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Abstract: Rapid and accurate mapping of the spatial distribution of cotton fields is helpful to ensure
safe production of cotton fields and the rationalization of land-resource planning. As cotton is an
important economic pillar in Xinjiang, accurate and efficient mapping of cotton fields helps the
implementation of rural revitalization strategy in Xinjiang region. In this paper, based on the Google
Earth Engine cloud computing platform, we use a random forest machine-learning algorithm to
classify Landsat 5 and 8 and Sentinel 2 satellite images to obtain the spatial distribution characteristics
of cotton fields in 2011, 2015 and 2020 in the Ogan-Kucha River oasis, Xinjiang. Unlike previous
studies, the mulching process was considered when using cotton field phenology information as a
classification feature. The results show that both Landsat 5, Landsat 8 and Sentinel 2 satellites can
successfully classify cotton field information when the mulching process is considered, but Sentinel 2
satellite classification results have the best user accuracy of 0.947. Sentinel 2 images can distinguish
some cotton fields from roads well because they have higher spatial resolution than Landsat 8. After
the cotton fields were mulched, there was a significant increase in spectral reflectance in the visible,
red-edge and near-infrared bands, and a decrease in the short-wave infrared band. The increase in
the area of oasis cotton fields and the extensive use of mulched drip-irrigation water saving facilities
may lead to a decrease in the groundwater level. Overall, the use of mulch as a phenological feature
for classification mapping is a good indicator in cotton-growing areas covered by mulch, and mulch
drip irrigation may lead to a decrease in groundwater levels in oases in arid areas.

Keywords: Google Earth Engine; cotton fields; mulch drip irrigation; groundwater level decline;
oasis agriculture in arid zones

1. Introduction

China is the world’s largest cotton producer and consumer. A total of 5.91 million
tons of cotton were produced in China in 2020, with only Xinjiang producing 5.16 million
tons of cotton, accounting for 87.3% of China’s total cotton production. In the same year,
China sowed 3169.9 thousand hectares of cotton, with the largest cotton-producing region,
Xinjiang, sowing 2501.9 thousand hectares of cotton, accounting for 78.9% [1]. Fast, accurate
and efficient mapping of cotton acreage helps to improve the efficiency of land resource
use and rational land-use planning. It plays an important role in maintaining food security
in Xinjiang, consolidating the economic status of the cotton industry, improving quality
and efficiency and implementing the rural revitalization strategy [2].
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Google Earth Engine (GEE) is a cloud-based geographic information processing plat-
form that currently collects commonly used remote sensing datasets such as MODIS,
Landsat and Sentinel. GEE can acquire and process data using online or offline program-
ming, and use cloud computing for remote sensing data analysis and processing, thus
avoiding the tedious process of data downloading and pre-processing brought about by
the traditional remote sensing analysis mode [3].

A number of studies have demonstrated the high potential of GEE for monitoring
farmland, including farmland classification, crop growth monitoring, mapping agricultural
acreage, disaster area monitoring, etc., [4–9]. GEE also stands out in identifying cotton
fields, for example, Aneece et al. [10] constructed a data collection from Earth Observing-
1 Hyperion hyperspectral images to classify and map major crops in the United States,
including cotton, with the aid of the GEE cloud computing platform. Al-Shammari et al. [11]
used Landat8 images and the Random Forest (RF) model based on the GEE platform to
assess the ability of a vegetation phenology-based crop type mapping approach to map
cotton fields in the cotton growing region of eastern Australia. The results show the ability
to combine amplitude and phase mapping, and a significant increase in model accuracy
when adding amplitude and phase as predictor variables to the model, rather than just
using harmonized-NDVI or raw bands for prediction. More recently, Yan et al. [12] showed
very good results for mapping crop types in two growing regions of the Central Valley in
Illinois and California using a neural network model with Google Street View images. In
summary, the current use of GEE to identify cotton crop information has a high applicability
and most studies are based on cotton peach spectral features for classification. Fewer studies
have been conducted on crop identification based on crop phenology as it requires a large
amount of continuous image data to correspond to the phenological information.

