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Abstract: An accurate and detailed vegetation map is of crucial significance for understanding the
spatial heterogeneity of subsurfaces, which can help to characterize the thermal state of permafrost.
The absence of an alpine swamp meadow (ASM) type, or an insufficient resolution (usually km-level)
to capture the spatial distribution of the ASM, greatly limits the availability of existing vegetation
maps in permafrost modeling of the Qinghai-Tibet Plateau (QTP). This study generated a map
of the vegetation type at a spatial resolution of 30 m on the central QTP. The random forest (RF)
classification approach was employed to map the vegetation based on 319 ground-truth samples,
combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8
images. Validation using a train-test split (i.e., 70% of the samples were randomly selected to train the
RF model, while the remaining 30% were used for validation and a total of 1000 runs) showed that
the average overall accuracy and Kappa coefficient of the RF approach were 0.78 (0.68–0.85) and 0.69
(0.64–0.74), respectively. The confusion matrix showed that the overall accuracy and Kappa coefficient
of the predicted vegetation map reached 0.848 (0.844–0.852) and 0.790 (0.785–0.796), respectively.
The user accuracies for the ASM, alpine meadow, alpine steppe, and alpine desert were 95.0%,
83.3%, 82.4%, and 86.7%, respectively. The most important variables for vegetation type prediction
were two vegetation indices, i.e., NDVI and EVI. The surface reflectance of visible and shortwave
infrared bands showed a secondary contribution, and the brightness temperature and the surface
temperature of the thermal infrared bands showed little contribution. The dominant vegetation in
the study area is alpine steppe and alpine desert. The results of this study can provide an accurate
and detailed vegetation map, especially for the distribution of the ASM, which can help to improve
further permafrost studies.

Keywords: vegetation mapping; alpine swamp meadow; random forest; permafrost region; Qinghai-
Tibet Plateau

1. Introduction

Vegetation information is critical for understanding changes to the ecosystem process
and their associated impacts through time and space [1]. High-accuracy vegetation map-
ping can provide the exact spatial distribution pattern of vegetation from local to global
scales at a given time point or over a continuous period [2,3]. Vegetation mapping also
presents valuable information for quantifying the terrestrial carbon cycle [4], characterizing
uncertainties in regional hydrological process simulations [5] and improving dynamic land
surface models [6] and global vegetation models [7].
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The rapid development of remote sensing techniques and data processing methods has
significantly promoted large-scale and high-accuracy vegetation mapping. In recent studies,
vegetation mapping has mainly been conducted using intelligent classification technologies
with multisource remote sensing data and auxiliary information [8]. Over the past several
decades, large amounts of remote sensing images have been acquired by a range of sensors
with different platforms, spectral ranges, resolutions, and revisit frequencies [9]. These data,
catalyzed by the accessibility of cloud computing platforms (e.g., Google Earth Engine),
support multipurpose vegetation mapping [9,10]. Moreover, classification methods based
on machine learning (e.g., decision trees, support vector machines, random forests, artificial
neural networks, and deep learning) have been successfully introduced in vegetation
mapping at regional to global scales with considerable accuracy [9,11]. In addition, the
development of new observation technologies, e.g., unmanned aerial vehicles (UAVs),
has provided more flexible methods for acquiring high-resolution imagery, which greatly
expands ground surface observations and fills the gap between satellite data and survey
data [12]. Overall, the massive increases and continuous updating of data sources and
their related processing techniques could meet the high accuracy required of vegetation
mapping work for multiscale and multitarget studies.

