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Abstract: It is an effective measure to estimate groundwater storage anomalies (GWSA) by combining
Gravity Recovery and Climate Experiment (GRACE) data and hydrological models. However, GWSA
results based on a single hydrological model and GRACE data may have greater uncertainties, and it
is difficult to verify in some regions where in situ groundwater-level measurements are limited. First,
to solve this problem, a groundwater weighted fusion model (GWFM) is presented, based on the
extended triple collocation (ETC) method. Second, the Shiyang River Basin (SYRB) is taken as an
example, and in situ groundwater-level measurements are used to evaluate the performance of the
GWFM. The comparison indicates that the correlation coefficient (CC) and Nash-Sutcliffe efficiency
coefficient (NSE) are increased by 9–40% and 23–657%, respectively, relative to the original results.
Moreover, the root mean squared error (RMSE) is reduced by 9–28%, which verifies the superiority
of the GWFM. Third, the spatiotemporal distribution and influencing factors of GWSA in the Hexi
Corridor (HC) are comprehensively analyzed during the period between 2003 and 2016. The results
show that GWSA decline, with a trend of −2.37 ± 0.38 mm/yr from 2003 to 2010, and the downward
trend after 2011 (−0.46 ± 1.35 mm/yr) slow down significantly compared to 2003–2010. The spatial
distribution obtained by the GWFM is more reliable compared to the arithmetic average results, and
GWFM-based GWSA fully retain the advantages of different models, especially in the southeastern
part of the SYRB. Additionally, a simple index is used to evaluate the contributions of climatic factors
and human factors to groundwater storage (GWS) in the HC and its different subregions. The index
indicates that climate factors occupy a dominant position in the SLRB and SYRB, while human factors
have a significant impact on GWS in the Heihe River Basin (HRB). This study can provide suggestions
for the management and assessments of groundwater resources in some arid regions.

Keywords: groundwater weighted fusion model; GRACE; Hexi corridor; ETC; groundwater storage

1. Introduction

As an important component of terrestrial water storage (TWS), groundwater plays
a key role in domestic, agriculture and industrial use, as well as ecosystems [1,2]. More
than 38% of the world’s population lives in arid or semi-arid zones [3], where groundwa-
ter is usually the dominant freshwater resource, supplying domestic use and irrigation
water [4]. Especially in northwest China, groundwater resources have been facing the
risk of depletion, which may lead to the ecological environment of the region losing its
ability to self-repair and endangering local ecological security [5]. Therefore, accurate
estimation of groundwater storage anomalies (GWSA) is essential for the effective use of
local groundwater resources. The traditional method of monitoring groundwater level
mainly uses monitoring wells. However, monitoring wells are scarce, and the observation
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records are short and discontinuous, restricting research related to GWSA [2,6,7]. Therefore,
it is important to seek an alternative method to obtain ground-based network data for
monitoring of large-scale groundwater storage (GWS) variations.

Since March 2002, Gravity Recovery and Climate Experiment (GRACE) satellites have
provided an opportunity to assess global TWS changes, with a resolution of ~300 km [8–10].
Currently, the GRACE gravity satellites are the only way to sense water storage at all levels,
including soil moisture (SM), snow-water equivalent (SWE), canopy water storage (CWS),
and GWS [10]. To isolate the GWS component from TWS, water storage changes of other
components have to be estimated based on hydrological models [11,12]. At present, there
are several frequently employed hydrological models and reanalysis datasets, such as the
Global Land Data Assimilation System (GLDAS) [13], the WaterGAP Global Hydrology
model (WGHM) [14], and the ERA5 reanalysis dataset [15,16]. Furthermore, previous
studies have demonstrated the effectiveness of GRACE observations to estimate GWSA in
many typically regions of the world, e.g., the Central Valley of California [17,18], northwest
India [9,19,20], and the North China Plain [1,21,22].

Currently, most studies mainly rely on a single hydrological model to separate GWS
components from GRACE-derived TWS [23–25]. However, the accuracy of these models is
restricted by uncertainties in climate forcing (particularly precipitation), model parameters,
and deficiencies in model structure [26–31]. Therefore, the effective combination of multiple
models can improve the performance of hydrological simulations relative to a single model.
For instance, Shamseldin et al. [32] used the method of multi-model ensemble to develop
more skillful and reliable probabilistic hydrologic prediction. The results confirmed that
better estimates of water storage can be obtained by combining the model outputs of differ-
ent hydrological models. Long et al. [33] used the Bayesian model-averaging technique,
which can merge multiple TWS products to analyze the spatiotemporal variability of TWS.
Mehrnegar [27] presented the dynamic model-data-averaging method, which can be used
to merge multiple TWS simulations. The result indicated that linear trends and seasonality
within global hydrological models can be improved by using the dynamic model-data-
averaging method. These multi-model techniques prove to provide accurate estimates by
combining different models according to the different weighting strategies [32,34].

