is 2 mm lower than that derived from MDT_SECN_S2 and 3
mm lower than the derived from MDT_SECN_S1. The formal errors of the estimated MDTs
are shown in the figures in the below panel of Figure 6. The formal errors are large around
Taiwan. The RMS of the error of MDT_SECN_S3 is 13 mm, which is ~3 mm lower than
that of MDT_SECN_S2 and MDT_SECN_S1. The results suggest that Scheme 3 is more
appropriate to estimate the observation errors on MDT modeling since MDT modeled by
using the observations’ errors computed from Scheme 3 derives better results, and in the
following study, the observations’ errors are estimated from Scheme 3.
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Figure 6. Differences between the estimated MDT by (a) Scheme 1, (b) Scheme 2, and (c) Scheme 3 and
reference MDT. (d–f) Corresponding formal errors estimated from MOA over coastal southeastern
China.

4.2. Assessment of MDTs Modeled with SAR Altimetry Data

We further investigate the performances of using the SAR-based mean sea surface
models in local MDT recovery, and MDT solutions modeled with and without SAR al-
timetry data are compared and assessed. Three mean sea surface models, i.e., DTU15MSS,
DTU18MSS, DTU21MSS, are used. As we mentioned in Section 3.1, no SAR altimetry was
used in DTU15MSS over these two study areas, while the 3-year SAR altimetry data from
Sentinel-3A was used in DTU18MSS and the SAR data from Sentinel-3A and Sentinel-3B
data were used in DTU21MSS. The figures in the top panel of Figure 7 show the differences
between MDTs modeled from different mean sea surface models and the ocean data over
the coast of Japan. In the northern coastal area of Japan (134◦E, 34◦N) and the southern
coast of Japan (138◦E, 33.5◦N), MDT modeled by DTU21MSS, which uses more SAR data, is
better than the one modeled by DTU15MSS/DTU18MSS. The statistics in Table 3 show that
the RMS of the differences between MDT modeled from DTU15MSS and the ocean data is
116 mm; however, this RMS value almost stays unchanged when the DTU18MSS is used
in MDT modeling, although the computation of DTU18MSS included 3 years of SAR al-
timetry data from Sentinel-3A, whereas the RMS of the differences between MDT modeled
from DTU21MSS and the ocean data is 111 mm, which is smaller than that derived from
DTU18MSS (DTU15MSS), by a magnitude of 4 mm (5 mm). The better fit of MDT modeled
from DTU21MSS with the ocean data is mainly attributed to the use of more high-quality
SAR altimetry data and an updated waveform retracker (the SAMOSA+ physical retracker)
in the data preprocessing procedures. Moreover, the formal errors of MDT modeled from
DTU21MSS range from 11 to 30 mm, and the RMS value is 14 mm, while the RMS of the
formal errors of MDT computed from DTU18MSS (DTU15MSS) is ~15 mm (15 mm), which
is marginally larger than the value derived from DTU21MSS.
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Figure 7. Differences between MDT modeled from (a) DTU15MSS, (b) DTU18MSS, and (c)
DTU21MSS and the ocean data; (d–f) show the corresponding formal errors over the coast of Japan.

Table 3. Statistics of the differences between the ocean data and the geodetic MDTs modeled from
different MSS models (Units: mm).

