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Abstract: Emission inventories are important for modeling studies and policy-making, but the
traditional “bottom-up” emission inventories are often outdated with a time lag, mainly due to the
lack of accurate and timely statistics. In this study, we developed a “top-down” approach to optimize
the emission inventory of sulfur dioxide (SO2) using the Weather Research and Forecasting model
coupled with Chemistry (WRF-Chem) and a three-dimensional variational (3DVAR) system. The
observed hourly surface SO2 concentrations from the China National Environmental Monitoring
Center were assimilated and used to estimate the gridded concentration forecast errors of WRF-
Chem. The concentration forecast errors were then converted to the emission errors by assuming a
linear response from SO2 emission to concentration by grids. To eliminate the effects of modelling
errors from aspects other than emissions, a strict data-screening process was conducted. Using the
Multi-Resolution Emission Inventory for China (MEIC) 2010 as the a priori emission, the emission
inventory for October 2015 over Mainland China was optimized. Two forecast experiments were
conducted to evaluate the performance of the SO2 forecast by using the a priori (control experiment)
and optimized emissions (optimized emission experiment). The results showed that the forecasts
with optimized emissions typically outperformed the forecasts with 2010 a priori emissions in terms
of the accuracy of the spatial and temporal distributions. Compared with the control experiment, the
bias and root-mean-squared error (RMSE) of the optimized emission experiment decreased by 71.2%
and 25.9%, and the correlation coefficients increased by 50.0%. The improvements in Southern China
were more significant than those in Northern China. For the Sichuan Basin, Yangtze River Delta, and
Pearl River Delta, the bias and RMSEs decreased by 76.4–94.2% and 29.0–45.7%, respectively, and
the correlation coefficients increased by 23.5–53.4%. This SO2 emission optimization methodology is
computationally cost-effective.

Keywords: 3DVAR; data assimilation; sulfur dioxide; emission inventory; WRF-Chem

1. Introduction

Sulfur dioxide (SO2) is a major air pollutant that contributes to poor air quality. It
has a significant impact on the environment and climate [1–3]. A major proportion of
anthropogenic SO2 emissions come from power plants and industries, accounting for more
than 70% of the total SO2 emissions [4]. It is challenging to predict SO2 concentrations
using regional air quality models because of many factors. Firstly, the uncertainty of an
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emission inventory can affect the accuracy of model forecasts [5,6]. Secondly, the concentra-
tions of air pollutants are affected by meteorological conditions (e.g., wind, precipitation),
and the uncertainties associated with the physical parameterization scheme could affect
the accuracies of SO2 concentration forecasts [7–9]. Thirdly, inaccurate chemistry initial
conditions (ICs) can reduce the forecast accuracy. It has been acknowledged that improving
the accuracy of ICs by data assimilation (DA) is an effective strategy to improve air pollu-
tion forecasting [10,11]. In addition, the conversion of SO2 to sulfate has been commonly
underestimated in current global and regional models, leading to an overestimation of
SO2 concentrations [12–15]. The conversion of SO2 to sulfate involves various chemical
processes, including gas-phase oxidation, aqueous reactions, and heterogeneous reactions,
as well as physical parameters (e.g., relative humidity and cloud fraction). Among the
aforementioned factors, emission inventory uncertainty is considered to be the primary
factor that influences the forecast accuracy of SO2, especially for complex air pollution
analyses in China, where there are varying, multi-source emissions [16–19]. Improving
the accuracy of the emission inventory in terms of the total amount of emissions and the
spatial–temporal distribution would facilitate accurate air quality predictions.

Generally, the “bottom-up” approach is used to estimate SO2 emissions, which re-
quires statistical information on the activities and emission factors from all possible
sources [4,18,20]. It is difficult to obtain an accurate emission estimate associated with
the “bottom-up” approach. The accuracy if emission estimation depends on the qualities
and uncertainties of the underlying information from the energy activities at the national,
provincial, and county levels [21–23]. The difference among some global SO2 emission
inventories with the “bottom-up” approach is 42% [24]. In China, the emission estimate is
usually updated only once every few years, but the SO2 emissions have decreased by about
62% on average from 2010 to 2017 [4]. Thus, it is difficult for the emission estimate to reflect
the change of emissions in real time [12]. In addition, most of the “bottom-up” emission
estimates are annual/monthly total amounts, which need to be spatially and temporally
allocated into hourly grid emissions for air quality model application [14,25–29]. The grid
emission estimates could be inaccurate due to the spatial allocation, casting uncertainty
on the model forecast. For the temporal allocation of emission inventories in air quality
models, some methods evenly distribute the total 24 h emission amount by virtue of experi-
ence [30–32]. The hourly factor has often been obtained from power plants’ reports, human
activity characteristics, and previous studies [31–35].

To reduce the uncertainties of “bottom-up” emission inventories, some data assimila-
tion (DA) systems were developed to optimize the emission inventories by using obser-
vations as constraints [36–44]. Lee et al. [40] applied the mass balance method to update
SO2 emissions with two satellite instruments (SCIAMACHY and OMI). Koukouli et al. [45]
updated SO2 emissions monthly from 2005 to 2015, assuming a linear relationship between
SO2 emissions and the satellite SO2 column. The result showed that the SO2 emissions
decreased by 28% from 2010 to 2015. Fioletov et al. [46] developed a new mass balance
method, which considered the SO2 lifetimes, to estimate SO2 emissions from large SO2
sources by the OMI SO2 column. Based on the four-dimensional variational (4DVAR)
method and GEOS-Chem adjoint model, several studies developed inverse models to
update monthly SO2 emissions. Wang et al. [47,48] developed an inverse model to update
monthly SO2 emissions by assimilating the OMI SO2 satellite measurements. Li et al. [49]
optimized SO2 emissions based on OMI SO2 data and then quantitively evaluated the
improvement of SO2 emissions by different models, suggesting the efficacy of the opti-
mized emission estimate. The ensemble Kalman filter (EnKF) method is one of the most
popular methods used to optimize SO2 emissions. Chen et al. [12] used the ensemble
square root filter (EnSRF) system to evaluate SO2 emission changes in January from 2010 to
2015. The results showed that the SO2 emissions decreased by 9.9–22.9% in Southern China,
while the SO2 emissions increased by 12.7–72.0% in Northern China and Western China.
Dai et al. [50] quantitatively estimated the spatial changes of SO2 emissions in China based
on the four-dimensional local ensemble transform Kalman filter method (4D-LETKF). It
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was shown that the SO2 emissions decreased by 49.4% in November from 2010 to 2016 by
assimilating surface SO2 observations.