Vegetation information has highly valued applications in permafrost regions as well.
Permafrost is defined as ground (soil or rock, including ice and organic material) that
remains at or below 0 ◦C for at least two consecutive years [13]. Permafrost occurs under-
ground at depths of between several centimeters and several meters, and cannot be directly
observed by remote sensing techniques [14]. The regional mapping and modeling of per-
mafrost conditions and their changes strongly depend on accurate ground surface data. As
one of the most important parameters of ground surface, vegetation information is closely
related to the thermal state of permafrost [15,16]. Vegetation affects the thermal dynamics of
permafrost by modifying the energy balance of the atmosphere–soil system [17]. Vegetation
canopies attenuate incoming solar radiation, cooling the ground surface by shading and
through evapotranspiration in summer [18]. In winter, vegetation has the opposite effect,
and well-vegetated areas are insulated by the plants and the snow they trap [19]. Vegetation
can also promote the accretion of an organic layer with relatively low thermal conductivity,
which effectively insulates mineral soil from the atmosphere [20]. These buffering effects
vary with vegetation conditions and depend on plant community structure, total biomass,
stature, and coverage [21,22]. Consequently, vegetation knowledge is often used to serve
as an indicator or modeling input for the extraction of permafrost properties, e.g., the
presence of permafrost [23,24] and seasonal thawing depth [25,26]. Therefore, accurate and
up-to-date vegetation mapping is essential for permafrost studies [27].

Permafrost occupies nearly 40% of the land surface area of the Qinghai-Tibet Plateau
(QTP) [28]. The alpine vegetation of the permafrost region on the QTP is primarily domi-
nated by grassland. According to the “Vegetation Map of the People’s Republic of China
(1:1,000,000)” [29,30], the three primary vegetation types that are most extensively dis-
tributed here are alpine meadow (AM), alpine steppe (AS), and alpine desert (AD). In
the grassland classification system of China, two more transitional types (alpine meadow
steppe and alpine desert steppe) have been expanded [31]. However, for permafrost studies
on the QTP, the vegetation has generally been classified into four types: alpine swamp
meadow (ASM, also called marshy meadow), AM, AS, and AD, which references the above-
mentioned classification systems. In this case, the ASM, originally a subtype of the AM,
was separated individually due to its unique indicative significance for permafrost (e.g.,
isolated permafrost is usually accompanied by ASM). Field observations clearly showed
significant differences in soil hydrothermal characteristics among these four types; AM soil
had the highest average soil water content in the 1 m deep soil layer, followed by ASM,
AS, and AD on the central QTP [32]. The meadow-type site showed a lower n-factor and
slower attenuation than the steppe-type site [15]. The characteristics of soil organic matter
fractions [33,34], storage [35–37], and microbial community structures [38] also depended
strongly on the vegetation types. Although such a classification scheme has been accepted
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by geocryologists and applied in numerous permafrost studies, it is important to state that
this classification did not strictly match the existing vegetation/grassland classification
systems; thus, we prefer to express this classification as the vegetation characteristic type
that focuses on the study of permafrost in this article.

The absence of the ASM type in the existing vegetation/grassland maps greatly limits
their applications in the permafrost region of the QTP [39]. Moreover, insufficient vegetation
type samples in high elevation areas usually result in large uncertainties surrounding
these national scale maps in the permafrost region, and these uncertainties will be further
introduced into permafrost modeling. To solve these problems, some studies have tried
to map the regional vegetation type with abundant field samples and remote sensing
data in permafrost regions [40,41]. With the increasing number of field samples, a new
vegetation-type map of the entire permafrost region of the QTP was accomplished by the
decision tree method with a spatial resolution of 1 km [39], which has been widely used
to estimate the active layer thickness and the soil organic carbon/nitrogen pools of the
QTP [37]. This map performed well in the region where the ASM extensively developed
and was mainly concentrated on the eastern part of the QTP. On the central and western
QTP, the ASM is quite heterogeneous and usually shows a sporadic and patchy spatial
pattern with lengths from dozens of meters to several hundred meters, which is a great
challenge for maps with km-level resolution to identify.

This study aims to generate an accurate and detailed map of the vegetation type
of the permafrost region on the central QTP based on field samples and remote sensing
data. To identify the patchy ASM, a spatial resolution of 30 m was set in this study for
mapping by combining the Landsat-8 images. The random forest (RF) classifier was
employed to predict the vegetation type and to estimate the importance of the predictors.
The results will provide fundamental data to the study area, which can help to improve
further permafrost studies.