Triple collocation (TC) is a statistical method to estimate the random-error variance
of three independent datasets [35]. Currently, the TC method has been used to estimate
measurement errors of GRACE data [36]. Specifically, Khaki et al. [37] and Nigatu et al. [38]
estimated the changes in key water-storage components by using the GRACE data and
soil-moisture data based on the TC analysis method. Yin and Park [39] proposed a simple
least-square merging approach using error characteristics quantified from the TC approach
to estimate weight. Compared to the classic TC approach, the extended triple collocation
(ETC), proposed by McColl [40], can obtain an additional evaluation index, that is, the
correlation coefficient relative to the unknown true value. Up to now, there are few studies
that have merged datasets from different sources based on the ETC method.

The Hexi Corridor (HC) is one of the most agriculturally rich areas of northwest China,
which is characterized as an irrigation district of “no irrigation, no agriculture” [5,41].
Moreover, groundwater resources have been depleted on a large scale in the area due to
poor management of groundwater exploitation [42]. The policy of building a water-saving
society was introduced in Zhangye City of Gansu Province in 2001 [43]. The government
initiated a policy called the Key Governance Planning Project of the Shiyang River Basin
in 2007, which aimed to improve the ecological conditions of the area [44,45]. Accurate
estimation of GWS is essential for understanding the complex hydrological process and
formulating sustainable management policies for groundwater resources in the region.

The purpose of this study is to improve the accuracy of groundwater storage estimates
in some regions where in situ groundwater-level measurements are limited and to quantify
the impact of climate change and human activities. Specifically, a weighted fusion model is
proposed, based on the squared correlation coefficient and error variance calculated by the
ETC [40,46] method. The ratio of these two indicators is used to develop the groundwater
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weighted fusion model (GWFM), which is helpful in merging GWSA based on the GRACE
and multiple hydrological models, and compare it with the original results. In addition,
a simple and effective method is used to evaluate the contribution of climate factors and
human factors to GWS.

2. Materials and Methods
2.1. Study Area

The HC is located in Northwest China (92◦12′–104◦20′ E, 37◦17′–42◦48′ N) (Figure 1a),
including the five prefecture-level cities of Wuwei, Jinchang, Zhangye, Jiuquan, and Ji-
ayuguan (Figure 1c, http://srtm.csi.cgiar.org (accessed on 10 August 2021)) [47]. The three
major rivers of the HC, from west to east, are the Shule River, the Heihe River and the
Shiyang River, originating from the Qilian Mountains. The HC is mainly covered by bare
land and gobi, and agricultural land is concentrated in the Shiyang River Basin (SYRB)
and Heihe River Basin (HRB) (Figure 1d, https://www.resdc.cn (accessed on 10 August
2021)) [48]. It belongs to the arid continental climate, with an average annual temperature
ranging from 8 to 10 ◦C [42], and the annual evaporation is 1500–3200 mm [49]. The rainfall
shows a decreasing trend from east to west (Figure 1b, http://data.cma.cn (accessed on
10 August 2021)), and ~80% of rainfall occurs during July–August [50]. The Qilian Moun-
tains in the south nurture extensive glaciers and snow, which is an important freshwater
resource for downstream cities critical to easing agricultural drought and other human
activities in the HC [51].
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Figure 1. Information summary of the Hexi corridor: (a) geographical location, (b) annual precipita-
tion, (c) digital elevation and distribution of groundwater-level monitoring points, (d) land use.

2.2. Materials
2.2.1. GRACE Data

The GRACE RL05 Mascon solutions are utilized to derive TWS anomalies in this study,
which are provided by the Center for Space Research (CSR) [52]. Monthly TWS anomalies
are provided from April 2002 to June 2017, with a spatial resolution of 0.5 × 0.5◦. The
regularization constraint on mascon solutions is derived from original GRACE information
with no empirical filtering post-processing [52,53]. Therefore, the product can capture all
the signals observed by GRACE within the measurement noise level and be used without

http://srtm.csi.cgiar.org
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further processing [54]. Missing data in the CSR Mascon are filled by linear interpolation of
the nearby monthly mean values [24].