To date, a three-dimensional variational (3DVAR) assimilation algorithm has been
commonly used to improve ICs, but has not been used to update emission inventories
within the context of improving air quality forecasts. In this study, we attempted to develop
a 3DVAR concentrations converted to emissions (3DVAR-CCE) method in order to improve
the SO2 emission inventory based on WRF-Chem and a 3DVAR system. The emission
inventory for October 2015 over Mainland China was optimized, and the hourly observed
surface SO2 concentrations were assimilated. This study period was chosen because the
meteorological conditions during this period were relatively stable and there was relatively
little precipitation.

The remainder of this paper proceeds as follows. The methodology is described
in Section 2, including the WRF-Chem and 3DVAR DA system configurations and the
newly designed SO2 emission optimization procedure. The observational data used for
evaluating the model and experimental design are also provided. In Section 3, the reliability
of the optimized emission estimates is verified by analyzing recent control policies and
possible realistic emission changes. The SO2 simulations, using updated emissions, were
also verified against observations to show the emission improvement. A discussion and
conclusions are presented in Section 4.

2. Data and Methodology
2.1. Observational Data and a Priori Emission Data

Hourly SO2 data from the China National Environmental Monitoring Center (CNEMC)
(http://www.cnemc.cn, last access: 23 September 2021) were used for assimilation and eval-
uation. There were altogether 1497 national control measurement sites over China in 2015.
Most observational sites are in Central and Eastern China, whereas the sites in the west are
relatively sparse. As shown in Figure 1A, only 1048 stations were selected (randomly) to be
assimilated, and the data of the remaining 499 were used to verify the improvement of using
optimized emissions. To ensure data quality, the values exceeding 650 µg m−3 were deemed
unrealistic and were not assimilated in the 3DVAR system, following Chen et al. [12]. The
dataset is widely used to analyze the air quality in China [12,19,21,23,30,42].

http://www.cnemc.cn
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The Weather Research and Forecasting (WRF) model coupled with online chemistry 

(WRF-Chem) Version 3.9.1 was used to simulate and predict air pollutant emissions in 

Figure 1. (A) Locations of the 1048 SO2 assimilation observation stations (red), the 449 independent
observation stations (blue), and the 1623 national automatic meteorological observation stations
(black) in the model domain. (B) The spatial distribution of SO2 emissions from MEIC for October
2010 and the domain used in this study. Regions defined in red rectangles are (a) North China Plain
(NCP), (b) Northeastern China (NEC), (c) Energy Golden Triangle (EGT), (d) Xinjiang (XJ), (e) Sichuan
Basin (SB), (f) Yangtze River Delta (YRD), and (g) Pearl River Delta (PRD). Red dots are the locations
of the four major cities of Beijing, Shanghai, Chongqing, and Guangzhou. Units: mol km−2 h−1 [51].

Hourly observational data from national automatic meteorological observation sta-
tions in China were used in this study. The ground meteorological observation data were
collected from the China Meteorological Data Service Centre (http://data.cma.cn/en, last
access: 23 September 2021). This dataset is high-quality and widely used in China [52,53].
There were 1623 observational sites in the year 2015. Meteorological variables including
surface temperature, relative humidity, precipitation, and wind speed, and direction were
included (Figure 1A). The observational data were rigorously quality controlled to reduce
the influence of meteorological data outliers on emission optimization by eliminating out-
liers (e.g., climate extremes) and verifying the temporal and spatial consistencies of the
observational data (e.g., wind speed and precipitation data).

A priori emission data from anthropogenic emissions were obtained from the MEIC,
developed by Tsinghua University (http://meicmodel.org/?lang=en, last access: 23 Septem-
ber 2021). The resolution is 0.25◦ × 0.25◦, and the base year was 2010. MEIC is a bottom-up
emission inventory covering 31 provinces in Mainland China and including eight major
chemical species [23]. The MEIC reports anthropogenic emissions from sources in five
sectors (power, industry, residential, transportation, and agriculture). The details of the
technology-based approach and source classifications can be found in Zhang et al. [23].
The original emission inventory (0.25◦ × 0.25◦) was pre-processed to match the model grid
spacing (27 km). Seven different regions are illustrated to address spatial trends, including
the North China Plain, Northeast China, Energy Golden Triangle, Xinjiang, Sichuan Basin,
Yangzi River Delta, and Pearl River Delta. Figure 1B shows the spatial distribution of a
priori SO2 emissions in the simulation domain.