In Xinjiang, under-film drip irrigation has been promoted since the last century to
cope with the increasing water stress, and the area of under-film drip-irrigated cotton fields
accounts for a very high proportion of the cotton cultivation area [13]. Covering cotton
with mulch before growth increases soil temperature and moisture content and suppresses
soil salinity, ensuring seed germination and crop growth [14,15]. The availability of satellite
mapping of plastic mulch has been confirmed by research based on Landsat 8 satellite data
using RF algorithms to map mulched farmland [16]. In summary of earlier studies, it is
easy to see that few studies of cotton field identification based on phenological information
have explored the effect of film on image classification. This phenological information from
bare soil to film cover to crop germination may be a useful way to identify cotton fields;
therefore, research on this is needed.

This work aims to to investigate the potential of this particular phenology information
in identifying cotton fields and to provide a reference for identifying and monitoring cotton
fields in arid zones. The differences between Landsat 8 and Sentinel 2 based on the GEE
platform in identifying cotton fields are explored to explain the reasons for identifying
cotton fields based on phenology. This study can provide scientific reference for cotton
field identification and monitoring, land resource and water resource regulation and
management in arid areas.

2. Materials and Methods
2.1. Study Area

Figure 1 shows that the Ogan-Kucha River oasis is located in the northern part of the
Tarim Basin and the southern foot of the Xinjiang Tianshan Mountains (82◦10′–83◦50′E,
41◦06′–41◦40′N). The oasis is deposited by alluvial fans and can be divided into three parts:
proximal fan, intermediate fan and distal fan. The topography is high in the north and low
in the south, sloping from northwest to southeast, and the alluvial fans are ~900 m above
sea level. The climate type is continental, warm temperate, arid climate, characterized by
drought and little rain, abundant light and heat resources, strong evaporation, and large
diurnal differences in temperature. The average annual temperature is 11.6 ◦C, the average
annual precipitation is 52 mm, and the ratio of evaporation to precipitation is 54: 1. The
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soil types of the oasis are loam, clay loam, sand, sandy loam in descending order of area,
and the land cover types are mainly farmland and desert. Natural vegetation is dominated
by Populus euphratica, Tamarix chinensis, Phragmites australis, Alhagi sparsifolia, Suaeda glauca,
and Kalidium foliatum. The desert on the periphery of the oasis is accompanied by seasonal
waterlogging. Oasis crops are dominated by cotton and fruit trees, as well as wheat, corn
and other food crops. In the 1990s, managers gradually introduced under-membrane
drip irrigation technology to alleviate the adverse effects of salinization on cotton fields.
Cotton production has increased to witness the effectiveness of the film, which has reached
100 percent of the entire oasis cotton fields.

Figure 1. The study area was located in China and the background image was a standard false color
image synthesized from the average of the full year image collection of Sentinel 2. The classification
and validation points were located at the observation sites.

2.2. Methods
2.2.1. Cotton Phenology Information

The whole growth cycle of cotton can be divided into five stages: sowing, emergence,
squaring, flowering and boll setting, and boll opening [17]. In Xinjiang, close to 100% of
cotton fields are covered with mulch during the sowing period to reduce water evapora-
tion, insulate and alleviate soil salinity. The cotton boll opening period is an important
phenological feature in most cotton field classification studies. In this study, the entire
growing season of cotton in Xinjiang, including the process of mulching, was used as a
phenological feature to classify cotton fields.