2.2.2. Soil Moisture Datasets

GLDAS was jointly developed by the National Aeronautics and Space Administration
and the National Oceanic and Atmospheric Administration, which can obtain land-surface
state and flux with high time resolution (https://disc.gsfc.nasa.gov/ (accessed on 1 July
2021)) [13]. In this study, the monthly SM product provided by the GLDAS Noah model
with a spatial resolution of 1.0× 1.0◦ is used to estimate SM over the HC. For consistency of
data resolution, the related datasets are interpolated into a spatial resolution of 0.5 × 0.5◦.
More details on various soil-moisture data used are summarized in Table 1.

Table 1. Summary of soil-moisture products from GLDAS, WGHM, and ERA5-Land.

Datasets Spatial
Resolution

Temporal
Resolution Soil Layer Depth (cm)

GLDAS-Noah 1.0 × 1.0◦ monthly 4 0–10, 10–40, 40–100, 100–200
WGHM 0.5 × 0.5◦ monthly - 100–200

ERA5-Land 0.1 × 0.1◦ monthly 4 0–7, 7–28, 28–100, 100–289

WGHM [14] was developed by the Institute of Physical Geography at the University
of Frankfurt and provides information on spatiotemporal water-storage changes for most
hydrological processes. This model accounts for four of the most important terrestrial
water-storage components: surface water, snow, soil water, and groundwater storage [55].
The WGHM data were retrieved from https://doi.pangaea.de/10.1594/PANGAEA.918447
(accessed on 1 July 2021). The SM product provided by WGHM is used in this study, which
is monthly data from January 2003 to December 2016 at a spatial resolution of 0.5 × 0.5◦.

ERA5-Land [56] is a reanalysis dataset produced by replaying the land component
of the ERA5 climate reanalysis (https://cds.climate.copernicus.eu/ (accessed on 1 July
2021)). It is one of the most modern and finest reanalysis datasets produced by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) within the Copernicus
Climate Change Service. In this study, the SM product of ERA5-Land is employed, which
is the monthly datasets, with a spatial resolution of 0.1 × 0.1◦ from 2003 to 2016. To main-
tain the same spatial resolution, the related datasets are interpolated into the 0.5 × 0.5◦

spatial resolution.

2.2.3. Groundwater Level from Wells

Groundwater monitoring data are collected from the groundwater yearbooks compiled
by the China Institute of Geological Environment Monitoring (CIGEM), which is published
by the Ministry of Land and Resources of the People’s Republic of China. Due to the sparse
number of stations and a lack of continuous data at individual stations, the measured
groundwater-level data of five wells from 2007 to 2014 are selected in the SYRB to verify the
performance of GWFM-based GWSA in this study (shown in Figure 1b). The groundwater
level can be converted to groundwater storage by multiplying by specific yield values.
However, specific yield values are unknown, and the groundwater level is only used
to verify the performance of GWFM. Therefore, there is no need to covert the levels to
groundwater storage in this study to avoid possible errors associated within unknown
specific yield values.

2.2.4. Auxiliary Data

The precipitation dataset is collected from the China Meteorological Data Service Cen-
ter, based on the precipitation data of high-density ground stations in China (2472 national
meteorological observatories). It uses the thin-plate splines method [57] of ANUSPLIN
software for spatial interpolation to generate monthly grid data from 1961 to the present,
with a spatial resolution of 0.5 × 0.5◦. Additionally, evapotranspiration and temperature

https://disc.gsfc.nasa.gov/
https://doi.pangaea.de/10.1594/PANGAEA.918447
https://cds.climate.copernicus.eu/
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data from the GLDAS and ERA5-Land during 2003–2016 are collected to evaluate the
impact of climate factors on GWS.

To evaluate the impact of human factors, the annual groundwater withdrawal data of
the HC from 2003 to 2016 are also collected. They are collected from the Water Resources
Bulletin of Gansu Province, which is published by the Gansu Provincial Department of
Water Resources, China.