2.2. WRF-Chem Forecast Model and the 3DVAR DA System

The Weather Research and Forecasting (WRF) model coupled with online chemistry
(WRF-Chem) Version 3.9.1 was used to simulate and predict air pollutant emissions in this
study. The WRF-Chem system is a fully coupled online air quality model that considers
several physical and chemical processes, such as transport, deposition, emission, chemical
transformation, photolysis, and radiation. The domain (Figure 1) is centered at 101.5◦ E,

http://data.cma.cn/en
http://meicmodel.org/?lang=en
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37.5◦ N and covers all of China, with a 27 km horizontal resolution (169 × 211 grids). There
are 40 vertical layers extending from the surface to 50 hPa, with a finer resolution near the
surface. Initial and meteorological boundary conditions are provided by the 1◦ × 1◦ NCEP
Global Final Analysis (FNL) data with a 6 h frequency. The WRF-Chem configuration was
set using the physics schemes (Table 1) such as the WRF Lin microphysics scheme [54],
the Rapid Radiative Transfer Model longwave [55] and Goddard shortwave radiation
schemes [56], the Yonsei University (YSU) boundary layer scheme [57], the Noah land sur-
face model [58], and the Grell-3D cumulus parameterization [59]. The Model for Simulating
Aerosol Interactions and Chemistry (MOSAIC-4 bin) and the Carbon Bond Mechanism-Z
were chosen for the aerosol and gas-phase chemistry scheme, respectively [60,61]. A nudg-
ing scheme was used in the WRF-Chem simulation, and the FNL data were assimilated
every 6 h. Anthropogenic emissions from the Multi-Resolution Emission Inventory for
China (MEIC) in 2010 were used as the a priori emission input.

Table 1. WRF-Chem model configuration.

Physical or Chemical Process Option

Microphysics Lin microphysics scheme [54]
Long-wave radiation Rapid Radiative Transfer Model [55]

Shortwave radiation Goddard Space Flight Center shortwave radiation
scheme [56]

Boundary layer scheme Yonsei University [57]
Land surface model Noah land surface model [58]

Cumulus parameterization Grell 3-D scheme [59]

Aerosol scheme Model for Simulating Aerosol Interactions and
Chemistry (MOSAIC-4 bin) [60]

Gas scheme Carbon Bond Mechanism-Z [61]
Initial condition for chemical species 10 d spin-up

The framework of the 3DVAR DA system is very similar to that described by Li et al. [62]
and Zang et al. [63,64]. However, previous studies focused on the analysis of ICs for PM2.5
to improve PM2.5 forecasting, and this study focused on the SO2 concentration to improve
the emission inventory. The SO2 observations were assimilated using SO2 concentrations
as a state variable. The incremental cost function for 3DVAR is as follows:

J(δx) =
1
2

δxT B−1δx +
1
2
(Hδx − d)T R−1(Hδx − d) (1)

here, δx is the N-vector, known as the incremental state variable, which is defined as δx =
x − xb, where xb is the forecast or background state of WRF-Chem. B is the N × N-matrix,
denoting the background error covariance associated with xb. The M-vector d = y − Hxb

is known as the observation innovation vector, where y is an observation vector, and the
M × M-matrix R is the observation error covariance. The H is the observation operator
that computes the modeled observation estimates from state variables. With the given
observations, the background error covariance (BEC) is also important for determining the
performance of a 3DVAR scheme to a substantial degree. In this study, we followed the
process outlined by Li et al. [62].

The National Meteorological Center (NMC) method has been used for estimating the
air pollutant concentrations’ background error covariance [62,63]. Our previous studies,
Li et al. [62] and Zang et al. [63], used 1 mo of the 48 h and 24 h forecast differences as
the background error and improved forecasts of PM2.5 concentrations for more than 16 h.
The differences between 48 h and 24 h forecasts were generated from 10 October 2015
to November 11 2015. The first initial chemical field at 00 UTC on 10 October 2015 was
obtained from a 10 d forecast in consideration of spin-up. The subsequent initial chemical
fields were derived from the former forecast one day prior. For a pair of experiments with
24 h and 48 h forecasts, the initial chemical fields were alternatives from different forecasts,
resulting in different forecasts for the next cycle. It was assumed that these differences are
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representative of the short-term forecast errors in transport-related SO2 processes and can
be used to calculate the background error covariance of SO2 concentrations [62]. In this
study, the forecast differences in SO2 concentrations were used to calculate the BEC.

The horizontal length scale was used to determine the magnitude of SO2 variance
in the horizontal direction. This scale can be estimated by the curve of the horizontal
correlation with distances, and the horizontal correlation is approximately expressed by a

Gaussian function e
(x1−x)2

2L2
s . x1 and x are two points, and Ls is the horizontal length scale.

According to Zang et al. [63], when the intersection of the decline curve reaches e1/2, the
distance can be approximately as the horizontal length scale in Figure 2a. The horizontal
length scale was 81 km, which is approximately three-times larger than the scale used in this
study. The vertical variance of SO2 concentrations was considered by vertical correlations
in the BEC. A strong relationship was observed in the boundary layer (approximately
below the 20th model layer) in the vertical direction (Figure 2b). The standard deviation
demonstrates the reliability of the forecasting model, and the standard deviation for the
vertical distribution of SO2 concentrations decreased with increasing height in the BEC
(Figure 2c).
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2.3. The Methodology Used for Optimizing the SO2 Emission Inventory
2.3.1. The Assumptions and Procedure to Optimize the Emissions

As stated in the Introduction, forecast errors associated with SO2 simulation concen-
trations could be induced by many factors, including uncertainties in emission inventories,
physical and chemical mechanisms, and ICs. Thus, three important steps to optimize the
emissions are to (1) generate the “best” concentration fields to obtain the forecast error,
(2) eliminate errors from aspects other than emissions, and (3) convert the concentration
forecast error into an emission error. The foremost goal is to generate the best concentration
fields by DA because it is the best initial field for forecasting and the increment field for
emission optimization.