2.2.2. GEE Image Collection

The Landsat series satellites with long time series and the Sentinel satellites with
fine spatial resolution were selected as data sources, while the Sentinel 2 satellites have
finer pixel information and richer band information than the Landsat satellites, i.e., four
more red-edge bands, but the Landsat series satellites have a longer time range. Figure 2
shows the detailed technical flow of the study. All Landsat 5 TM, Landsat 8 OLI and
Sentinel 2 data covering the entire the Ogan-Kucha river oasis were filtered in the code
editor (Java) interface of GEE to generate the image collection. The conditions for filtering
the data are time, cloud mask and position filtering. The time conditions were selected
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based on the quality of the satellite images for the years 2011, 2015 and 2020, from March
to October of each year. The cloud masks were de-clouded for Landsat 5 TM, Landsat
8 and Sentinel 2 data by an algorithm provided by GEE. The band features used for
classification were selected for the visible, near-infrared and short-wave infrared bands of
each sensor. Normalized Difference Vegetation Index (NDVI) was calculated for all images
in the image collection to better distinguish cotton fields from other agricultural fields.
Normalized Difference Built-up Index (NDBI) and Modified Normalized Difference Water
Index (MNDWI) were calculated to classify built-up land and water bodies. The Landsat
5 and 8 images were used the visible, NIR and short-wave infrared bands and calculated
NDVI, NDBI, MNDWI indices, while the Sentinel 2 images were used more than these
and the red-edge bands. The bands and indices used for each image when entering the
classification model are shown in Table 1.

Figure 2. The technical process of supervised classification of cotton fields based on the GEE cloud
computing platform.
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Table 1. Input variables for the RF supervised classification model.

Input Variables Sentinel 2 Landsat 8 Landsat 5

Visible bands B2, B3, B4 B2, B3, B4 B1, B2, B3
Red-edge bands B5, B6, B7, B8A

Near infrared band B8 B5 B4
Short-wave infrared

bands B11, B12 B6, B7 B5, B7

NDVI (B8 − B4)/(B8 + B4) (B5 − B4)/(B5 + B4) (B4 − B3)/(B4 + B3)
NDBI (B11 − B8)/(B11 + B8) (B6 − B5)/(B6 + B5) (B5 − B4)/(B5 + B4)

MNDWI (B11 − B3)/(B11 + B3) (B6 − B3)/(B6 + B3) (B5 − B2)/(B5 + B2)

2.2.3. Supervised Classification Model

A variety of machine-learning, supervised classification algorithms are provided in
GEE, such as RF, Bayesian, Support Vector Machine, etc. In this study, the commonly used
RF machine-learning algorithm was chosen as the classifier to correct the habit of overfitting
the decision tree to its training set [18]. The RF constructs the bootstrap [19] aggregation
method (Bagging) with a decision tree as the base learner, and further introduces random
attribute selection in the training process of the decision tree. The number of trees in the
model in the study was set to 20. Polygon feature datasets were generated from local
land-use data and visual interpretation in 2011, 2015 and 2020, including cotton fields,
agricultural lands other than cotton, urban construction lands, salt-affected lands, water
bodies and deserts, respectively. Each type of classification and its detailed characterization
is shown in Table 2. We divide 70% of the feature set into training samples and 30% as
validation samples to evaluate the classification accuracy.

Table 2. Types of classification and their characterization.

Classification Types Detailed Characterization

Cotton field
Regular rectangle, irrigation, mulching and other

agricultural activities starting in March, cotton picking
from September to November.

City Impervious surfaces and building lands.

Other fields

It consists mainly of economic forestry, winter wheat, etc.
The economic forestry consists mainly of walnut trees,

date palms, pear trees, etc. Winter wheat is sown in
October and harvested in June of the following year,

after which crops such as maize are planted.

Salinizedland
Saline land mainly located on the periphery of the oasis,

with white salt crystals deposited on the surface. The
vegetation is mainly sparse salt-tolerant vegetation.

Water It consists mainly of reservoirs and wetlands.
Desert Montane desert with very sparse or bare vegetation.

2.3. Accuracy Assessment

Some common methods for assessing classification accuracy are based on confusion
matrices [20]. After the confusion matrix is constructed, the Overall accuracy, Kappa accu-
racy, and User accuracy are calculated to assess the classification accuracy. Equations (1)–(3)
give the formulae for overall accuracy, kappa accuracy and user accuracy respectively.