2.3. Methods

The flow chart of the study is shown in Figure 2. First, the GWSA results are estimated
based on GRACE and three hydrological models (selected as GLDAS, ERA5, and WGHM).
Second, the error variance and correlation coefficient of three GWSA derived by ETC are
utilized for weight estimation, and then the GWSA results from different sources are merged
based on the least squares framework. Furthermore, the merged GWSA are verified by the
original results and in situ groundwater-level measurements. Finally, the impact of different
factors on GWS is analyzed by combining climatic factors and water-consumption data.
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2.3.1. Construction of GWFM

Hydrological simulation typically needs to be calibrated by the “true” value of the
target variable. However, it is difficult to obtain measured data in some areas because of
the uneven distribution of monitoring points. ETC is a statistical method to estimate the
correlation coefficient and the random-error variance of three independent datasets. The
prerequisites for the TC approach are: (i) linearity between the true hydrological signal and
the observations, (ii) signal and error stationarity, (iii) independency between the errors
and the hydrological signal (error orthogonality), and (iv) independency between the errors
of each dataset (zero-error cross-correlation) [35]. This study uses the error variance and
squared correlation coefficient calculated by the ETC method to develop the GWFM. The
error model is given by [35,40]:

Si = αi + βiΘ + εi (1)

where Si (i = 1, 2, 3) represents GWSA based on GRACE and three hydrological models;
Θ denotes the unknown true hydrological signal; Si represents collocated measurement
systems linearly related to the true unknown value, Θ; αi and βi represent the least-squares
intercepts and slope, respectively; and εi represents additive zero-mean random noise.

Covariance estimation is used to solve random-error variance in this study. The
covariances between the different datasets are given by [35,40]:

cov(Si, Sj) = E(SiSj)− E(Si)E(Sj) = βiβ jσ
2
Θ

+βi cov(Θ, ε j) + β j cov(Θ, εi) + cov(εi, ε j)
(2)

According to these four prerequisites of the TC approach, cov(εi, ε j) = 0 (i 6= j
)
,

cov(εi, Θ) = 0; the equation reduces to [35,40]:

Cij = cov(Si, Sj) =

{
βiβ jσ

2
Θ (i 6= j

)
β2

i σ2
Θ + σ2

εi
(i = j)

(3)

where σ2
εi

represents the variance of random-error variance, εi; β2
i σ2

Θ denotes the sensitivity
of datasets, Si, to changes in true signal. In other words, the higher βi, the stronger the
response of datasets,Si, to hydrological signal. The sensitivity of each dataset can be
calculated by combining their covariances [35,40]:

β2
i σ2

Θ =


C12C13

C23
C21C23

C13
C31C32

C12

 (4)

The error variance can be obtained by subtracting the sensitivity β2
i σ2

Θ of each dataset
from their total variance [35,40]:

σ2
εi
=

 C11 − C12C13
C23

C22 − C21C23
C13

C33 − C31C32
C12

 (5)

ρ2
i,Θ =

β2
i σ2

Θ
β2

i σ2
Θ + σ2

εi

=
SNRi

SNRi + 1
(6)

SNRi =
var(Si)

var(εi)
=

β2
i σ2

Θ
σ2

εi

(7)

where ρ2
i,Θ represents the squared correlation coefficient and SNR represents the un-biased

signal-to-noise ratio.
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In this study, the error variance and squared correlation coefficient calculated by the
above method are used to develop the GWFM. The detailed formula is as follows:

Wi =


ρ2

i,Θ/σ2
εi

n
∑

i=1
ρ2

i,Θ/σ2
εi

(ρ2
i,Θ > 0, σ2

εi
> 0)

1/3 (ρ2
i,Θ < 0, σ2

εi
< 0)

(8)

Ymodel = W1M1 + W2M2 + W3M3 (9)

where Mi (i = 1, 2, 3) denotes the time series of the same position for the three datasets and
Wi denotes the weight of the corresponding time series, Mi.

2.3.2. Estimation of GWSA Based on GRACE

Generally, GWSA can be estimated by subtracting CWS, SWE, and SM simulated by
hydrologic models from the GRACE-derived TWS anomalies [4]. The detailed formula is
as follows:

GWSA = TWSA− SMA− SWEA− CWSA (10)

where SMA, SWEA, and CWSA represent the storage anomalies of SM, SWE and CWS,
respectively, relative to a reference period (the reference period is 2004–2009). Previous
studies indicated that SM and GWS are the primary contributors to TWS changes and that
variations in snow and ice, biomass, and surface water are relatively minor [9,19,58,59].
In addition, the selected study area is located in the arid region of northwest China and
is mainly covered by bare land and gobi. Therefore, SWE and CWS can be ignored in
this study.