Area MSS Model Min Max RMS

Coastal area of
Japan

DTU15MSS −448 228 116
DTU18MSS −445 224 115
DTU21MSS −435 220 111

Southeastern
coastal area of

China

DTU15MSS −450 144 78
DTU18MSS −454 149 77
DTU21MSS −437 140 70

Figure 8 shows the assessment of MDTs modeled from different mean sea surface
models over the southern coast of China, and we see that the application of DTU21MSS in
MDT recovery reduces the misfits against the ocean data, compared to the results derived
from DTU15MSS/DTU18MSS, see the figures in the top panel. By using the DTU21MSS,
the improvements are mainly seen in the Taiwan Strait and the north of Taiwan, compared
to MDT modeled from DTU15MSS/DTU18MSS. The RMS of the differences between
MDT modeled from DTU21MSS and the ocean data is 70 mm, while this value changes to
78/77 mm when MDT modeled from DTU15MSS/DTU18MSS is assessed with the ocean
data, with an increase of ~8/7 mm. Moreover, the figures in the lower panel of Figure 8
show the formal errors of MDTs modeled from different mean sea surface models, the
formal errors of these MDTs range from 14 to 22 mm. The RMS of the formal errors of MDT
derived from DTU21MSS is 9 mm, while the RMS of the formal errors of MDT derived
from DTU15MSS/DTU18MSS is 16/13 mm, which is slightly larger. These results show
that the use of the mean sea surface model computed with high-quality SAR altimetry data
can improve MDT modeling over coastal regions, which may improve the coast MDT by a
magnitude of several millimeters, compared to MDT computed with the mean sea surface
model without SAR altimetry data.
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Figure 8. Differences between MDT modeled from (a) DTU15MSS, (b) DTU18MSS, (c) DTU21MSS
and the ocean data; (d–f) show the corresponding formal errors over the coast of southeastern China.

MDTs estimated by the MOA method are shown in Figure 9. The prior errors of
MDT are estimated by Scheme 3. The input models are DTU21MSS and the DIRR6 geoid
model. In Figure 9a, MDT ranges from 115 to 1442 mm in the coast of Japan. The large
signals are shown in the area of the Kuroshio current (130◦E, 30◦N), whereas the small
signals are observed in the coastal zone. In Figure 9b, MDT ranges from 248 to 1218 mm in
the southeastern coastal area of China. The large signals are shown in the coastal area of
Guangdong (114◦E, 21◦N), while the smallest signals are seen in the north of Taiwan.

Figure 9. The estimated MDTs over (a) the coastal area of Japan and (b) southeastern coastal area of
China.

5. Discussions

In order to further assess the geodetic MDTs modeled from the different altimeter
data, the in situ buoy data are used as the control data. The geostrophic velocities can
be obtained from MDT gradients at the ocean surface, and the used equations are seen
in, for example, Hwang and Sung [57]. The geostrophic velocities computed from the
geodetic MDTs are interpolated to the point of the buoy data and the differences between
them are shown in Figures 10 and 11. From Figure 10, we can see that the improvements
are mainly shown in the northern coast of Japan and the southern coast of Japan for
the geostrophic velocities computed from MDT modeled with DTU21MSS, compared to
the ones computed from DTU15MSS/DTU18MSS. In Figure 11, we see that the zonal
(meridional) geostrophic velocities computed from MDT modeled with DTU21MSS show
better results over the coast of Guangdong and the Taiwan Strait, compared to the results
computed from DTU15MSS/DTU18MSS. The statistics of the differences between MDT-
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derived geostrophic velocities and the buoy data are shown in Table 4, from which it can
be seen that the RMS of the differences between the zonal (meridional) velocities computed
from MDT modeled with DTU21MSS and the in situ data is 174 mm/s (140 mm/s), which
is 5 mm/s (1 mm/s) lower than that of the velocities computed from MDT modeled
with DTU15MSS over the coast of Japan. The RMS of the differences between the zonal
(meridional) geostrophic velocities derived from MDT modeled with DTU21MSS and the
buoy data is 97 mm/s (105 mm/s), which is about 4 mm/s (2 mm/s) lower than that of the
velocities computed from DTU15MSS over the coast of southeastern China. These results
indicate that the use of SAR altimetry data improves the accuracy of mean sea surface, and
the improvement of the mean sea surface model can contribute to MDT and geostrophic
current modeling over coastal areas.

Figure 10. Differences between the zonal (meridian) geostrophic velocities derived from the buoy
data and the values computed from MDTs derived from different MSS models over the coast of
Japan. (a–c) and (d–f) represent the results of zonal and meridian velocities, respectively, and the
left, middle, and right figures are the results derived from DTU15MSS, DTU18MSS, and DTU21MSS,
respectively.

Table 4. Statistics of the differences of the geostrophic velocities between the buoy data and the
values derived from MDT solutions computed from different MSS models (Units: mm/s) (u: zonal
velocities; v: meridian velocities).

Study Area MSS Model Geostrophic Velocities Min Max RMS

Coastal area
of Japan

DTU15MSS
u −657 906 179
v −400 711 141

DTU18MSS
u −650 907 178
v −401 709 141

DTU21MSS
u −651 901 174
v −406 714 140

Southeastern
coastal area

of China

DTU15MSS
u −267 678 101
v −335 555 107

DTU18MSS
u −260 676 99
v −326 553 105

DTU21MSS
u −251 664 97
v −325 551 105
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Figure 11. Differences between the zonal (meridian) geostrophic velocities derived from the buoy data
and the values computed from MDTs derived from different MSS models over coast of southeastern
China. (a–c) and (d–f) represent the results of zonal and meridian velocities, respectively, and the
left, middle, and right figures are the results derived from DTU15MSS, DTU18MSS, and DTU21MSS,
respectively.

