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Abstract: Urban vegetation growth is vital for developing sustainable and liveable cities in the
contemporary era since it directly helps people’s health and well-being. Estimating vegetation cover
and biomass is commonly done by calculating various vegetation indices for automated urban
vegetation management and monitoring. However, most of these indices fail to capture robust
estimation of vegetation cover due to their inherent focus on colour attributes with limited viewpoint
and ignore seasonal changes. To solve this limitation, this article proposed a novel vegetation index
called the Multiview Semantic Vegetation Index (MSVI), which is robust to color, viewpoint, and
seasonal variations. Moreover, it can be applied directly to RGB images. This Multiview Semantic
Vegetation Index (MSVI) is based on deep semantic segmentation and multiview field coverage and
can be integrated into any vegetation management platform. This index has been tested on Google
Street View (GSV) imagery of Wyndham City Council, Melbourne, Australia. The experiments and
training achieved an overall pixel accuracy of 89.4% and 92.4% for FCN and U-Net, respectively.
Thus, the MSVI can be a helpful instrument for analysing urban forestry and vegetation biomass
since it provides an accurate and reliable objective method for assessing the plant cover at street level.

Keywords: multiview semantic vegetation index; urban forestry; green view index (GVI); semantic
segmentation; urban vegetation; RGB vegetation index

1. Introduction

The changing land use patterns and population growth have had a significant impact on
the vegetation composition in the world [1-3] which is essential for better living conditions
of city dwellers. As indicated by Wolf, K.L. [4], a city’s vegetation cover (i.e. street woods,
lawns, etc.) has long been acknowledged as a key component of urban landscape planning.
According to Appleyard [5], the instrumental role of street vegetation is to absorb airborne
pollutants through carbon sequestration and oxygen production, to mitigate noise pollution
in urban heat islands [6], and to reduce storm waters [7,8]. In addition, the life of vegetation
generally raises the aesthetic evaluation of people in urban settings [9,10]. For this purpose,
it is critical to document changes in vegetation so that land management professionals may
work to improve the urban environment. Furthermore, changes in the type of land cover
(such as building developments) have been found to have a strong correlation with the
changes of vegetation in the urban environment.

Moreover, changes in an urban environment are generally very important. Food, energy,
water, and land used by urban residents have a significant impact on the environment.
Therefore, automated detection of vegetation cover is often done through calculations of
various vegetation indexes [11] that hold important information regarding vegetation cover
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of a particular location. In the past, various algorithms were employed for the calculation of
the vegetation index using various image modalities. However, existing approaches have
highly focused on spectral analysis and color variations. For instance, Normalized Difference
Vegetation Index (NDVI) tends to amplify atmospheric noise in the Near Infrared Reflectance
(NIR) and Red bands and becomes very sensitive to background variation. Therefore, it
does not work well for RGB images for street-level vegetation analysis. Remote sensing data
collected from above by sensors (aircraft, space) misses the glimpse of urban flora at street
level. Thus, profile views of urban greenery from the road level are insufficiently assessed,
even though green indices derived from remotely sensed image data might help quantify
urban greenery. There is a distinction between vegetation view through ground experience
and the view captured by remote sensing systems [12]. Li et al. [13,14] discovered that
people had unequal access to distinct types of urban greenery (street vegetation, private
yard total vegetation, private yard trees and shrubs, and urban parks), providing the
groundwork for subsequent research into urban greenery inequity.

On the other hand, RGB based vegetation indexes are prone to wrong estimations due
to reliance on green color and ineffectiveness to capture seasonal variations. Rencai et al. [15]
utilise the green view index (GVI) as a quantitative indicator to determine how much green-
ery can be seen by pedestrians and then apply an image segmentation algorithm to figure
out how much greenery can be seen by pedestrians in street view images. Zhang et al. [16]
used an extensive street view image data set, as well as a horizontal green view in-
dex (HGVI), to calculate the quantity of greenery visible from the street in their research.
Long et al. [17] analysed 245 Chinese cities, calculating the GVI values of their central
regions and comparing them to the overall GVI conditions of the respective cities. As
a result, they discovered that more affluent and well-run cities have longer and greener
streets. Several visual qualities of streets such as salient region saturation, visual entropy, a
green view index, and a sky-openness index were measured by Cheng et al. [18].