A flowchart of the procedure for optimizing SO2 emissions for a single time step
is shown in Figure 3. First, the background field at time t0 (x0) was assimilated using
3VDAR with the observation data to obtain the analyzed concentration (x0a). Second, x0

was used as the initial field to forecast SO2 at t1 (x1) using the WRF-Chem model. Third,
similar to the first step, the forecasted SO2 concentrations at t1 (x1), as the background field,
were assimilated using 3DVAR with the observation data to obtain the analyzed field (x1a).
Fourth, the difference between x1a and x1 was calculated to represent the forecast error
for the SO2 concentrations (δx1). Fifth, for each box over a grid area, we assumed that δx1

is mainly caused by the emission inventory uncertainty at the former time (δE0), that is
δx1 can be expressed as a function of f

(
δE0). Some factors contribute to the SO2 forecast

error, including the initial field, chemical reactions, and meteorological conditions. The
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contribution of these factors is relatively small compared with that of the uncertainties in
the emission inventory for short-time forecasts (e.g., 1 h), because the initial field is accurate
after data assimilation and the chemical reaction error for SO2 is small for the long-life-cycle
of SO2. In particular, under the meteorological conditions of clear sky and stationary winds,
dry/wet deposition and the diffusion processes are not expected to affect the SO2 forecast
error. Sixth, the emission error (δE0 ≈ f−1( δx1)) was calculated by converting the forecast
error of the concentration. Finally, the new emission is obtained by adding the emission
error (δE0) to the prior emission source (E0).
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Figure 3. Flowchart of the procedure to optimize SO2 emissions in a single time step from t to t1.
The main steps are highlighted below. The blue text means that the steps were produced by using
WRF-Chem.

2.3.2. Conversion from Forecast Error to Emission Error

The relationship between the SO2 emission source and the concentrations in a single
grid box is shown in Figure 4. It is indicated that the forecast error of the concentrations
after 1 h (e.g., 01 UTC) δx1 is mainly due to the uncertainty in the emission source 1 h
earlier (e.g., 00 UTC) in that grid box. The forecast error of the SO2 concentrations is then
converted from the emission flux error using the function below (Figure 3):

δx1 ≈ f
(

δE0
)
= Vm × ρair

ρ
× ∆S

∆z
× δE0 × ∆t (2)

here, Vm (22.4 × 10−3 m−3) is the gas molar volume, ρ is the air density of the actual
atmosphere (kg m−3), ρair

(
1.29 kg m−3) is the air density in a standard state indicating the

gas molar volume, ∆S is the grid area, ∆z is the mode layer height, and ∆t (1 h) is the time
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step. The emission error can be represented by the forecast error for the SO2 concentration
in the grid box (Figure 3):

δE0 ≈ f−1
(

δx1
)
=

1
Vm

× ρ

ρair
× ∆z

∆S
× 1

∆t
× δx1 (3)
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Figure 4. Schematic diagram of the relationship between the SO2 emission source and concentration
in the grid box.

The forecast error of SO2 concentration is defined as δx1 = x1
a − x1

b , where x1
b is

the background of the model forecast after 1 h and x1
a is the analyzed field obtained by

assimilating the observation with the background x1
b . The x1

a − x1
b in the assimilation

process is also known as the increment field of the SO2 concentration.
δx1 is a three-dimensional array, known as the increment field obtained from the

background of the model forecast at a 1 h frequency by assimilating the observational data.
For each grid, the SO2 increment fields were generated for each hour (00–23 UTC) and then
used for emission optimization.

2.3.3. The Operational Consideration for Emission Optimization

To improve the representativeness of δx1 at each hour (00–23 UTC), the median value
of the SO2 forecast error at each hour in each grid box δx1

(i,j,t) was obtained from all samples

of the SO2 forecast error δx1
(i,j,t,n) over the entire simulation period (the month of October

in this study):
δx1

(i,j,t) = mid
[
δx1

(i,j,t,n), n
]

(4)

here, i and j are the grid numbers in the east–west and north–south directions, respectively,
and t is the hour of a day. n is the number of simulated days, known as the sample number
of that hour, with a maximum of 30 in this study. The median SO2 concentrations’ increment
over one month of samples was used to improve the representativeness of the hourly SO2
increment field δx1

(i,j,t). Once the median increment field is obtained, the updated emission

can also be calculated. δx1
(i,j,t) in Equation (4) is used to replace δx1 in Equation (3):

δE0
(i,j,t) =

1
Vm

×
ρ(i,j,t)

ρair
× δz(i,j) ×

1
δt

× mid
[
δx1

(i,j,t,n), n
]

(5)

SO2 concentrations are closely related to meteorological conditions [65,66]. Wind
can promote the horizontal diffusion of SO2 [67,68] and affect the lifetime of SO2. Fiole-
tov et al. [43] found the correlation between SO2 emissions and SO2 concentrations to be
0.93 when the SO2 life-time was between a few to more than ten hours. In addition, SO2 is
converted effectively into sulfate through aqueous reactions in clouds or fog droplets [14],
and precipitation affects the wet removal rate of SO2 [69]. To reduce the SO2 forecast
error caused by horizontal diffusion, chemical reaction, and wet deposition, we chose only
the samples that satisfied several strict conditions to optimize the SO2 emission. Three
meteorological variables (precipitation, wind, and divergence) were used as the diagnostic
criteria to screen valid samples. The samples with observed hourly precipitation > 0 mm or
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wind speed > 4 m s−1 were removed to eliminate the effects of wet deposition or heavy
diffusion. Since the locations of the observed data are usually not on the model grid, all
the samples of the four grids around the observed station were removed. The samples
with divergence > 10−4 s−1 were also removed, since SO2 concentrations may diffuse out
of the grid box under this condition, resulting in an incorrect estimation. Note that the
divergence calculation uses the wind speed of the model grid and not the observed wind
speed. Samples with divergence < 0 s−1 were not removed because in this condition, the
SO2 concentrations are still in the same box, diffusing upward. The planetary boundary
layer height (PBLH) was used to consider the impact of upward diffusion. The SO2 forecast
errors for all layers below the PBLH were converted into emission source errors by Equation
(3) and then accumulated as the total emission source error.