2. Materials and Methods
2.1. Study Area

The study area is located on the central QTP and ranges from 90.54 to 92.49◦ E and
from 33.30 to 34.92◦ N (Figure 1). The study area includes three basins: the Tuotuo River
basin, the Tongtian River basin, and the Quemocuo Lake basin, which are the sources of the
Yangtze River. They have a total area of 24,980 km2. The basin boundaries were extracted
by the ArcSWAT module in Arcmap 10.2 software. The elevation of the study area ranges
from 4532 to 6575 m (4980 m on average). Records of the Tuotuohe national meteorological
station showed that the mean annual air temperature was −3.4 ◦C and that the annual
precipitation was 303.6 mm (approximately 84% of the precipitation occurred from June
to September) during the period 1986–2014 [42]. Permafrost is widely distributed in this
study region due to its cold climate conditions [28].

2.2. Data and Processing
2.2.1. The Observational Data

The observational data were collected during roadside surveys across approximately
500 km on the most important areas of natural vegetation during October 2020 (Figure 1). To
avoid the influence of the road (very narrow village roads without roadbeds), the location
at which each sample was collected was initially designed to be at least 100 m away from
the road during the field investigation. The vegetation characteristics at 319 sites were
classified into four types: alpine swamp meadow (62), alpine meadow (79), alpine steppe
(115), and alpine desert (63). All the locations of the sample sites are registered by a global
positioning system (GPS). The elevation and landscape of each site were recorded, and
pictures were taken.
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Figure 1. Study area and the sample collection sites (a): the location of study area on the QTP, (b): the
outline of study area and location of all samples, (c): color-coded samples for each vegetation type;
ASM: alpine swamp meadow, AM: alpine meadow, AS: alpine steppe, AD: alpine desert.

2.2.2. Predictor Variables

In this study, we selected 16 variables derived from Landsat-8 images, including the
surface reflectance (SR) of visible and shortwave infrared bands, the brightness temperature
(BT) of thermal infrared bands, the enhanced vegetation index (EVI), the normalized
difference vegetation index (NDVI), and the surface temperature (ST), to characterize
the spatial distribution of the vegetation types. Two products, USGS Landsat 8 Surface
Reflectance Tier 1 and Landsat 8 Level 2 Collection 2 Tier 1, were acquired between June
and August from 2013 to 2021. For SR and BT, the median values of the cloud-free pixels
were extracted as the input variables. Three values (maximum, mean, and median values)
for EVI and NDVI and two values (mean and median values) for the ST were extracted
during the same period (Table 1). All data processing was accomplished by the Google
Earth Engine (GEE) cloud computing platform. The BT and ST bands, while originally
collected with a resolution of 100 m, have been resampled using cubic convolution to 30 m
in the products.

Table 1. Description of the selected variables (SR: surface reflectance; BT: brightness temperature; EVI:
enhanced vegetation index; NDVI: normalized difference vegetation index; ST: surface temperature).

Predictor Description Units Data Source Resolution (m)

SR_Blue median SR at Blue band % Landsat 8 OLI 30
SR_Green median SR at Green band % Landsat 8 OLI 30
SR_Red median SR at Red band % Landsat 8 OLI 30
SR_NIR median SR at NIR band % Landsat 8 OLI 30

SR_SWIR1 median SR at SWIR 1 band % Landsat 8 OLI 30
SR_SWIR2 median SR at SWIR 2 band % Landsat 8 OLI 30
BT_TIRS1 median BT at TIRS 1 band Kelvin Landsat 8 TIRS 30
BT_TIRS2 median BT at TIRS 2 band Kelvin Landsat 8 TIRS 30
EVI_max maximum EVI value / Landsat 8 OLI 30

EVI_mean mean EVI value / Landsat 8 OLI 30
EVI_median median EVI value / Landsat 8 OLI 30
NDVI_max maximum NDVI value / Landsat 8 OLI 30

NDVI_mean mean NDVI value / Landsat 8 OLI 30
NDVI_median median NDVI value / Landsat 8 OLI 30

ST_mean mean ST from TIRS 1 Kelvin Landsat 8 OLI/TIRS 30
ST_median median ST from TIRS 1 Kelvin Landsat 8 OLI/TIRS 30
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2.2.3. Analysis of Sample Representativeness