2.3.3. Multiple Linear Regression of Time Series

To analyze the seasonal and secular trend of GWSA, multiple linear regression is used
to analyze the temporal variability of GWSA. The regression model is given by [60]:

Y(t) = β1 + β2t + β3 sin(πt) + β4 cos(πt) + β5 sin(2πt) + β6 cos(2πt) + ε (11)

where Y(t) denotes GWSA at time t; β1 and β2 denote the constant offset and secular trend,
respectively; β3 and β4 represent the annual signal; β5 and β6 represent semi-annual signals;
and ε represents the model error. Meanwhile, the annual and semi-annual amplitude are
computed as [60]:

annual amplitude =
√

β2
3 + β2

4 (12)

semi− annual amplitude =
√

β2
5 + β2

6 (13)

2.3.4. Estimation of the Contribution to GWS

GRACE can monitor the temporal and spatial changes of TWS, including human
factors and climate factors. In order to evaluate the contribution of different factors to GWS,
a method is used to evaluate the contribution of these two factors, which can be computed
as follows [61]:

GWSCc = GWSCGRACE − GWSCH (14)

GWSC = GWSAt − GWSAt−1 (15)

ηH =
GWSCH

|GWSCH |+ |GWSCC|
(16)

ηC =
GWSCC

|GWSCH |+ |GWSCC|
(17)

where GWSCC represents climate-driven GWS changes; GWSCGRACE represents the annual
GWS changes estimated by GRACE data; and GWSCH denotes the part of GWS changes
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induced by human factors. ηH and ηC denote the contribution of human and climatic
factors to GWS changes, respectively. If η is positive, it provides a positive impact on GWS;
otherwise, the opposite is true.

2.3.5. Evaluation Index

In this study, the correlation coefficient (CC), the root mean squared error (RMSE), and
the Nash-Sutcliffe efficiency coefficient (NSE) are utilized to test the performance of this
result [61–63].

CC =
cov(X(t), Y(t))√

var[X(t)] var(Y(t))
(18)

RMSE =

√
1
n

n

∑
i=1

(X(t)−Y(t))2 (19)

NSE = 1−

n
∑

i=1
(X(t)−Y(t))2

n
∑

i=1
(X(t)− Xmean)2

(20)

where n denotes the total number of observations; X(t) and Y(t) denote measurements and
simulated values, respectively; and Xmean represents the mean of measurements. Consider-
ing inconsistent scales between different results, in situ groundwater-level measurements
and simulated results should be normalized to [−1, 1].

3. Results
3.1. Experimental Verifications of the GWFM

It is necessary to test the performance of the GWFM before it is applied to the study
area and the SYRB is chosen as the study area. The GWSA results based on GRACE
observations and three hydrological models (namely GLDAS, ERA5, and WGHM) are
introduced as the input data of the GWFM, and GWFM-based results are verified against
in situ groundwater-level measurements.

Figure 3 represents the time series of GWSA estimated from the GWFM and three
GRACE-based GWSA (hereafter GRACE−GLDAS, GRACE−ERA5, and GRACE−WGHM).
Moreover, in situ groundwater-level measurements are also shown, and the shaded areas
represent the uncertainties of GWFM-based GWSA. From the long-term variation of GWSA
point of view, GWFM-based GWSA agree well with that, based on GRACE in terms of
periodicity and seasonality. Furthermore, it is obvious that the long-term trends of GRACE-
based and GWFM-based GWSA and in situ groundwater-level measurements are generally
similar, showing a decreasing trend. However, there is a clear difference in phase between
them (Figure 3). In other words, there is a clear time lag between GRACE-based GWSA and
in situ groundwater-level measurements. Many previous studies have reported the time
lag; for example, Thomas et al. [64] indicated that when the lag time was two months, the
correlation between GRACE-based GWSA and in situ groundwater-level measurements
reached a maximum in the Central Valley of California. Abou et al. [65] reported that there
was a clear time lag between in situ groundwater-level measurements and GWSA based
on GRACE in the Bakhtegan catchment. In order to explore the best lag time, this study
uses GRACE−GLDAS and in situ groundwater-level measurements (S1–S5) (Table 2). The
result shows that the highest correlation (CC = 0.59–0.72) can be found when the lag time is
4–5 months.

In order to explore the reliability of the GWFM, the lag time is set to 4 months, and
GRACE-based (GRACE−GLDAS, GRACE−ERA5, and GRACE−WGHM) and GWFM-
based results are compared with in situ groundwater-level measurements (Figure 4). The
comparison indicates that the seasonality of GRACE-based and GWFM-based GWSA is
consistent with in situ groundwater-level measurements, and the annual amplitude of
GRACE−ERA5 is greater than that of GRACE−GLDAS and GRACE−WGHM. Further-
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more, the amplitudes of in situ groundwater-level measurements (S1–S5) also display larger
differences. For example, S3 shows a small amplitude change after 2011; the amplitude of
S1 varies from −3 m to 5 m, and the amplitude of S5 is between −8 m and 16 m from the
perspective of the long-term average.
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and GWFM and verified against in situ groundwater-level measurements.