Kendal et al. [19] used color threshold for extraction of the vegetation index. The
technique proved to be promising, but only using color features for segmentation is not
an efficient model as any clutter information in the image can match the vegetation color.
Further, in recent years, Bawden et al. and Kattenborn et al [20,21] used convolutional
neural network (CNN) for two studies: In the first approach, they used a CNN-based
approach to train data acquired from unmanned aerial vehicle (UAV)-based high-resolution
RGB imagery visual interpretation, a fine-grained map for two species of vegetation. In
the second approach, they mapped species of trees or plants cover in different vegetation
UAV RGB imagery. However, these approaches suffer due to reliance on color and specific
image features and are unable to handle large variations in vegetation characteristics.

Recent advancements in deep learning have introduced a new level of accuracy
in identifying objects of interest through semantic segmentation. Jonathan et al. [22]
introduced a fully convolutional neural network (FCN), and Dvornik et al. [23] proposed
BlitzNet for object segmentation. Yi et al. [24] constructed an instance aware based
semantic segmentation model, which utilized the advantages of FCN for segmentation
and classification. As a result of the development, the model was capable of simultaneously
recognizing and segmenting the object instances. Liang-Chieh et al. [25] applied fully
convolutional neural networks (FCN) to a multi-scale input image in order to achieve the
required results.

Motivated with the success of deep semantic segmentation, the conducted research
proposes a semantic vegetation index (SVI) for RGB images with robustness against color
changes and seasonal variations. To deal with the limitation of single image coverage, its
extension, called multiview semantic vegetation index (MSVI), is also introduced, which
can estimate vegetation cover from multiple views. The overall framework of this study is
presented graphically in Figure 1.
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Figure 1. A data flow diagram for the MSVI, which highlights the process of calculating the proposed
vegetation index.

The contribution: According to the literature, the semantic vegetation index (SVI) is
one of the first approaches to integrate deep semantic segmentation into the process of
vegetation index estimation. Although there are a variety of vegetation indexes in the
literature, they are limited to a specific image modality and color feature, or they overlook
essential flora semantic information. It makes them more susceptible to noise, resulting
in erroneous estimation. The proposed index is robust to color and seasonal variations
and works for any imaging modality. Furthermore, it can be extended to multiple views to
expand exposure and reliable calculation. The segmentation approach is not claimed to
have made a contribution in this study. Nonetheless, it compares many ways to determine
which are the most appropriate for this aim.

The rest of the paper is organized as follows: Section 2 explains the materials and meth-
ods taken into account, Section 3 presents detailed information regarding the experiments
and results achieved by the proposed methodology, Section 4 presents the comparative
analysis with the previous work , Section 5 presents a detailed discussion of the proposed
work, while Section 6 is the conclusion section of this paper.

2. Materials and Methods
2.1. Study Area

Figure 2 shows the municipal council of Wyndham (VIC, Australia), as the selected
area for this study. It lies on the western outskirts of Melbourne (VIC, Australia) and covers
an area of 542 km?. According to the 2019 census, its estimated population is 270,478.
Wyndham is the third fastest-growing council in the state of Victoria. The population
of Wyndham is diverse, and the community development projects suggest that by 2031
more than 330,000 people are expected to come and live. Wyndham is home to 16 suburbs
(Cocoroc, Eynesbury, Hoppers Crossing, Laverton North, Laverton RAAF, Little River,
Mambourin, Mount Cottrell, Point Cook, Quandong, Tarneit, Truganina, Williams Landing,
Manor Lakes, Quandong and Werribee South). The City Council of Wyndham is committed
to improving residents” environment and livelihoods. Every year, thousands of new trees
and vegetation are planted in response to this commitment to increase Wyndham's tree
canopy cover through the street tree planting program [26].
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VICTORIA

Figure 2. The research area in Victoria, Australia, which was chosen for this study. (a) Victoria
(Australia); (b) Wyndham City Council, Victoria, Australia; (c) one sample site and (d) a sample street
view from a sample site.