OA =
∑k

i=1 Nii

N
(1)

KA =
N ∑k

i=1 Nii −∑k
i=1 Ni+ ∗ N+j

N2 −∑k
i=1 Ni+ ∗ N+j

(2)
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UA =
Nii
Ni+

(3)

where, OA is overall accuracy, KA is Kappa accuracy, UA is user accuracy, k is the total
number of types, N is the total number of samples, Nii is the number of samples that are
type i in the test sample and type i in the actual classification result, Ni+ is the total number
of samples in type i in the test sample, and N+j is the total number of samples classified
into type j in the actual classification.

3. Results
3.1. Classification Accuracy

In terms of each accuracy indicator (Table 3), the classification results using the RF
classifier provided by GEE are credible for different land types in different years. Both
Sentinel 2 and Landsat 8, as data sources, yielded good classification accuracy with Overall
accuracy and Kappa coefficient greater than 0.9. However, the Overall accuracy and Kappa
coefficient of Landsat 8 were found to be better than Sentinel 2 in the classification results
for 2020, while comparing user accuracy revealed diametrically opposite results. The
results indicate that both Landsat 8 and Sentinel 2 data were successful when applied to
classified cotton fields, but Sentinel 2 showed higher user accuracy.

Table 3. Classification accuracy of different satellite images from different years, with date indicating
whether mulching films are involved in feature selection in the RF model.

Satellite
Image Year Date Overall

Accuracy
Kappa

Accuracy
User

Accuracy

Sentinel 2 2020 1 March–15 November 0.967 0.952 0.947
Sentinel 2 2020 20 September–15 November 0.943 0.924 0.803
Landsat 8 2020 1 March–15 November 0.981 0.973 0.842
Landsat 8 2015 1 March–15 November 0.986 0.975 0.842
Landsat 5 2011 1 March–15 November 0.981 0.972 0.838

Comparing whether considering the film feature based on the Sentinel 2 images from
2020 has an impact on the classification accuracy (Table 3), it was found that considering
the film feature in the date filter has higher Overall Accuracy, Kappa Accuracy and User
Accuracy. While there was a slight improvement in Overall Accuracy and Kappa Accuracy,
there was a larger improvement in User Accuracy of 0.144. Tables 4 and 5 show the
difference in confusion matrices when considering film features and when using only
cotton boll features, respectively. Considering film features reduces the number of cotton
field pixels classified as other types of pixels.

Table 4. Confusion matrix of classification results considering film (date filter 1 March to
15 November).

Cotton
Field City Other

Field Salinizedland Water Desert

Cotton field 11,414 56 31 14 0 0
City 50 1274 48 231 2 67

Other field 71 27 1481 41 0 0
Salinizedland 29 97 19 17,695 0 373

Water 0 3 1 3 489 0
Desert 0 20 0 649 0 21,161
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Table 5. Confusion matrix of classification results considering cotton boll (date filter 20 September–15
November) as feature.

Cotton
Field City Other

Field Salinizedland Water Desert

Cotton field 11,344 19 55 54 0 8
City 85 1159 125 209 0 189

Other field 159 68 1363 11 0 34
Salinizedland 81 47 9 17,386 0 627

Water 6 8 2 0 470 0
Desert 1 15 8 1080 0 20,481

Figure 3 compares the detailed texture of the Sentinel 2 and Landsat 8 classification
results. The results show that both Sentinel 2 and Landsat 8 are able to extract cotton
field information better, with the differences being, for example, in the classification errors
caused by roads and small cotton fields. The reason for this difference may be due to the
higher spatial resolution of the Sentinel 2 image compared to the Landsat 8 image, resulting
in better recognition of dirt roads in fields less than 30 m wide in Sentinel 2. Another
reason may be that local farmers may plant fruit trees in the middle of the fruit trees or
reclaim additional small plots of farmland for cotton, and these small cotton fields may
cause classification errors.