The evaluation of sample representativeness was evaluated by frequency histograms.
The Euclidean distance and correlation coefficient (r) were used to evaluate the similarity
of variable frequency histograms between the samples and the study area (Table 2). The
results showed that all Euclidean distances were lower than 10%, ranging from 5.1% to
9.6% with an average value of 7.1%. The correlation coefficient (r) varied between 0.45 and
0.92 with an average value of 0.79. Six of the frequency histograms are shown in Figure 2.
For the EVI (Figure 2a–c), the frequency of samples is slightly lower in the low EVI area
and slightly higher in the high EVI area. The lower frequency is mainly related to a few
samples in the very high elevation areas of the northern, western, and southern edges
(Figure 1). A higher frequency means that more ASM samples were collected. SR_Red
showed a slightly higher frequency in the very low SR value intervals (Figure 2d), and the
frequency patterns of the ST_median and BT_TIRS2 of the samples were very similar to
that of the study area (Figure 2e,f). The samples could have credible representativeness for
the study area, although a slight deviation remained.

Table 2. Euclidean distances and correlation coefficients of the variable histograms between the
samples and study area.

Predictors Euclidean Distance (%) Correlation Coefficient (r)

SR_Blue 9.6 0.92
SR_Green 9.3 0.89
SR_Red 8.4 0.87
SR_NIR 7.8 0.92

SR_SWIR1 5.9 0.87
SR_SWIR2 6.0 0.80
BT_TIRS1 6.4 0.90
BT_TIRS2 6.7 0.88
EVI_max 7.7 0.66

EVI_mean 7.8 0.56
EVI_median 7.3 0.71
NDVI_max 7.1 0.45

NDVI_mean 6.6 0.58
NDVI_media 6.7 0.71

ST_mean 5.8 0.90
ST_median 6.4 0.89

Figure 2. Comparison of the frequencies of six predicted variables between the study area and the
samples (a): EVI_max, (b): EVI_mean, (c): EVI_median, (d): SR_Red, (e): ST_median, (f): BT_TIRS2.
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2.3. Methods

The random forest (RF) classifier was selected in this study to predict the vegetation
type, which was implemented in R [43] (https://www.r-project.org/ accessed on 12 August
2021). The RF is an ensemble classifier that uses a set of classification and regression trees
to make a prediction. In this way, it reduces the overfitting problem in decision trees
and reduces their variance, therefore improving accuracy [44,45]. No feature scaling
(standardization and normalization) is required, as it uses a rule-based approach instead of
a distance calculation [46,47]. Moreover, the RF allows us to assess the importance of each
input variable through mean decrease accuracy or mean decrease Gini coefficients [43].

Before formal prediction with the RF classifier, two key parameters need to be set: the
number of split variables (mtry) and the number of decision trees to be generated (ntree).
In this study, the mtry parameter was determined by the square root of the total input
variables [48], which was set as 4. The ntree parameter was set as 1000 because the errors
stabilized before this number of classification trees was achieved. After the determination of
mtry and ntree, we used the observational data together with the 16 variables to run the RF
classifier. The train-test split was used in each run, e.g., 70% of the vegetation samples were
randomly selected to train the RF model, while the remaining 30% were used for validation.
First, we ran the model a total of 1000 times, and the average overall accuracy and kappa
coefficient were used to evaluate the performance of the RF classifier. Then, the top 5%
high accuracies of 1000 results, i.e., the 50 results with the highest accuracy, were selected
to create the final map. The majority of 50 results was used to determine the vegetation
type for each pixel. The averaged confusion matrix and associated classification accuracies,
including the overall accuracy, producer accuracy, user accuracy, and kappa coefficient,
were employed to evaluate the predicted map. Finally, a percentage of misclassified
frequency in the total 1000 times was used to determine the uncertainty of each pixel.

The glaciers and lakes were masked in the process of prediction. The glacier area in the
study area was masked by the second glacial catalogue data set of China (v1.0), provided
by the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn/ accessed on
20 August 2021). The lake area was masked by the China Lake dataset (1960s–2020) [49],
provided by the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ accessed
on 20 August 2021).