2.4. Observing Systems Simulation Experiment

An observing systems simulation experiment (OSSE) was designed to evaluate the
effect of the inverse model system. The real emission included 273 sources (Figure S1a).
These sources were divided into 13 arrays and 9 columns. The data were randomized and
placed on the grid as the real emissions. The hourly emission factors of the real emissions
were based on industry and power reports. Then, the real emissions and WRF-Chem model
were applied to simulate the 10 d SO2 concentrations, and WRF-Chem simulated the “real”
SO2 concentrations. The background emission included 273 sources (Figure S1b), which
was applied as the a priori emissions. The average value of the background emissions was
50 mol km−2 h−1, and the hour factors of the background emissions were the same.

The OSSE was performed (Figure 5) with the background emissions as the a priori
emissions. The hourly real concentrations, which were simulated by using WRF-Chem
model with the real emissions, were assimilated to obtain the optimized emissions. The
optimized emissions were obtained according to the steps in Figure 3 and Equation (5). In
these 10 d DA cycle simulations, approximately 45% of the samples were removed due to
precipitation, wind speed, and divergence. Figure 5 shows the scatter plot between real
emissions, a priori emissions, and optimized emissions. It was found that the 3DVAR-CCE
method could effectively improve the accuracy of the emission source. Compared with
the background emissions, the averaged bias and root-mean-squared error (RMSE) were
decreased by 4.4 mol km−2 h−1 and 24.3 mol km−2 h−1, respectively, while the correlation
coefficient (CORR) increased from 0.2 to 0.9, suggesting that the 3DVAR-CCE method can
remarkably improve the SO2 emission source by assimilating the surface SO2 concentration.
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2.5. Experimental Design

Three experiments were performed to evaluate the effect of SO2 emission optimization
on SO2 concentration forecasts over China, i.e., control experiment, update cycle DA
(UC_DA) experiment, and new emission (N_E) experiment, with the simulation period
from 10 October 2015 to 10 November 2015. The meteorological conditions during this
period were relatively stable, and there was relatively little precipitation. There were more
than 10 d with the average wind speed less than 4 m s−1 in 50% of the area of China within
1 mo. For most areas of China, the rainy days were less than 5 d. The emission source
from October 10th to November 10th (October, the same as below) was used for emission
optimization due to large variations in emission sources (transportation and fireworks)
during 1–7 October, coinciding with China’s National Day. The simulated products were
produced at hourly intervals. The FNL data with a 6 h frequency were interpolated to a
1 h frequency by running the WRF Pre-processing System (WPS), and the interpolated
data were used to update the meteorological IC and boundary conditions (BCs) to prevent
meteorology simulation drifting by nudging.

A control experiment was performed without applying DA, initialized with a former
forecast result, starting from 00 UTC on October 1 2015, and the emission inventory was
MEIC_2010. The UC_DA experiment was started at 00 UTC on October 10 with a 3DVAR
analysis field by assimilating the SO2 concentrations and restarted every hour with an
updated 3DVAR analysis field as the initial chemical field. For UC_DA experiment, not
all observation data were assimilated. In a model grid, if there were more than 2 sites, we
randomly selected 1 observation site for verification and other for assimilation purposes. In
this study, approximately 1048 national control sites were applied to improve the SO2 ICs,
and approximately 449 sites were used to evaluate the model performance (Figure 1A). In
the UC_DA experiment, MECI_2010 was used as an a priori emission inventory to simulate
the SO2 concentration in October 2015. Then, the updated optimized emissions for 2015
were obtained. To assess the optimized emissions obtained from the UC_DA experiments,
an N_EM experiment, starting from 00 UTC on October 10 for the same period, was
conducted and the results were compared with those from the control experiment. The
initial chemical conditions and meteorological IC/BC values were consistent with those
of the control experiment. The updated optimized emissions were used in the N_EM
experiment (Table 2).

Table 2. Details of different experiments.

Experiment Name Emissions Data for DA Cycle DA

Control (Ctrl) MEIC_2010 / /

Update Cycle DA (UC_DA) MEIC_2010 Surface observations
of SO2 concentration hourly

New Emission (N_EM) 2015 optimized emissions / /

3. Results
3.1. Increments of SO2 Concentration and Optimized Emissions

Figure 6 shows the averaged diurnal variations in the SO2 concentration increment
(δx1), emission (δE0 in Figure 2) increment, and SO2 observation concentrations in four
cities (Beijing, Shanghai, Chongqing, and Guangzhou) for October 2015. The hourly SO2
emission increment correlated well with the SO2 concentration increment, and the CORRs
were 0.7, 0.5, 0.8, and 0.7 for Beijing, Shanghai, Chongqing, and Guangzhou, respectively.
The SO2 increment in the Beijing and Chongqing was overall negative during 24 h, implying
that the forecast SO2 concentrations was overestimated by WRF-Chem with the a priori
emissions. The large overestimation was probably induced by the strict policies of emissions
reduction implemented during recent years. Koukouli et al. [45] also found that the SO2
emissions in the Beijing region decreased −0.44 ± 0.11Tg mo−1 from 2010 to 2015. The
emission errors during 10–12 UTC were negative in four cities, and the second peak of SO2
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observations weakened. Chen et al. [12] also showed the second peak of SO2 emissions
in the northern and western regions was much lower than the a priori emissions and was
obscure in southern regions. In addition, the trends of hourly SO2 emission errors and
concentrations were different between different cities, since the implementation of the
emission reduction policies was different in different regions [12].
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3.2. Forecast Performance
3.2.1. Improvement in Hourly SO2 Simulations