Figure 3. Detailed comparison of classification results based on Sentinel 2 and Landsat 8 satellite
image collections. (a) Sentinel 2 satellite false color image (NIR, Red, Green = Band8, Band4, Band3)
on 6 April 2020. (b) Classification results using the Sentinel 2 satellite image collection from 2020.
(c) Landsat 8 satellite pseudo-color image (NIR, Red, Green = Band5, Band4, Band3) on 30 April 2020.
(d) Classification results using the 2020 Landsat 8 satellite image collection.
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3.2. Differences in Reflectance between Cotton Fields and Other Fields during the Growing Season

In this study, cotton phenological information was used as the main feature to distin-
guish other farmlands. Figures 4 and 5 show the variation in surface reflectance versus
NDVI for cotton fields, fruit trees and wheat during the growing season, respectively.
The results show that cotton fields and other agricultural fields have similar reflectance
variation characteristics, i.e., B6, B7, B8, B8A and B9 bands gradually increase and then
decrease during the growing season, and B1, B2, B3, B4, B5, B11 and B12 gradually decrease
and then increase. The difference is reflected in the reflectance of the B6, B7, B8, B8A and
B9 bands starting around the beginning of May in cotton fields (Figure 4a), while in fruit
trees and winter wheat it starts to increase in April (Figure 4b,c), which may be related to
crops such as winter wheat. The cotton fields showed an increase in NDVI throughout the
growing season, followed by a decrease after flowering and bolling in July (Figure 5a). The
fruit trees and winter wheat showed a decrease and then an increase in NDVI minimums in
June and July (Figure 5b,c), probably due to the maturation of crops such as winter wheat
during this period. The rebound in reflectance is due to the replanting of crops such as
maize after the wheat harvest in June. Therefore, differences between crops in terms of
reflectance and NDVI can help to classify cotton fields for extraction.

Figure 4. Changes in the mean spectral reflectance of cotton fields (a), fruit trees (b) and wheat
(c) during the growing season from the Sentinel 2 satellite image collection.
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Figure 5. Changes in median NDVI and maximum and minimum values during the growing season
for cotton fields (a), fruit trees (b) and wheat (c) based on the Sentinel 2 satellite image collection.

3.3. Changes in Spectral Reflectance Due to Mulching and Cotton Picking in Cotton Fields

To further clarify the extent to which mulching disturbed the reflectance of the cotton
fields, the spectral reflectance of the ground surface before and after mulching was counted,
with reflectance from the Sentinel 2 image collection. The results (Figure 6) show that
Sentinel 2 images show an increase in bands 1 to 9 after mulching, and a decrease in bands
11 and 12 (Figure 6a). The NDVI box is slightly reduced and can be considered to be
little changed (Figure 6b). The true color image of Sentinel 2 appears as a distinct greyish-
white image element after covering the ground film (Figure 6c,d). This result suggests
that ground cover is a good mutation detection phenomenon during the cotton growing
season in Xinjiang, which also indicates that the use of ground cover as a phenological
phenomenon is a good indicator for cotton field classification.

Figure 6. Statistical differences in spectral reflectance (a) and NDVI (b) before and after mulching of
cotton fields, (c,d) indicating changes in true color imagery, with cotton fields showing greyish white
after mulching.

Some studies will use cotton phenology information such as cotton boll as the main
feature for classifying cotton fields, so we compared the change in reflectance of Sentinel
2 images of cotton fields after cotton picking (Figure 7). Figure 7a shows that there is
a decrease in the spectral reflectance of cotton fields from band 1 to band 9 after cotton
picking, while bands 11 & 12 show an increase. The box becomes smaller after cotton
picking, i.e., the data distribution becomes more concentrated, but the range of values
in some bands becomes wider, and the NDVI of the cotton field shows similar changes
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(Figure 7b). Comparing the Sentinel 2 true color images before and after cotton picking the
grey-white image elements (cotton boll) also disappear (Figure 7c,d). This suggests that
cotton boll is necessary as a feature to classify cotton crops, but that there may be picked
versus unpicked cotton fields in a single image, which may cause errors.