Table 2. Lagged CC between in situ groundwater-level measurements and GWSA in S1–S5 from 2007
to 2014.

Wells
Time Lag (Month)

0 1 2 3 4 5 6

S1 0.34 0.41 0.51 0.60 0.65 0.63 0.55
S2 0.31 0.38 0.51 0.61 0.68 0.72 0.70
S3 0.59 0.60 0.64 0.66 0.69 0.67 0.62
S4 0.48 0.49 0.52 0.54 0.58 0.59 0.57
S5 0.51 0.53 0.58 0.62 0.64 0.61 0.56

In order to quantify the agreement between GWFM-based GWSA and in situ
groundwater-level measurements, three metrics (CC, RMSE, and NSE) are calculated
over the SYRB, as shown in Figure 5. This result shows that the agreement between
GWFM-based GWSA and in situ groundwater-level measurements is much better than
that based on GRACE. Additionally, the GWFM effectively improves the CC and NSE
and decreases the RMSE. Specifically, the CC between GWFM-based GWSA and in
situ groundwater-level measurements, S1, increases from 0.54 to 0.74, and the RMSE
decreases from 0.44 to 0.39, the NSE increases from 0.11 to 0.54 relative to the original
results. Compared with the mean value of in situ groundwater-level measurements (ex-
pressed by S6), similar improvements can also be seen for CC (9–40%), NSE (23–657%),
and RMSE (9–28%). The above verification results indicate that reasonable GWSA
estimates can be obtained through the GWFM in the SYRB. Therefore, it can give us
confidence in applying this developed method to the HC, so as to better understand the
temporal and spatial characteristics.
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3.2. Comparison of GWSA

Figure 6 shows the annual, monthly, and seasonal scales of GRACE-based and GWFM-
based GWSA from January 2003 to December 2016. The long-term trend of GRACE-based
and GWFM-based GWSA shows a reasonable agreement, and four results also have a
similar annual cycle. For the intra-annual changes of GWSA, the GWSA time series have a
reasonable agreement; the anomalies are positive from May to August (Figure 6c). However,
the values are negative for other months, and the only exception is the GRACE−GLDAS,
always remaining negative. The main reason is that the HC is dry and less rainy, and
~80% of rainfall occurs during the period from May to September [66], which effectively
recharges the groundwater. The HC is a well-known irrigated agricultural area in northwest
China, but surface-water resources are scarce, and irrigation water mainly comes from
groundwater. Therefore, a large amount of groundwater is pumped in spring and summer
due to irrigation needs, which leads to a decrease in groundwater storage.
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From the perspective of the long-term trend, GWSA reveals a significant downward
trend over the study period. Notably, 2011 is a turning point, and the downward trend
before 2011 is significantly higher than the trend after 2011. In order to clarify the difference
between the four results, multivariate statistical analysis is used for the GWSA time series
in the two time periods of 2003–2010 and 2011–2016 in the HC. Table 3 summarizes the
evaluation indexes for the GWSA time series, including the long-term trend and annual
amplitude. From 2003 to 2010, four GWSA downtrends range from 1.08 (GRACE−ERA5)
to 4.17 (GRACE−GLDAS) mm/yr, which clearly indicates groundwater depletion in the
HC during the period from 2003 to 2011. From 2011 to 2016, the results also show a
downward trend (except GRACE−WGHM), and decline rates range from 0.46 (GWFM) to
0.70 (GRACE−ERA5) mm/yr, while GRACE−WGHM increased at a rate of 0.07 mm/yr.
The rate of decline from 2011 to 2016 is significantly slower than that from 2003 to 2010,
while the annual amplitude, compared with the previous period, increases significantly.
This result may be related to the water policy in the area, such as Gansu Province gradually
implementing the most stringent water-resource management system and measures of
“points to areas, Hexi first” in 2011 [67].

Table 3. Comparison of annual amplitude and trend between GWSA from GRACE−GLDAS,
GRACE−ERA5, GRACE−WGHM, and GWFM.