2.2. Input Data Set/Google Street View Image Collection

In this research work, Google street view images (GSV) [27] is used for the multiview
semantic vegetation index (MSVI) estimation. A sample GSV image of a Wyndham Council
in Melbourne, Victoria, is shown in Figure 3. The GSV panorama view is identical to
the real-world view. The process of producing a 360° GSV panorama is to sequentially
capture horizontal X-number (X = 6) images and vertical Y-numbers (Y = 3) images of the
camera [28]. The GSV Image API (Google) [27], together with the position and travelling
direction of the GSV car, can be used to obtain every accessible GSV image in an HTTP
URL form, for example (https://maps.googleapis.com/maps/api/streetview?parameters
(accessed on 15 August 2021). The static GSV image, as shown in Figure 4, can be retrieved
for every point where the GSV is available by establishing URL parameters supplied via a
specific HTTP request utilising the GSV Image API (Google) [27].

Figure 3. A sample panorama image of a selected study site from Google street view imagery.

The GSV images for each sample site in six directions were collected as illustrated in
Figure 5a, and in three vertical angles to determine the green areas visible to pedestrians as
presented in Figure 5b. Therefore, 0°, 60°, 120°, 180°, 240°, and 300° were set as the heading
parameters whereas 45°, 0°, and —45° as pitch parameters. As a result, a total of eighteen
images are captured for a specific location, ensuring that no vegetation area is left out of
the index calculation. A Python programming language script is executed on all the GSV
images to read and download them from each example site by automatically parsing the
GSV URL.


 https://maps.googleapis.com/maps/api/streetview?parameters
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Figure 5. (a) Sample of images taken from pedestrian view in six different angles and (b) from
pedestrian view, three images taken from three vertical angles (45°, 0°, —45°).

2.3. Deep Semantic Segmentation

The act of grouping sections of an image in such a way that each pixel in a group
correlates to the object class represented by the group as a whole can be defined as semantic
segmentation for images in this manner [29,30]. The object classes in the current work
correspond to trees and green vegetation terrain. Images can be segmented by allocating
each pixel of an input image to a label class object, which is referred to as semantic
image labelling [31]. Image segmentation is also known as semantic image labelling.
This method often combines image segmentation with object identification techniques to
produce a final result. Various deep learning-based segmentation models, such as FCN [32],
DeepLabv3+ [33], and Mask R-CNN [34], are being developed for use in a variety of
applications and environments. For the purpose of semantic vegetation segmentation
and to calculate the vegetation index from GSV imagery in this research work, FCN [22]
and U-Net [35] semantic segmentation models are used. Their selection was based on
their high precision and excellent performance in medical imaging area. The results of the
experiments demonstrate that deep learning-based segmentation models are effective at
segmenting vegetation images using semantic attributes.

2.3.1. Fully Convolutional Network (FCN)

Fully Convolutional Network (FCN) [22] uses locally connected layers, such as up-
sampling, pooling, and convolution, to achieve segmentation. The architecture does not
include any dense layers in order to reduce the amount of time it takes to compute and
the number of parameters it requires. A segmentation map uses two paths to obtain
output: the first is a down-sampling road, which is used to collect semantic/contextual
information, and the second is an up-sampling path, which is used to recover spatial
features. The architecture of FCN is depicted in Figure 6. Fully convolutional network
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architecture (FCN) was presented by Long et al. [22] for robust segmentation by adopting
fully convolutional layers in place of the last fully linked layers. This approach allows
the network to generate a dense pixel-wise prediction as a result of the advancement.
The combination of up-sampled outputs with high-resolution activation maps results
in improved localisation performance, which is then passed to the convolution layers
to produce the correct output. The performance of FCN motivated to employ it as an
important component of the proposed approach.
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Figure 6. The architecture of fully convolution network (FCN) showing network processes. The
masks for trees and vegetation are shown as RGB color codes.