As mentioned above, the comparison with ocean data and in situ buoy data has
proven that MDT based on the MSS with SAR altimetry data outperforms that without
SAR altimetry data. The reason is that the altimetry satellite operated in SAR mode can
obtain more accurate signals over coastal area. The conventional radar altimeter data are
seriously degraded in coastal zones due to the signal contamination by land. Therefore, the
more accurate mean sea surface model can be obtained in coastal area, and MDT can be
further improved. However, from the statistics of the results, the improvement of MDT
with SAR altimetry data is limited. This result may be caused by many reasons. We sum
up the following three possible reasons:

(1) The improvement in the mean sea surface model with SAR altimetry data is limited.
The differences between DTU21MSS and DTU18MSS (DTU15MSS) are less than 1 cm
in most of the study area. Therefore, the improvement of MDT with SAR altimetry
data is limited.

(2) The accuracy and resolution of the reference model that we used for comparison are
limited. The accuracy of ocean data ranges from several centimeters to decimeter level.
The resolution of ocean data is 15′. The improvement of MDT with SAR altimetry
data cannot be well reflected in coastal area.

(3) The geoid model we used is a recently released GRACE/GOCE combined model
(DIRR6). The contribution of GOCE is focus on the scale of about 80 km; the shorter
scale of signals cannot be reflected in this geoid model. However, the improvement in
the mean sea surface model with SAR altimetry data concentrates upon the signals of
short scale (tens of kilometers). Moreover, the accuracy and resolution of estimated
MDT are mainly restricted by the geoid model. Therefore, the estimated MDT may
lack the short scale signals, which leads to the limited improvement of MDT-modeled
with SAR altimetry data.

6. Conclusions

We focused on coastal MDT refinement by using SAR altimetry data, and the effects
introduced by the SAR altimetry data are validated and quantified. We modeled the local
MDT based on the multivariate objective analysis (MOA) method, and independent ocean
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reanalysis data and buoy data were used for model assessment, based on which MDTs
modeled with and without the SAR altimetry data were discriminated. The numerical
results over the coast of Japan and southeastern China showed that:

(1) The informal approach we used in this study may be suitable for the error estimate
of the observations of the multivariate objective analysis method. This approach is
particularly useful when the formal errors of the geoid or MDT are difficult to estimate,
even over coastal regions, where the errors of input datasets for MDT modeling are
hard to model.

(2) The use of the mean sea surface models computed with high-quality SAR altimetry
data improves MDT modeling over coastal regions, by a magnitude of about several
millimeters. The RMS of the differences between MDT modeled from DTU21MSS
(with SAR altimetry data from Sentinel-3A/3B) and ocean data is 8 mm (5 mm) lower
than that computed from DTU15MSS (without SAR altimetry data) over the coast of
southeastern China (Japan).

(3) Moreover, the use of a SAR-based mean sea surface model improves the computation
of local geostrophic velocities, compared with the values computed from the mean
sea surface modeled without the SAR altimetry data. The RMS of the differences
between the zonal (meridian) velocities derived from MDT modeled with DTU21MSS
and the in situ buoy data were 5 mm/s (1 mm/s) less than the results derived from
DTU15MSS over the coast of Japan, which is 4 mm/s (2 mm/s) less than the results
derived from DTU15MSS over the coast of southeastern China.