Datasets
2003–2010 2011–2016

Annual Amplitude (mm) Trend (mm/yr) Annual Amplitude (mm) Trend (mm/yr)

GRACE−GLDAS 6.59 ± 1.54 −4.17 ± 0.47 7.07 ± 3.34 −0.48 ± 1.38
GRACE−ERA5 9.44 ± 1.42 −1.08 ± 0.44 10.10 ± 3.37 −0.70 ± 1.39

GRACE−WGHM 7.12 ± 1.16 −1.67 ± 0.36 9.72 ± 3.20 0.07 ± 1.32
GWFM 7.40 ± 1.22 −2.37 ± 0.38 8.67 ± 3.26 −0.46 ± 1.35

The annual and semi-annual changes of time series can be analyzed by phasor dia-
grams, which show their amplitude and phase based on a reference period (in this study,
the reference period is 2004–2009). The length of each vector represents the magnitude of
amplitude, while the vector direction represents a phase. The bigger the difference between
two vector directions and length, the greater the phase and amplitude difference between
two time series. In other words, the phase difference can affect the magnitude of the corre-
lation, and a difference in amplitude can affect variance agreement. In the case of annual
amplitude and phases, GRACE−ERA5 has a higher annual amplitude than other results
(shown in Figure 7a). Although the best amplitude agreement exists between GWFM-
based result and GRACE−WGHM, the phase correspondence is poor, while GWFM-based
GWSA agree well with GRACE−ERA5 at phase. In terms of semi-annual amplitude and
phases (shown in Figure 7b), the phase and amplitude in GWSA from the GWFM show
favorable agreement with GRACE−GLDAS, while the semi-annual phase and amplitude
of GRACE−ERA5 are different from other results.
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3.3. Spatial Pattern of Variation Trends in GWSA

Figure 8 shows the spatial distribution of GWSA based on GRACE and GWFM over
the HC from 2003 to 2016. Among these results, GRACE−GLDAS shows that the area
of GWS depletion has a higher downward trend and coverage, but the characteristics
of spatial distribution in the Shule River Basin (SLRB) and the HRB are not distinct.
GRACE−ERA5 shows obvious spatial-change characteristics, such as the D1 of the SLRB,
the D2 of the HRB, and the D3 of the SYRB as the main GWS depleted areas (shown in
Figure 8b). GRACE−WGHM shows a downward trend, high in the north and low in
the south, but the overall spatial distribution shows no significant characteristic changes
relative to other results. The GWFM highlights remarkable GWS depletion in the d1, d2,
d3, and d4 (shown in Figure 8d), with the rates of about −4.22 mm/yr, −2.67 mm/yr,
−3.77 mm/yr, and −5.06 mm/yr, respectively. It should be noted that, GRACE−ERA5 and
the GWFM show opposite trends in the southeast of the SYRB, with the rates of 1.91 and
−1.76 mm/yr, respectively.
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The GWSA based on the GWFM is shown in Figure 9a, and the simple average result
(average) of both GRACE-based GWSA is shown in Figure 9b. The main depletion areas of
the two results are basically similar, but there is a large difference between the GWFM and
average in the southeast of the SYRB (Df1 and df1), where the two trends are −1.76 mm/yr
and 1.11 mm/yr, respectively. The government of Gansu Province announced Gulang
County and Wuwei City as a GWS over-exploitation area, that is, the Df4 in Figure 9a, which
is more consistent with the results of the GWFM. Therefore, the GWFM can effectively
integrate the advantages of multiple models, retain the characteristics of specific regional
changes, and provide a more accurate GWSA result relative to simple average results.
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3.4. Response of GWSA to Climate Change

GWS changes are closely related to climate and human factors. Therefore, it is necessary
to evaluate the relationship between GWFM-based GWSA and influencing factors in order
to better understand the causes and development of groundwater depletion in the HC.

In the context of climate change, precipitation and evapotranspiration are the dom-
inant factors that have the greatest impact on GWS [68]. Temperature changes lead to
changes in evapotranspiration, which, in turn, lead to changes in GWS. The net recharge
of groundwater is the difference between recharge and discharge [2]. Groundwater in
the HC piedmont plain is mainly from the infiltration of surface runoff, which accounts
for ~80% of total recharge [69], followed by precipitation and seepage of irrigation wa-
ter. Groundwater discharge is mainly groundwater pumping and evapotranspiration of
shallow groundwater [70].