2.3.2. U-Net

The second model employed in this work is U-Net [35], which has a similar encoder-
decoder architecture to that of FCN but has two significant traits that distinguish it from
the former. Since U-Net is symmetric, it bypasses the connections between the up-and
down-sampling paths, which is useful when employed as a concatenation operator. Using
the color variable, models assign a color to an item after they have been trained. The U-Net
network (Figure 7) is built on an encoder-decoder architecture [35]. The encoder consists
of a stack of convolutions and max-pooling layers that work together. The decoder is a
symmetric expanding path that up-samples the feature maps with the use of learnable
deconvolution filters, which can be learned. The major innovation brought about by
this network is the way in which the so-called skip connections are utilised. To be more
specific, they enable the concatenation of the output of the transposed convolution layers
with the corresponding feature maps from the encoder stage during the convolution
stage [36]. The main objective of this step is to get all the fine characteristics that were
learned throughout the contracting stages in order to restore the spatial resolution of the
original input image [35].

! Image
normal!zatlon

Input image
with
3XHXW

Output

Copy and Ci

- =«Copy and Concatenate -

Mask Color For
trees: 107, 142, 35
vegetation terrain: 152, 251, 152

Conv 2x2 Semantic Pixels Calculation

Figure 7. The architecture of U-Net showing network processes. The masks for trees and vegetation

terrain are shown as RGB color codes.
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According to standard practice, in the U-Net approach, the input image is initially
processed by an encoder path, which is comprised of convolutional and pooling layers that
degrade the spatial resolution of the input image. It is then followed by a decoder path that
restores the original spatial imagery resolution by adopting up-sampling layers followed
by convolutional layers, which is a technique known as “up-convolution”. Apart from
that, the network makes use of so-called skip connections, which connect the output of the
relevant layers in the encoder path to the inputs of the decoder path by adding them to the
inputs of the decoder path, whereas FCN allows pixel-wise classification performed for
segmentation where features from initial convolutional layers are upsampled to develop
deconvolution layers. These deconvolution layers develop the same size image, which is
segmented on the basis of learnt features. Fine-tuning was performed to allow the network
to learn efficient features of the vegetation region.

2.4. Vegetation Index Calculation from RGB Images

Various approaches are adopted in the literature for vegetation index calculation. Some
of those are listed in Section 2.4.1. However, most of them used either color, threshold, or
green area segmentation that might lead to promising results. To achieve robustness in
vegetation index calculation, a semantic approach based on the unique color for each class
of plants is proposed in this article. RGB color codes (107, 142, 35 and 152, 251, 152) for trees
and vegetation terrain were assigned, respectively. After segmentation of the vegetation
(trees and vegetation terrain), the respective masks are applied to calculate an accurate
vegetation index as discussed in Section 2.4.2. For a better understanding of the RGB color
space, the 3D data distribution in the RGB domain in Figure 8 is shown.

250
200
150 Blue
100

800 1000 1200 1400 Red 2005, 0
a. b.

Figure 8. A sample image is presented in 3D color spaces for better understanding of data distribution:
(a) sample image and (b) data distribution in RGB color space. As data in different color channels is
tightly correlated, it provides inherent difficulties to differentiate color and semantic information in
RGB domain.

2.4.1. Green View Index (GVI)

Mohamed et al. [37] explored extracting green vegetation from remotely sensed mul-
tispectral images. It has been identified that both, i.e., near-infrared and red bands, are
being utilised quite often for vegetation detection. One of the primary reasons is that on red
bands, the vegetation shows less absorption, and on infrared, they show great reflection.
However, GSV images cover only the blue, red, green, and near-infrared bands. It was
established by Yang et al. [12] that the GVI value was affected by two factors: the size of
a tree’s crown and the distance between the camera and the subject. A non-supervised
classification methodology was used by Li et al. [13] to extract green vegetation from GSV
images, which was justified by the fact that a significant number of GSV images were
not available in the near-infrared band. According to their findings, green vegetation is
significantly less reflective in red and blue bands. The red bands, on the other hand, are
extremely reflective. As a result of this phenomenon, they developed extracting green
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vegetation from GSV images based on the natural hues of the images. There are a number
of steps involved in the workflow.

Step-1: First of all, the subtraction of red band from green band generates Diff 1, and
subtraction of blue band from green band gives Diff 2.

Step-2: Then the two images Diff 1 and Diff 2 were multiplied to create one Diff image.
Normally, the green vegetation has greater reflectance values in the green band
than the other two red and blue bands, and hence, the Diff image has positive green
vegetation pixels.