To further investigate the improvement in SO2 simulations over different regions,
the modeled (Ctrl, UC_DA, N_EM experiment) diurnal pattern of SO2 concentration in
October 2015 was compared with the observational data (Figure 7). The observational
data showed large regional variations, reflecting the differences in regional energy con-
sumption/emission changes. The diurnal pattern of SO2 concentration showed a single
peak distribution in Southern China and North China Plain. For Northeastern China, the
Energy Golden Triangle, and Xinjiang, two peaks were observed at approximately 01/12
UTC, 02/13 UTC, and 03/14 UTC, respectively. The peaks in SO2 concentration in the three
regions were gradually delayed, indicating the effect of time zone differences.
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Figure 7. The hourly SO2 concentrations for independent sites (within the regions) in October 2015:
(a) North China Plain (NCP), (b) Northeastern China (NEC), (c) Energy Golden Triangle (EGT),
(d) Xinjiang (XJ), (e) Sichuan Basin (SB), (f) Yangtze River Delta (YRD), (g) Pearl River Delta (PRD),
(h) China. The red hollow circle on the X-label is the flag of passing the unequal significance test
between the Ctrl and N_EM experiments. Units: µg m−3. Obs: observation; Ctrl: control; UC_DA:
update cycle data assimilation; N_EM: new emissions.

Figure 7 shows that the result of the UC_DA experiment was closest to the observation
data. Compared with the Ctrl experiment, the result of the N_EM experiment was signifi-
cantly improved in China. The largest improvement was at 11 UTC, and the bias decreased
from 25.8 µg m−3 to 5.7 µg m−3. The improvements in the N_EM experiment were different
in seven regions. For Southern China (Sichuan Basin, Yangtze River Delta, and Pearl River
Delta), the Ctrl experiment significantly overestimated the SO2 concentrations, especially
during 09–23 UTC. Compared with the Ctrl experiment, the results of N_EM experiment
were closer to the observation data, and the average bias decreased from 10.6–19.2 µg m−3

to 0.6–4.5 µg m−3. For North China Plain and the Energy Golden Triangle, the Ctrl ex-
periment underestimated the SO2 concentrations during 00–08 UTC and overestimated
during 09–23 UTC. The results in the N_EM experiment were improved, indicating that the
optimized emissions effectively reduced the uncertainty of a priori emissions. For Xinjiang,
the improvement of the N_EM experiment was relatively small, because the sites were
smallest among the seven regions and the sites were relatively sparse. The moment when
the results of the Ctrl and N_EM experiments passed the significance test is marked by the
red hollow circle on the X-label to reflect the improvements between the N_EM and Ctrl
experiments. It showed that the improvement in the N_EM experiment was significant at
most moments, especially in Sichuan Basin.

Figure 8 shows the scatter plots and spatial distributions of both the simulations and
observations for the first peaks (at 02 UTC). It showed that the SO2 concentrations in the
UC_DA experiment were similar to the observations (Figure 8a). The bias and RMSEs in the
UC_DA experiment were smaller than 3 µg m−3 and 20 µg m−3 for all hours, respectively.
The correlations (CORR) in the UC_DA experiment were higher than 0.6 at all hours except
09–14 UTC. Therefore, the UC_DA experiment was considered as a suitable 3DVAR analysis
field (i.e., closest to the observational data) and can be used to verify the model simulations.
In Figure 8a, it was found that the bias and CORR in N_EM experiment increased by
35.6% and 164.7% and the RMSE decreased by 27.8%, compared with the Ctrl experiment.
The results of the Ctrl experiment overestimated the SO2 concentrations in Sichuan Basin,
Yangtze River Delta, and Pearl River Delta and underestimated in Northeastern China
and the Energy Golden Triangle (Figure 8b,c). The positive and negative deviations in the
N_EM experiment are both smaller than those in the Ctrl experiment.
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Figure 9 is similar to Figure 8a, except at 10 UTC. The CORR in the UC_DA experiment
at 10 UTC was worse compared to the other hours. This was mainly because there were
more localized characteristics at 10 UTC in most regions. The localized characteristics
caused a sharp local gradient of concentrations in the process of DA, which negatively
impacted the improvement of the simulation of the UC_DA experiment. It was difficult
to describe the local increment field because the BEC was assumed to be static with a
large horizontal correlation coefficient of 81 km in the process of 3DVAR. In addition, the
overestimation in the control experiment was more significant at 10 UTC than at 02 UTC
because of the overestimation of a priori emission at this hour. However, the average bias
and RMSE for the N_EM experiments significantly decreased, and the positive biases were
smaller in the N_EM than those in the control experiment (Figure 9c,d).
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3.2.2. Spatial Distribution of SO2 Concentrations