3. Results
3.1. The Accuracy Assessment

The RF model results reached an average overall accuracy of 0.78, ranging from 0.66
to 0.92 after 1000 train-test splits. The average kappa coefficient was 0.69, ranging from
0.52 to 0.89. The detailed confusion matrix and associated classification accuracies of the
final predicted vegetation type map are summarized in Table 3. The overall accuracy and
kappa coefficient of the map reached 0.848 (0.844–0.852 at a 95% confidence level) and
0.790 (0.785–0.796 at a 95% confidence level), respectively. Most of the producer and user
accuracies for all four classified types exceeded 80%. Among the vegetation types, ASM
achieved the highest user accuracy with a value of 95.0%, AD had high accuracy (86.7%),
while AM and AS achieved the slightly lower, similar accuracies of 83.3% and 82.4%,
respectively. In addition, the matrix showed that only one misclassified type was found in
ASM and AD, two types were found in AM and AS, and misclassifications occurred only
in the adjacent types for each type.

https://www.r-project.org/
http://www.ncdc.ac.cn/
http://data.tpdc.ac.cn/
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Table 3. Confusion matrix and associated classification accuracies (ASM: alpine swamp meadow;
AM: alpine meadow; AS: alpine steppe; AD: alpine desert; CI: confidence interval).

ASM AM AS AD Total Sample User Accuracy (%)

ASM 19 1 0 0 20 95.0
AM 1 20 3 0 24 83.3
AS 0 2 28 4 34 82.4
AD 0 0 2 13 15 86.7

Total sample 20 23 33 17
Producer

accuracy (%) 95.0 87.0 84.8 76.5

Overall accuracy 0.848 (0.844~0.852, 95% CI)
Kappa 0.790 (0.785~0.796, 95% CI)

We assessed the importance contribution of all the variables in terms of the mean
decrease accuracy and mean decrease Gini coefficients (Figure 3); a larger value means
greater contribution of a given variable to vegetation type prediction. Both assessment
results of the two coefficients showed that the NDVIs and EVIs were the first two most
important variables for vegetation type prediction in the study area, and NDVIs made a
slightly larger contribution than that of EVIs; the median SRs of visible and shortwave
infrared bands showed a secondary contribution; and the median BTs of thermal infrared
bands and the STs showed very little contribution. Additionally, the maximum form of
the vegetation indices (i.e., NDVI_max and EVI_max) contributes more than the mean and
median forms.

Figure 3. Variable importance contribution in terms of mean decrease accuracy (a) and mean decrease
Gini (b) coefficients.

3.2. Vegetation Map in the Study Area

The predicted vegetation type map in this study is shown in Figure 4. The total area of
the study region is 24,980 km2, of which 23,927 km2 (95.8%) is vegetated, and the glaciers
and lakes cover 708 km2 (2.8%) and 345 km2 (1.4%), respectively. In the vegetated region,
the most dominant vegetation types were AS and AD, accounting for 40.2% and 34.0%
of the total study area, respectively. Both AS and AD were extensively distributed in the
entire study area. The AM and ASM, accounting for 19.0% and 2.5%, respectively, usually
showed patchy and discontinuous distribution patterns.
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Figure 4. The predicted vegetation type map of the study area (a) and two selected regions located in
the central (b) R1 and southern boundary (c) R2.

In terms of the spatial pattern of vegetation, the northern and western parts of the
study area were dominated by AS and AD, whereas ASM and AM were mainly distributed
in the central and southern parts. This pattern also showed a close relationship to the
terrain. The ASM and AM were mainly concentrated in the region with high relief, within a
set of west-to-east oriented mountain ranges. The AS and AD usually occur in relatively flat
regions, e.g., floodplains, terraces, and lake basins. Additionally, a horizontal vegetation
pattern was found that was characterized by the sequential occurrence of ASM-AM-AS-AD,
i.e., the vegetation types essentially appeared according to this order in this area.