Author Contributions: Conceptualization, Y.W. and J.H.; methodology, Y.W. and J.H.; software, J.H.
and Y.W.; validation, Y.W. and J.H.; formal analysis, Y.W. and J.H.; investigation, Y.W. and J.H.;
resources, Y.W.; data curation, J.H.; writing—original draft preparation, Y.W. and J.H.; writing—
review and editing, Y.W., X.H., Z.L. and H.W.; visualization, J.H.; supervision, Y.W., X.H. and H.W.;
project administration, Y.W.; funding acquisition, Y.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 42004008, 41830110, 41931074, and 41974016; the Natural Science Foundation of Jiangsu
Province, China, grant number BK20190498; and the State Scholarship Fund from Chinese Scholarship
Council, grant number 201306270014.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The global geopotential models can be publicly accessed at http://
icgem.gfz-potsdam.de/tom_longtime (accessed on 16 May 2021). DTU15MSS, DTU18MSS, DTU21MSS
and their associated error grids are available at https://ftp.space.dtu.dk/pub/ (accessed on 16
May 2021). CNES-CLS13MDT was accessed at ftp://ftp-access.aviso.altimetry.fr/auxiliary/mdt/
mdt_cnes_cls2018_global (accessed on 16 May 2021). SODA3 was accessed at http://www.atmos.
umd.edu/~ocean/index_files/soda3.12.2_mn_download.htm (accessed on 18 May 2021). ORAS5
was accessed at https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/oras5
/ORCA025/catalog.html (accessed on 18 May 2021). Copernicus was accessed at https://cds.climate.
copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global?tab=overview (accessed on 20 May 2021).
Drifter buoy data were accessed at ftp://ftp.aoml.noaa.gov/phod/pub/buoydata (accessed on 25
May 2021).

Acknowledgments: The authors would like to give our sincerest thanks to the three anonymous
reviewers for their constructive suggestions and comments, which are of great value for improving
the manuscript. The authors also thank the Editor for the kind assistances and beneficial comments.
The authors are grateful for the kind support from the editorial office. We gratefully acknowledge the
funders of this study.

Conflicts of Interest: The authors declare no conflict of interest.

http://icgem.gfz-potsdam.de/tom_longtime
http://icgem.gfz-potsdam.de/tom_longtime
https://ftp.space.dtu.dk/pub/
ftp://ftp-access.aviso.altimetry.fr/auxiliary/mdt/mdt_cnes_cls2018_global
ftp://ftp-access.aviso.altimetry.fr/auxiliary/mdt/mdt_cnes_cls2018_global
http://www.atmos.umd.edu/~ocean/index_files/soda3.12.2_mn_download.htm
http://www.atmos.umd.edu/~ocean/index_files/soda3.12.2_mn_download.htm
https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/oras5/ORCA025/catalog.html
https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/oras5/ORCA025/catalog.html
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global?tab=overview
ftp://ftp.aoml.noaa.gov/phod/pub/buoydata


Remote Sens. 2022, 14, 240 18 of 19

References
1. Lyu, K.; Yang, X.-Y.; Zheng, Q.; Wang, D.; Hu, J. Intraseasonal Variability of the Winter Western Boundary Current in the South

China Sea Using Satellite Data and Mooring Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 5079–5088.
[CrossRef]

2. Li, J.; Wang, G.; Xue, H.; Wang, H. A simple predictive model for the eddy propagation trajectory in the northern South China
Sea. Ocean Sci. 2019, 15, 401–412. [CrossRef]

3. Lin, H.; Thompson, K.R.; Huang, J.; Véronneau, M. Tilt of mean sea level along the Pacific coasts of North America and Japan. J.
Geophys. Res. Oceans 2015, 120, 6815–6828. [CrossRef]

4. Filmer, M.S.; Hughes, C.W.; Woodworth, P.L.; Featherstone, W.E.; Bingham, R.J. Comparison between geodetic and oceanographic
approaches to estimate mean dynamic topography for vertical datum unification: Evaluation at Australian tide gauges. J. Geod.
2018, 12, 1413–1437. [CrossRef]

5. Featherstone, W.E.; Filmer, M.S. The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic
topography. J. Geophys. Res. Oceans 2012, 117, C08035. [CrossRef]

6. Wu, Y.; Abulaitijiang, A.; Featherstone, W.E.; McCubbine, J.C.; Andersen, O.B. Coastal gravity field refinement by combining
airborne and ground-based data. J. Geod. 2019, 93, 2569–2584. [CrossRef]

7. Xu, L.; He, Y.; Huang, W.; Cui, S. A multi-dimensional integrated approach to assess flood risks on a coastal city, induced by
sea-level rise and storm tides. Environ. Res. Lett. 2016, 11, 014001. [CrossRef]

8. Smith, A.J.; Kirwan, M.L. Sea Level-Driven Marsh Migration Results in Rapid Net Loss of Carbon. Geophys. Res. Lett. 2021, 48,
e2021GL092420. [CrossRef]
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