Figure 10 shows the monthly average observed and modeled SO2 concentrations
during October 2015. The observed SO2 concentrations showed that the most polluted
area was located in Northern China, especially in Shandong, Hebei, and Shanxi, and the
observed SO2 concentrations were generally lower than 30 µg m−3 in southern China.
Compared with the observations, the SO2 concentrations in the Ctrl experiment were
overestimated in Southern China, especially in Shanghai, Hubei, and Chongqing. In
addition, the SO2 concentrations were underestimated in Northern China and Western
China, especially in Jilin, Gansu, Qinghai, and Xizang. Figure 10c,d shows the monthly
average SO2 concentrations for the UC_DA and N_EM experiments, respectively. The SO2
concentrations in the UC_DA experiment were close to the observations because of the
3DVAR hourly cycling DA. The simulations of the N_EM experiment performed better
than those of the control experiment, owing to the application of optimized emissions. The
difference between the Ctrl and N_EM experiments showed the significant improvement of
the SO2 forecast skill by using optimized emissions. The SO2 concentrations in the N_EM
experiment were improved in most regions of China. However, there were few adjustments
in Northeastern China and Southwestern China (Yunnan, Guangxi, Tibet, etc.). The main
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reason for the limited adjustments in the optimized emissions was that there were relatively
fewer sites in these areas.
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To evaluate the effects of the DA update cycle and the optimization of emissions
on the SO2 concentration forecasts, the mean concentration, bias, RMSE, and CORR in
the seven regions are compared in Table 3 comprehensively. The forecast differences
between the control and N_EM experiments reflected the performance and improvement
of the optimized emissions. Compared with the control experiment, the N_EM experiment
overall decreased the average SO2 concentration. The average SO2 concentration of the
observations from 449 sites in China was 23.4 µg m−3 during October 2015, while the
average SO2 concentration in China during October 2015 was 29.0 µg m−3 in the control
experiment, being lower than that of the observation concentration. This reduction of
concentration implied that there was a significant decrease in emissions of SO2 from 2010 to
2015. Koukouli et al. [45] found that the SO2 emissions decreased by 28% from 2010 to 2015.
Zheng et al. [4] also showed that the SO2 emissions decreased by 62% from 2010 to 2017.
The RMSE in the Ctrl experiment was 19.6 µg m−3, and the CORR was 0.18. Compared
with the Ctrl experiment, the RMSE of the N_EM experiment decreased by 25.9%, while
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the CORR increased by 50.0%, indicating that the optimized emissions could significantly
improve the forecast skill.

Table 3. Statistics of the Ctrl, UC_DA, and N_EM experiments in 7 regions (Units: µg m−3 for bias
and RMSE). NCP: North China Plain; NEC: Northeastern China; EGT: Energy Golden Triangle; XJ:
Xinjiang; SB: Sichuan Basin; YRD: Yangtze River Delta; PRD: Pearl River Delta.

N Data
Mean Concentration Bias RMSE CORR

Obs Ctrl UC_DA N_EM Ctrl UC_DA N_EM Ctrl UC_DA N_EM Ctrl UC_DA N_EM

China 241,023 23.41 28.95 22.96 23.16 5.54 −0.45 −0.25 33.81 19.56 25.04 0.18 0.51 0.27
NCP 36,866 33.81 38.42 32.19 36.78 4.61 −1.62 2.97 39.10 23.91 32.96 0.24 0.70 0.40
NEC 29,939 24.77 18.12 24.24 19.91 −6.65 −0.53 −4.86 28.67 22.11 25.51 0.17 0.55 0.31
EGT 43,683 30.84 30.09 25.83 27.34 −0.74 −5.01 −3.49 36.42 24.42 30.64 0.14 0.56 0.28
XJ 16,819 11.59 6.99 13.93 8.21 −4.60 2.34 −3.37 17.09 13.25 14.87 0.16 0.37 0.21
SB 58,012 21.79 38.21 21.56 23.64 16.42 −0.23 1.85 41.80 18.49 25.10 0.16 0.42 0.22

YRD 42,964 25.03 35.60 23.82 25.64 10.56 −1.21 0.61 35.22 19.24 25.01 0.25 0.52 0.31
PRD 12,740 16.05 35.23 19.14 20.56 19.17 3.08 4.51 38.39 15.52 21.23 0.13 0.43 0.20

At the regional scale, compared with the control experiment, the improvements in the
N_EM experiment were much more significant in Southern China than those in Northern
China, with the bias and RMSE decreasing by 76.4–94.2% and 29.0–45.7%, respectively. For
North China Plain, the average SO2 observation was 33.8 µg m−3, while the average SO2
concentrations in the Ctrl experiment were overestimated. The bias and RMSE in N_EM
experiment decreased by 35.6% and 15.7%, and the CORR increased 66.9%. For North-
eastern China and Xinjiang, the Ctrl experiment underestimated the SO2 concentrations,
and the biases were −6.7 µg m−3 and −4.6 µg m−3, respectively. Compared with the Ctrl
experiment, the bias in the N_EM experiment increased to −4.9 µg m−3 and −3.4 µg m−3,
reflecting the emissions increased from 2010 to 2015 in Northeastern China and Xinjiang.
In addition, the RMSEs and CORRs in the N_EM experiment were all improved in sevens
regions, suggesting the improvement of the SO2 forecast skill by using the optimized
emissions.

4. Discussion

The 3DVAR methodology is commonly used to assimilate meteorology and the chem-
ical initial field to improve model forecasts [10,11]. The meteorology forecasts with the
assimilated meteorology IC performed better than those without the DA initial field, and
the improvement can be maintained for relatively longer time forecasts. The chemical
forecasts with the optimization of the chemical IC showed improvements usually in only
a few hours. The reason is that emissions are one of the most important driving factors
among all the processes in an air quality model, and emissions affect or even dominate the
modeled chemical concentrations for long-term forecasts in polluted regions, instead of the
initial conditions. Thus, it is important to reduce the uncertainties of emissions to improve
the air pollutants’ forecasts. The “top-down” approach is used to optimize emissions, such
as 4DVAR and the EnKF method by assimilation observations. 4DVAR could optimize
emissions by using the adjoint of a model. The EnKF uses the flow-dependent covariance
generated by an ensemble of model outputs to convert concentration observation data into
emissions. However, both methods are computationally expensive.