Figure 7. Statistical differences in spectral reflectance (a) and NDVI (b) before and after cotton
picking, (c,d) indicate changes in true color images, with the cotton field showing grey and white
before picking.

3.4. Spatial Trends of Oasis Farmland and Its Relationship to Groundwater Depth

The above findings suggest that it is feasible and successful to use gee to classify oasis
cotton fields in arid zones from other agricultural fields. Focusing only on cotton fields
and other farmlands, we explore the spatial distribution of farmlands in the oasis from
2011 to 2020. Figure 8 shows a clear trend of spatial expansion of cotton fields in the study
area from 2011 to 2020, mainly in areas such as the southern part of the eastern part of
the western part of the oasis. Newly reclaimed cotton fields are mainly located on the
periphery of the oasis, while other farmlands are mainly located within the oasis along the
river, mainly due to the greater water demand of other crops such as wheat, maize and
fruit trees.

Figure 8. Spatial distribution of cotton fields with other farmlands in 2011, 2015 and 2020 extracted
from the classification results.
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Groundwater depth data are from the groundwater salt monitoring station of the
Ogan-Kucha River Basin Management Office in Aksu District, Xinjiang. The area of cotton
fields shows an increasing trend and is in line with the change in groundwater depth, while
the area of other fields does not change much (Figure 9). The area of cotton fields showed
a high correlation with groundwater depth, with a correlation r of 0.979. As the area of
cotton fields increased, the groundwater depth became lower, which may be related to the
extensive implementation of drip irrigation facilities in cotton fields.

Figure 9. Changes in the area and groundwater depth of cotton and other farmland in 2011, 2015
and 2020.

4. Discussion

In this study, a collection of image data from the study area was constructed at GEE
and a random forest machine-learning algorithm was used to classify the ground cover, and
the classification results met expectations. Studies have been conducted comparing the po-
tential of Landsat 8 with Sentinel 2 in classifying cotton fields, but there is disagreement on
the classification accuracy. A comparison of previous studies found similar accuracy results.
Paul et al. [21] comparing Landsat 8 with Sentinel 2 imagery in classifying multiple crops
(including cotton) found better accuracy results for sentinel, which would be interpreted as
the red edge band providing more crop information. Liu et al. [22] found that Sentinel 2 had
lower Overall accuracy and Kappa coefficient results than Landsat 8, which is interpreted
as an insufficient number of sample points. In contrast, the detailed differences between
Landsat 8 and Sentinel 2 classification mapping in this study show (Figure 3) that both data
are effective in extracting cotton fields to distinguish them from other agricultural fields.
However, Sentinel 2 is superior in extracting edge information from cotton fields, whereas
Landsat 8 imagery cannot show these details, such as the edge features of some fields.
Therefore, the reason for the inferior accuracy of Landsat 8 imagery compared to Sentinel 2
in this study is more likely to be explained by the influence of both the resolution of the
image elements and the number of spectral bands of Landsat 8 data being inferior to that of
Sentinel 2. Overall, both the Landsat 8 and Sentinel 2 imagery datasets based on phenology
can successfully extract cotton fields, but different data sources are chosen for different
user needs. From a classification accuracy perspective, the accuracy of their proposed
white boll index (OA = 0.95) is similar and better than that of support vector machines
(OA = 0.59) and one-dimensional convolutional neural networks (OA = 0.27) compared
to that of Wang et al. [23] based on Sentinel 2 time series considering cotton phenological
information (without considering films) to identify cotton fields. Other studies [24] have
reported evaluating the potential of hyperspectral images with Sentinel 2 and Landsat
8 for cotton field identification and found that the classification accuracy increased with
a increasing number of bands and that their classification accuracy based on Sentinel 2
images was similar to this study, but in terms of Overall accuracy the Landsat 8 accuracy in
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this research was higher and the user accuracy was lower. Compared to other studies on
cotton field identification based on phenological information, considering the mulching
will have higher accuracy [17], which can be explained by its coarse image resolution.