Step-3: The pixels that have lower values in the green band as compared to the red and
blue bands exhibit negative values in the Diff image

Step-4: As a result, an additional criterion was added stating that pixel values in the green
band must be greater than those in the red band.

Usually, there were multiple spark points in the resulting images, after the initial
classification images utilising the pixel-based classification approach were obtained as
described in the steps above (Steps 1-4) [38]. The spectral vegetation variation has led to
classifying individual pixels differently from their surrounding areas, leading to sparks in
the classed image.

Number of green pixels segmented
Total Number of pixels in an image

M

Green View Index =

The above equation gives information regarding the available greenery in the image.
Yang et al. [12] proposed the Green View Index (GVI), which measures the visibility of
urban woods in terms of greenery. Its GVI was defined as the relationship between the
total green space and four image(s) taken at the intersection of the road and the sum of the
four images taken at the intersection as shown in the following equation:

4

: . Area, ;
w +100% )
Y1 Area; ;

Green View Index =

where the Area,_; presents the green pixels of the images taken in the direction of ith out
of the four images taken in the (north, east, south, and west) directions. Area;_; represents
the total number of pixels in the image in the direction of ith. According to Li et al. [13],
in this scenario, some surrounding vegetation may be missed from the calculation of the
GVl since only four images cannot be seen in the fields of vision from the pedestrian view.
Therefore, they modified the Equation (2) as below:

6 3
Zi:1 Zj:l Areag_i]'

Green View Index = =3
Zizlijzl Area;_jj

* 100% ©)

where Area,_;; denotes the number of green pixels in one of these images, which were
taken in six directions with three vertical view angles for each sample site and were then
averaged over all six directions. As a result, Area;_;; represents the total amount of pixels
included within each one of the eighteen G5V images.

2.4.2. The Proposed Semantic Vegetation Index (SVI)

For robust calculation of the vegetation index of each sample location on the road or
street, the approach of semantic pixels (SP) is used, which is based on the unique color
pixels assigned to vegetation’s specific class (Vegetation terrain and trees) and are extracted
based on the deep features through the use of a deep neural network. For index calculations,
Google street view (GSV) images were used as such dataset is readily available. Therefore,
in this investigation, a single image was used to calculate the vegetation index accurately
based on the semantic pixels, so to cover all the vegetation area in the image. Hence, in
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each sample image, the number of semantic pixels will be determined as SP,, with the area
being the total semantic pixel numbers in one GSV image. The original Equation (1) has
been updated and is now referred to as the semantic vegetation index (SVI).

sy1= ZimSPi o0 @)
Y. Area; ;

where SVI stands for semantic vegetation index, n is the total number of images, SP,_;
denotes the amount of semantic pixel area representing greenery in an image, and Area; ;
denotes the total amount of pixels in an image.

Similarly, to calculate the multiview semantic vegetation index, a total of six images
covering the 360° horizontal environment with three vertical angles of, i.e., 45°, 0°, and —45°
are used. The process is shown in Figure 5b to calculate the vegetation index accurately
based on the semantic pixels so that to cover all vegetation area. Hence, in each sample site,
the number of semantic pixels will be determined as SP, _;;, with the Area being the total
semantic pixel numbers in one of the 18 GSV images. Equation (3) has been modified to
utilise semantic pixels for calculating the multiview semantic vegetation index (MSVI).

YT SPa i

MSVI = Z =~

* 100% (5)

where MSVI stands for multiview semantic vegetation index, SPLij presents semantic
pixels area of vegetation in input images which are taken from different pitch angles (45°,
0°and —45°) vertically as well as six horizontal direction covering 360° area, and Area;_;
represents the sum of pixels in an image from the eighteen images of GSV.

3. Results
3.1. Preparation and Annotation of Data Set

For the experiments and implementation of the proposed model, first, a total of 3000
Google street view (GS5V) images were downloaded using a python script. The next step
was the pre-processing of the dataset so that the images could be used for training and
testing phases. For the annotation of the training data, a cloud-based tool known as
“Apeer”, a ZEISS initiative [39], has been used. Image annotation generates labels that serve
as the basis for machine learning training. Machine learning accuracy is determined by the
amount of training data as well as the accuracy of annotations. The process of Annotation
is summarised in Figure 9.