In this study, we developed a “top-down” approach named the 3DVAR-CCE method
to optimize and evaluate the SO2 emission inventory. This 3DVAR-CCE method is computa-
tionally cost-effective compared to other complex systems (e.g., EnKF). The basic idea of the
method is to estimate the SO2 emission error converted by the SO2 forecast concentration
error in each grid box. This method significantly relies on the meteorological condition. We
assumed the convention within the grid box in the condition of wind speed < 4 m s−1 and
divergence > 10−4 s−1 within a 1 h window. For a stable atmosphere with a lower PBLH,
the converting estimation will be accurate, since the total SO2 diffuses within the box.
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However, for an unstable atmosphere with a high PBLH, the estimation of SO2 emissions
will be less accurate, since the height of the PBLH in the WRF-Chem model is inaccurate
for the unstable PBL, and the upper wind of the PBL is generally stronger, which may
cause the SO2 too diffuse or advect out of the box. This will result in an underestimation of
the emissions. Figure 11 shows the OSSE result of the scatter plot among real emissions,
a priori emissions, and optimized emissions at (a) 07 UTC and (b) 23 UTC, respectively.
The 07 UTC (15 local time) represents the unstable boundary PBL, while the 23 UTC (07
local time) represents the stable PBL. It is obvious that the skill score of optimized emission
under a stable PBL is better than that under an unstable PBL.
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Figure 11. The scatter plot between “real” emissions and background emissions/optimized emissions:
(a) 07 UTC (15 local time, representing the unstable PBL); (b) 23 UTC (07 * local time, representing
the stable PBL). Units are mol km−2 h−1. (* 07 local time means the 07 local time on next day).

The experiment for October 2015 can also illustrate the influence of the PBL. In Figure 7,
the significant improvements of the SO2 concentration for the N_EM experiment compared
with the control experiment were mainly during 09–23 UTC (17–07* local time). The PBLH
during this period was relatively low (Figure 12), which indicates that the PBL was stable.
However, the improvements were small during 03–08 UTC (11–16 local time), while the PBL
was unstable with a high PBLH. Note that the control experiment generally overestimated
the concentration during 09–23 UTC, and the N_EM experiment could effectively decrease
the concentration of the overestimation. Therefore, the bias of the N_EM experiment
generally reduces in Table 3, depending on the reduction of 09–23 UTC. If the bias is
negative in the control experiment, the bias may be lower in the N_EM experiment, such as
in the Energy Golden Triangle. In addition, the Ctrl experiment underestimated the SO2
concentrations for Northeastern China and Xinjiang, and the bias in the N_EM experiment
increased by 26.7% and 26.9%, respectively, reflecting that the emissions increased from
2010 to 2015 in Northeastern China and Xinjiang. Chen et al. [14] also found that the SO2
emissions increased by 49.4% and 72% for Northeastern China and Xinjiang from 2010
to 2015.
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5. Conclusions

In this study, we developed a 3DVAR-CCE method to optimize and evaluate the SO2
emission inventory using WRF-Chem and a 3DVAR data assimilation system. The hourly
observed SO2 concentrations were assimilated by the 3DVAR system to obtain the hourly
analysis field. An hourly forecast was performed with the hourly analysis field using
WRF-Chem. There were hourly differences between the hourly forecasts and the analysis
fields at the same time. The hourly concentration forecast error was used to convert into the
emission error, by neglecting the effect of advection and chemistry reaction within an hour.

An OSSE experiment was designed to evaluate the effect of the 3DVAR-CCE method.
The average value of 50 mol km−2 h−1 was set as the a priori emission. The optimized
emission was obtained by using the 273 sites with hourly SO2 “observations”. The results
showed that the RMSE of the optimized emission decreased from 43.2 9 mol km−2 h−1 to
18.9 mol km−2 h−1, and the CORR increased from 0.2 to 0.9, compared with the a priori
emission.

The 3DVAR-CCE method was also used to optimize and evaluate the emissions of
October 2015. The a priori emission was from MEIC_2010, which is a bottom-up emission.
The optimized emission was obtained by using 1048 hourly observations sites. A control
and N_EM experiment were conducted using the a priori emission and optimized emission,
respectively, and the independent data were used to evaluate the performance of the two
experiments. The average bias and RMSE of the N_EM experiment decreased by 71.2%
and 25.9%, and the CORR increased by 50.0%, compared with the control experiment. This
indicated that using the optimized emissions can effectively improve the SO2 forecasting.
Significant improvements were found during 09–12 UTC, while the bias and RMSE of
the N_EM experiment decreased by 117.4–165.0% and 30.3–58.3%, respectively. For the
spatial distribution, the improvements in Southern China were more significant than those
in Northern China. For Sichuan Basin, Yangtze River Delta, and Pearl River Delta, the
bias and RMSEs decreased by 76.4–94.2% and 29.0–45.7%, respectively, and the CORRs
increased by 23.5–53.4%. For Northern China, the bias and RMSEs decreased by 26.9–35.6%
and 11.0–15.7%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14010220/s1, Figure S1: The location of (a) the real emissions
(EM_obs) and (b) the background emission (EM_old) in the model domain. Units are mol km−2 h−1;
Figure S2: Model simulated and observed SO2 concentrations for October 2015 in China from 00 UTC
to 23 UTC (top-down). (a) Scatter plots, (b) the hourly average simulated by UC_DA experiment,
(c) differences of the hourly average between Ctrl experiment and UC_DA experiment, and (d)
differences of the hourly average between N_EM experiment and UC_DA experiment. Units: µg
m−3. Ctrl: Control; UC_DA: Updata Cycle Data Assimilation; N_EM: New Emission.
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