We also selected two regions to show the detailed distribution of vegetation in the
predicted map, with region 1 (R1, Figure 4b) located in the central study area and region 2
(R2, Figure 4c) located in the source of the Tuotuo River (i.e., the north side of Geladandong
Glacier). In R2, several large areas of ASM appeared on the northern slope of the glacier;
however, this phenomenon was rare in other regions of the study area. Most of the distri-
bution patterns of ASM were more similar to those shown in R1, which was characterized
by a patchy and sporadic distribution with irregular shapes. These ASMs often occurred at
the mountain foot or in a narrow valley alluvium (areas usually ground water outflowed to
surface), which usually showed a long strip or fan-like shapes with lengths from dozens of
meters to several hundred meters. From Figure 4, both R1 and R2 show that the predicted
map at a 30 m resolution can capture the detailed spatial distribution of the ASM well.
Moreover, these two regions also exhibited a clearer pattern of the vegetation sequentially
occurring from ASM to AD, i.e., according to order of ASM-AM-AS-AD. However, the
complete transition distances from ASM to AD were closely related to the terrain. A moun-
tain front alluvial plain with gentle terrain relief in R1 presented a relatively long transition
distance, while steep terrain in R2 shortened the distance of a complete transition.
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3.3. Uncertainties of the Map

The uncertainty for each pixel was evaluated by a misclassified rate of the predicted
type in a total of 1000 train-test splits. Figure 5 shows the spatial pattern of the uncertainties
of the map. The results show that the average uncertainty of the map was 6.4% and
those of ASM, AM, AS, and AD were 6.8%, 5.9%, 7.2% and 5.8%, respectively. Areas
with uncertainties lower than 1% accounted for 48.3% of the vegetated area, and areas
with uncertainties lower than 5% and 10% accounted for 67.8% and 76.6%, respectively.
Areas with uncertainties greater than 25% and 20% accounted for only 8.9% and 11.3%,
respectively.

Figure 5. The uncertainties of the predicted vegetation type map in this study.

4. Discussion

In this study, the assessment of contribution importance showed that the vegetation
indices (i.e., NDVI and EVI) were the first control factor, the median SRs showed a moderate
contribution, and the median BTs and STs contributed little. This suggested that the
vegetation growth conditions and the reflectance characteristics of the ground surface
contribute more to the vegetation mapping in the study area. This phenomenon is closely
related to the climatic and vegetation characteristics of the study area. The climate in the
study area belongs to the alpine semi-arid and semi-humid climate transition zone [50],
its precipitation decreases from east-south to west-north being mainly controlled by the
terrain. Under such precipitation patterns, the spatial distribution of vegetation type also
showed a quickly changing pattern in this region. Related to the climate, the study area is
also a transition zone of vegetation; with meadow-type vegetation dominating eastward,
and steppe- or desert-type vegetation dominating westward [29,30]. These distinctive
environmental features make the vegetation types easy to separate from each other based
on the vegetation indices and surface reflectance information observed by the remote
sensing sensor. In other words, the information from Landsat-8 images (especially for the
vegetation indices) can satisfy the vegetation type mapping in this study area, i.e., the
transition zone of precipitation and vegetation on the central QTP. However, the result is
not always applicable. A study in the source region of the Yellow River of the eastern QTP
showed that terrain factors (e.g., slope and aspect) can help to improve vegetation type
mapping under the same EVI interval [40]. Therefore, the selection of predictors should be
considered according to the climatic and vegetation characteristics of the study area.
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The larger contribution of the NDVI to prediction than the EVI could be caused by
topographic effects. The soil adjustment factor in the EVI makes it more sensitive to
topographic conditions; however, this effect can usually be ignored with the NDVI with
only a band ratio format [51]. In addition, the short height and low biomass of vegetation
in the study area may not inspire the advantages of the EVI. The vegetation indices, as
an integrated variable, performed better than all of the individual, visible, and shortwave
infrared bands in this study. The small contribution of the BT and ST could be caused by
the diurnal variation in temperature. The pass time of the Landsat-8 satellite coincides with
the most rapid warming period in a day, while the temperature fluctuation is usually large
due to intense solar radiation and strong wind. In this case, the BT and ST did not remain
stable as vegetation indices; therefore, they caused the data to be incomparable between
pixels even in a mean or median form.