3.2. Experimental Environment Configuration

For the experiments and results, the hardware and software resources used are listed
in Table 1.

Table 1. Configuration of experimental environment.

Item Name Parameter
Central processing unit (CPU) Intel i7 9700k
Operating system MS Windows 10
Operating volatile memory 32GB RAM
Graphic processing unit (GPU) Nvidia Titan RTX

Python 3.8 + TensorFlow 2.5 + CUDA 11.2 +

Development environment configuration uDNN V8.1.0 + Visual Studio 2019
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Figure 9. The process of data annotation shown in this figure: (a) a data annotation cloud based
platform known as “Apeer”, (b) sample image for annotation, (c) after completion of annotation, and
(d) area zoomed for annotation in (c) and pointed with arrow.

3.3. Training of Deep Semantic Segmentation Models

The complete data set was split up into three distinct sections: training, validation, and
testing sets, each comprising 80%, 15%, and 5% of the total, respectively. Before starting the
training, hyperparameters were set to avoid the overfitting and underfitting issues of the
model. The hyper-parameters used for the training of semantic segmentation model were
the following: batch size kept as 16, learning rate as 0.0001, loss function as categorical
cross-entropy, number of iteration/epochs as 200, NMS threshold as 0.45, and an optimiser
as stochastic gradient descent “SGD”. The training loss, validation loss, training accuracy
and validation accuracy curve graphs are presented in Figures 10a,b and 11a,b for the FCN
Model and the U-Net Model, respectively. The accuracy curve for the U-Net beats the
accuracy curve for the FCN, as shown in the graph in Figure 11.

Loss Evaluation Accuracy Evaluation
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Figure 10. FCN segmentation model trend graphs for (a) training and validation loss and (b) training
and validation accuracy.
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Figure 11. The U-Net segmentation model trend graphs for (a) training, validation loss and (b) train-
ing and validation accuracy.

Some of the sample results using FCN and U-Net segmentation models are shown in
Figure 12, and vegetation index values are computed using Equation (4). The vegetation
index values calculated from FCN for the test input images are 43%, 30% and 32%, while
vegetation index values calculated from U-Net for the test input images are 41.4%, 33%,
and 37%. The results show that the U-Net segmentation model gives comparatively more
accurate and promising results than the FCN segmentation model. The ground truth
results are computed manually to compare the results after masking manually and then
calculating the pixel values of the vegetation, using Adobe Photoshop application software.
The computed results are in percentage, as evident from Equation (4). Thus, on the basis of
the ground truth data, U-Net vegetation index results are quite promising and are more
close to the ground truth results.

Input Image _ FCN Result _ U-net Result

Figure 12. Segmentation and extraction of vegetation results from test input images: (a) input images,
(b) results generated using FCN and (c) results generated using the U-Net model.

3.4. Performance Evaluation of Semantic Segmentation Networks

The performance of the semantic segmentation technique is evaluated using the
metrics of precision, recall, F1-score, pixel accuracy (PA), intersection over union (IoU),
and mean intersection over union (mloU). Figure 13 shows the results of FCN and U-Net.



Remote Sens. 2022, 14, 228

12 of 17

The accuracy of object contour segmentation is measured using the PA method, while the
accuracy of an object detector on a particular dataset is measured using the IoU metric. The
mloU is the average of IoU and is defined to show the overall enhancement of semantic
segmentation accuracy.

3.4.1. Precision, Recall, and F1-Score

FCN and U-Net segmentation models were compared in terms of precision, recall,
and F-measure. The results of the comparison are shown in Table 2.

Precision is defined as the relationship between the number of accurately segmented
vegetation pixels and the total number of pixels segregated as a vegetation region by the
technique. The recall is the ratio between the number of successfully segmented vegetation
pixels and the total number of vegetation pixels in the labelled image.

.. tp
Precision = 6)
tp+fp
__tp
Recall = ot )

The equation of F1-score is shown below,

2 % Precision x Recall
F1 = score = Precision + Recall ®)

3.4.2. Pixel Accuracy (PA)

In the evaluation of segmentation models, the pixel accuracy metric is the most
commonly employed. It is defined as the accuracy of the pixel-wise prediction, given as

Zi'{:o Pii

PA= —"—/——
Yo Yo P

)

where k represents the total number of pixels in a test image, and p;; is used to present the
true positive predicted pixels as of class i, while p;; presents the ground class i pixels as the
number of pixels of class j.