Information on cotton phenology throughout the growing season including mulching
phenological information for cotton throughout the growing season including mulching
was used as a key feature to distinguish other farmland, and the use of GEE to construct im-
age data collections allows for the inclusion of this phenological information. The results of
this study show that ground cover film is a very good phenomenon for mutation detection
because of the increased spectral reflectance in bands 1 to 9. Wang et al. [23] also constructed
the White Bolls index for identifying cotton fields based on the Sentinel 2 time series data
set and it also highlighted that cotton bolls are important features for distinguishing other
fields. This study also underlines the same perspective as Wang et al. [23] using Sentinel 2
time series data to classify cotton fields. Csillik et al. [25] also emphasized the usefulness
of the Sentinel 2 satellite in applicability of farmland classification. However, this could
lead to many cotton fields being missed if time series image data is missing before cotton
picking. The advantage of using mulching is that it adds knowledge of features to identify
cotton fields to compensate for the absence of other features such as cotton bolls after the
cotton is picked.

The expansion of cotton fields into alluvial plains is mainly influenced by farmer
choices driven by crop price fluctuations, agricultural policies and natural conditions [26].
The area of cotton fields extracted in this study was smaller than previous studies and
lower than the statistical results from the government sector [27]. The reason for this is that
Li et al. [28] misclassified other farmland and may have identified other farmland as cotton
fields, while the area estimated in this study is lower than the government statistics since
there are still some cotton fields outside the southern part of the study area.

The mulch drip irrigation and the anti-leakage hardening measures of irrigation canals
have reduced the infiltration of irrigation water into the ground, and groundwater recharge
has been greatly reduced. With the spread of mulch drip-irrigation cotton cultivation
technology and the expansion of agricultural land to the periphery of the oasis, we should
be alert to vegetation death due to the ecological water shortage caused by the decline of
groundwater level [27,29,30].

Although this study successfully classified cotton fields in Xinjiang based on the GEE
platform, the following shortcomings remain. (1) Whether or not an image ensemble
is constructed to respond to cotton phenological information, the quality of Sentinel 2
image imaging is still influenced by clouds. One idea to solve this problem is to use
spatio-temporal fusion to fuse MODIS and Sentinel 2 images to obtain a high temporal
resolution image collection to provide more weather information. (2) Using the Sentinel 2
full band and calculating some vegetation indices would increase the computational effort
of the classification algorithm, and even on the GEE platform, individual users would face
computational limitations. (3) There is a lack of discussion on multiple classification models,
such as multiple machine learning and deep learning algorithms. Finally, we propose the
development of a cloud-based client system [31] to carry out rapid and large-scale cotton
field monitoring tasks.

5. Conclusions

In this study, based on GEE cloud computing platform, a random forest machine-
learning algorithm was used to supervise the classification of Landsat 5 and 8 and Sentinel
2 satellite images to obtain the spatial distribution characteristics of cotton fields in the
Ogan-Kucha River oasis in 2011, 2015 and 2020. After the cotton fields were mulched,
there was a significant increase in the spectral reflectance in the visible, red-edge and
near-infrared bands, and a decrease in the short-wave infrared band. The accuracy of
the classification results showed that using Sentinel 2 images to extract cotton fields was
more accurate than Landsat 8 users and could reduce road misclassification. Using the
mulching process of cotton sowing period as a classification feature is a good phenological
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feature for extracting cotton fields. The Ogan-Kucha River oasis has shown a trend of
cotton field area expanding to the periphery in the last 10 years, and further promotion
of mulching drip irrigation may lead to the decrease of groundwater level in the oasis
area. The decline in groundwater level needs to be taken seriously by local managers, as
some plant roots cannot obtain water and die leading to ecological degradation. The study
provides a reference for monitoring and mapping cotton fields based on a cloud computing
platform and has a positive effect on land-resource planning and water resource regulation.
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