The classification confusion was related to the spatial pattern of vegetation types in
the study area. Generally, four types occurred according to the order of ASM-AM-AS-AD,
which can also be observed in Figure 4. In the study area, the ASM is characterized by
high coverage (mostly above 80%) and a very wet ground surface (usually holding water
bodies in the summer) [39]; these unique features make it easy to differentiate. The other
distinct vegetation type with ground surface features is AD, which is characterized by very
sparse plants, low vegetation coverage, and dry environments. For that reason, ASM and
AD obtained the highest accuracies, as only one adjacent type was misclassified for both,
and there was no misclassification between them (Table 3). The main misclassification
occurred in AM and AS, influenced by their extensive and mixed distribution patterns. As
the most dominant vegetation, AS showed a heterogeneous spatial pattern with concurrent,
continuous, and patch distributions. These factors caused an extensive transition area
between AS and AM or AD, and the mosaic distribution of different types resulted in
more misclassification. The uncertainty map also demonstrated this pattern, with high
uncertainties mainly occurring in the transition zone between different types, especially for
areas with rapid type changes within short distances.

The distribution of vegetation type in this study was compared with the result pro-
vided by Wang et al. (2016) at a spatial resolution of 1 km. The two maps have similar
spatial distribution patterns (Figure 6); however, the areas of AM and AS in this study
were less than that of Wang et al. (2016), and ASM and AD were greater. The complex
terrain relief and the associated precipitation pattern create a heterogeneous vegetation
distribution pattern here, and different vegetation types usually appear within a short
distance (e.g., dozens of meters). The 1 km resolution map does not often reflect this rapid
change, especially for ASM. It was shown that in the western, central, and southern study
areas (around the glaciers) (Figure 6), the results of this study identified more patchy areas
of ASM than the map of Wang et al. (2016).

Figure 6. Comparison between the vegetation type distribution in this study (a), resampling resolu-
tion to 1 km and the result of Wang et al. (2016) (b).
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The results of this study show that the RF approach can effectively and accurately
predict the vegetation classification of permafrost regions on the QTP. Another advantage
of the RF approach is that it can detect the main control environmental variables, which
can help to further understand the developmental characteristics of vegetation types in
different climate zones [52]. Moreover, this study used the last nine years of Landsat data
for model input, which can reflect the actual growth of vegetation and eliminate the effects
of extreme events on vegetation conditions [40,41]. Based on a spatial resolution of 30 m,
the predicted map in this study can provide detailed vegetation information, especially
for the distribution of ASM with patches and scattered distribution. To the best of our
knowledge, this is the first study to provide a high-resolution vegetation map of this area.
The results are promising for further permafrost modeling, and we aim to improve the
classification models presented here and to run the methodology across the permafrost
region of the QTP.

5. Conclusions

This study mapped the vegetation types using the random forest approach combined
with the Landsat-8 images of the central QTP. The performance evaluation showed that
the RF approach is useful and effective for vegetation classification in this region, with an
average overall accuracy of 0.78 and an average kappa coefficient of 0.69 after 1000 train-
test splits. The validation showed that the overall accuracy and kappa coefficient of the
predicted map reached 0.848 (0.844–0.852) and 0.790 (0.785–0.796), respectively. Most of the
producer and user accuracies for all four classified types exceeded 80%, especially for the
ASM, which had the highest user accuracy of 98.4%. The vegetation indices (i.e., NDVI and
EVI) are the most important variables in the study area; the surface reflectance of visible
and shortwave infrared bands showed a secondary contribution; and the BT and the ST
contributed little. The contribution importance of variables is closely related to the climatic
and vegetation characteristics of the study area.

The dominant vegetation in the study area is AS and AD, accounting for 40.2% and
34.0% of the total study area, while AM and ASM account for 19.0% and 2.5%, respectively.
The ASM and AM usually showed a patchy and discontinuous distribution. The average
uncertainty of the map was 6.4%, and those of ASM, AM, AS, and AD were 6.8%, 5.9%,
7.2%, and 5.8%, respectively. The areas with high uncertainties mainly occurred in the
transition zone between different types, especially for the boundaries of AM and AS, and in
the areas with rapid type changes within short distances. The results of this study showed
that the RF approach can effectively and accurately realize the vegetation classification
of permafrost regions on the QTP. Based on a spatial resolution of 30 m, the results can
provide more detailed vegetation information than the existing maps, which will be helpful
for further permafrost modeling in this region.
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