3.4.3. Intersection Over Union (IoU)

Intersection over Union (IoU) is also known as the Jaccard Index [40], and it is a
typically used assessment statistic for segmentation models that is used to calculate their
overall performance. As shown below, it is commonly defined as the ratio of intersection
and union areas between the projected segmentation map and ground truth.

Pii
IoU = (10)
L5 o pij + Lo Pji — Pii

where k indicates the total number of classes, p;; represents the number of true positives,
and p;j and pj; represent the number of false positives and false negatives, respectively.

3.4.4. Mean-IoU (mloU)

mloU is yet another matrix that is commonly used in segmentation models. It is
calculated as the average value of all IoU label classes taken as a whole. This type of report
is commonly used to summarise the performance of segmentation models, given as

k ..
mlolU = 1 Z Pi

(11)
K+ 12 o pij + Sio pji — P
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where k indicates the total number of classes, p;; represents the number of true positives,
and p;; and pj; represent the number of false positives and false negatives, respectively.

Figure 13 and Table 2 show the results achieved by different segmentation models
used for vegetation index calculation on the basis of semantic pixels in an image. The
U-Net model showed really promising results.

100

FCN m U-Net

95

90 | I | |
70 I I
loU

mloU

o
«

-3
=)

~
a

Precision Recall F1 - Score Pixel Accuracy

Figure 13. Performance evaluation of FCN and U-Net segmentation models.

Table 2. Performance evaluation results.

Segmentation Model  Precision Recall F1-Score Pixel Accuracy IoU  mloU
FCN 93.2 87.3 90.1 89.4 82.3 80
U-Net 95 90.8 92.3 924 86.5 83

4. Comparative Analysis

The extraction of green vegetation from street view images is a difficult task because
of a variety of factors, including the presence of shadows and spectral confusion between
vegetation and other artificial green features (green walls, windows, shadows, signboards,
etc.) Two studies are most relevant to this research: Yang et al. [12] used four GSV images
in their work. As a result, Li et al. [13] modified the Green View Index (GVI) calculation,
and they subsequently conducted a case study assessment of street vegetation using GSV
images in the East Village of Manhattan District, New York City. They assert that the
modified GVI may be a relatively objective measure of street-level greenery and that the
use of GSV in conjunction with the modified GVI may be particularly effective in directing
urban landscape planning and management practices.

For the purpose of comparison with the literature, sample images containing green
vegetation, as well as green walls, signboards, and décor, were segmented and extracted for
vegetation index calculation. Sample images segmentation results based on Li et al. [13] and
Rencai et al. [15] are presented in Figure 14 and Table 3. From the results, it can be seen that
the results of segmentation also included other green objects as vegetation because both
the studies are principally based on green color. Both of the studies have mentioned this
drawback in their studies and results, thus yielding an inaccurate vegetation index because
of the inclusion of other green color objects. Hence, the vegetation index calculated values
are higher as compared to our results. However, this study’s results included vegetation
only while ignoring other green color objects for calculating the index because it is based
on semantic segmentation, thus giving an accurate vegetation index value.
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Input Image Lietal. [13] Rencai et al. [15] SVI [our]

Figure 14. A sample of images and their segmentation (vegetation extraction) results using different
approaches: (a) Sample input images, (b) Li et al. [13], and (c) Rencai et al. [15] and (d) SVI (proposed).

Table 3. Comparison table for vegetation segmentation and their vegetation index calculation using
various vegetation extraction and index calculation approaches.

S.No. GVI|[13] GVI[15] SVI [Ours]
1 57.50% 55.91% 47.55%
2 46.62% 43.12% 35.44%
3 52.68% 51.25% 40.33%
4 43.08% 40.55% 27.42%

The multiview semantic vegetation index calculation for panoramic images taken at
different angles horizontally (a) and with varying angles of pitch vertically (b), as shown in
Figure 5, and the respective calculated vegetation index values are presented in Table 4. In
the table, it is clear that the results of Li et al. [13] and Rencai et al. [15] are quite similar as
both studies rely on the green color; hence, there are chances that during the calculation
of the vegetation index, most of the time other objects of green color were included as
mentioned before in the sample segmentation result shown in Table 3. Therefore, the results
are inaccurate, and the vegetation index percentage indicated is larger than ours because
both comparison studies employed the green area index, and the tram in the image was
also used to compute green color in those studies shown in Figure 5. On the other hand,
the proposed model extracted only vegetation index. The input image on the second row in
the Figure 14 is taken from the paper by Li et al. [13] only for comparison purposes. There,
they mentioned that their algorithm is based on the green color, thus including another
green object during the calculation of the green view index.

Table 4. Comparative analysis of vegetation index calculation through various approaches.

Li et al. [13] Rencai et al. [15] MSVI [Proposed]
63.40% 62.9% 56.19%
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5. Discussion

Based on the research study, the semantic segmentation leads to accurate index calcu-
lation. The publicly available GSV imagery of the urban areas was used to quantify street
greenery, i.e., SVI of the urban streets. GSV are freely available to the public and can be
used in machine learning/computer vision in an efficient way to perform multiple activities
automatically. The SVI can be utilised as useful information/data for a better assessment of
urban greenery by considering people’s envisioned vegetation on a street scale for urban
planners and others. To assess the greenery of street vegetation, GSV images captured from
the ground should be similar to those of pedestrians.

A single vertical point of view is insufficient to express correctly the surrounding
vegetation index that pedestrians may observe; two vertical points of view are required.
Therefore, the multiview semantic vegetation index (MSVI) is employed for six GSV images
in this experiment to calculate the vegetation index, each spanning a 360° horizontal and
three vertical angles of 45°, 0° and —45°, to calculate the vegetation index appropriately on
the basis of the semantic pixels.

According to the findings of this study, GSV images are qualified for assessing street
greenery, and the modified GVI may be a more objective measurement of street-level green-
ery. The multiview semantic vegetation index (MSVI) took advantage of the characteristics
of GSV images, used 18 GSV images taken from different viewing angles, making the
index more efficient for evaluating street greenery in urban areas. Because it measures the
amount of visible urban greenery on the ground, the SVI formula is simpler to understand
for the general public. As a result, it can give a monitoring tool to analyze gains or losses in
urban vegetation. It may serve to help urban planners select the sites, sizes and varieties of
greenery for best effect in the planning stage of an urban greening program. It, therefore,
seems to be a promising instrument, not a mere gadget for users, for future urban planning
and urban environmental management.

The strength of SVI lies in its robustness to color variations and viewpoint constraints.
The limitation of the approach is its reliance on captured viewpoints and attributes of the
captured image, like its zoom level and image quality. Therefore, if SVI is utilised for
long-term vegetation monitoring, it is proposed that proper dataset normalisation and
image registration scale or affine invariant [41] be used before SVI estimation.

6. Conclusions

This research paper proposes a robust vegetation index based on semantic segmenta-
tion called a multiview semantic vegetation index (MSVI). The Google Street View (GSV)
imagery dataset is used for calculating and indexing the vegetation cover of an urban area
of the Wyndham City Council in Melbourne, Australia. The MSVI is based on the deep
features learned from a deep neural network to calculate the vegetation index of each sam-
ple location in the urban area. For vegetation segmentation, different deep learning-based
semantic segmentation models, such as FCN and U-Net, were tried. Using the GSV data set,
both segmentation models were trained and tested to improve their overall performance.

The proposed method for segmenting urban vegetation areas has yielded promising
results. Generally speaking, U-Net shows better results than FCN. FCN and U-Net models
achieve Precision of 93.2% and 95%, Recall of 87.3% and 90.8%, F1-score of 90.1% and 92.3%,
pixel accuracy (PA) of 89.4% and 92.4%, IoU of 82.3% and 86.5%, and mloU of 80% and 83%,
respectively. The proposed MSVI index measures the broad visible urban greenery on the
ground, which can assist urban planners and strategists in better understanding urban
green spaces.

We intend to use this approach in the future for real-time vegetation index calculation
using Google panoramic cameras such as Pilot Era 360°, Insta360 pro, and Insta360 pro2,
which will be of great help in the quest for ecological improvement.
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