To further analyze the detailed relationship between climatic factors and GWSA,
cross-wavelet analysis is used in this study. Cross-wavelet transforms between GWSA
and climatic factors in the HC are displayed in Figure 10. Figure 10a indicates that the
correlations between precipitation and GWSA are strong in the HC during the period of
2003–2016, and it shows a statistically positive correlation between precipitation and GWSA
at the 95% confidence level. Evapotranspiration and temperature also exhibit a strong
positive correlation. In addition, GWSA and climatic factors all have a main resonance
period of about 1 month.
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Under the background of climate change, precipitation is the input of water, and
evapotranspiration is the output of water in a region. Therefore, precipitation minus evapo-
transpiration (P−ET) can represent the net recharge of surface water and groundwater [71].
During 2003–2016, the maximum P−ET occurred in June-September, and the minimum
in January-April and October-December (shown in Figure 11). P−ET shows a significant
downward trend relative to other time periods during 2007–2016, resulting in a significant
decrease in net recharge. Such shortage of precipitation will directly hinder the growth
of vegetation and human production, and excessive evapotranspiration will further accel-
erate the loss of available water resources and disrupt the balance of the water cycle [72].
Although the net recharge in summer is positive during this period, groundwater is still in
a state of declining, indicating that groundwater is not effectively recharged.
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In addition, snowmelt is also an important factor in groundwater replenishment.
In the context of climate change, snowmelt will increase. This impact means less snow
accumulation in the winter and an earlier peak runoff in the spring [73]. Meanwhile,
snowmelt is an important water source in Northwest China, which is of great significance
to maintenance of ecological balance and sustainable development [74]. Li et al. [75] showed
that from 1960 to 2010, the average annual runoff in the arid area of northwest China was
increasing. Among them, the increased rate of runoff in the northern mountainous area
of the Qilian Mountains was 1.48 × 108 m3/10 a. Therefore, an increase in snowmelt will
have a greater impact on runoff, which, in turn, affects recharge of groundwater.

3.5. Response of GWSA to Human Factors

In addition to climate factors, the impact of human factors on groundwater cannot
be ignored. In the HC, water resources are scarce and unevenly distributed. During the
crop-water demand season, a large amount of water resources is used for irrigation, when
surface water for irrigation is limited, which will lead to a prominent contradiction between
water supply and demand and inevitably lead to groundwater depletion. The HC has been
undergoing tremendous changes over the past few decades. Niu et al. [76] showed that in
the past 30 years, the increase in irrigation water consumption of farmland in the HRB had
led to an average drop of about 1.86 m in groundwater. Zhou et al. [77] showed that as the
area of farmland increased by 11.0%, the total irrigation water demand increased by 6.3%
during the period from 2000 to 2010.



Remote Sens. 2022, 14, 202 16 of 22

Figure 12 shows changes in groundwater withdrawal in the HC. During the entire
survey period (2003–2016), the amount of groundwater withdrawal in the HRB is on a
continuous upward trend, while other regions show a trend of a first decline and then
an increase, reaching the lowest in 2009–2011, which is consistent with the change in
precipitation. It is worth noting that even in the rainy season, GWS is in a state of decline.
However, even in drier years, the amount of groundwater withdrawal is lower than
in previous years, and the rate of decline in GWSA is higher than in the rainy season.
This means that even when the amount of groundwater withdrawn is lower than in
previous years, the amount of groundwater withdrawn is much higher than the amount of
groundwater replenishment. If the use of water resources cannot be well improved, the
area will continuously face the problem of groundwater depletion in the future.
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4. Discussion
4.1. Spatial Distribution of Weight Index

The weighted fusion model is presented in this study, which can merge three GRACE-
based GWSA. Specifically, the error variance and correlation coefficient of three GWSA
derived by ETC are used for weight estimation. Then, three GWSA from different sources
are merged by the least-squares framework. Therefore, it is necessary to discuss the weight
of different original results.

Figure 13 shows the spatial distribution of the weights. This weight represents the
relative contribution to the merged result. Among the three GRACE-based GWSA (in-
cluding GRACE−GLDAS, GRACE−ERA5, and GRACE−WGHM), the largest average
weight can be obtained by GRACE−ERA5 (0.38), followed by GRACE−WGHM (0.32) and
GRACE−GLDAS (0.30). It is worth noting that there are apparent differences in spatial
distribution, although the average weights of GRACE−GLDAS and GRACE−WGHM are
relatively close. For example, GRACE−WGHM has larger weights than GRACE−GLDAS
in C1, C2, and C3, accounting for about 0.50, 0.45, and 0.49, respectively. GRACE−GLDAS
matches well with GRACE−WGHM in other regions. GRACE−ERA5 has higher weights
relative to other results in B1 and B2. Furthermore, GRACE−ERA5 has a relatively high
relative contribution to the merger result in most regions. These differences may be caused
by different forced data and the parameters of the hydrological model [7,78]. In general,
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GRACE−ERA5 can accurately describe GWS changes in most areas of the HC from the
perspective of single-model results.
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4.2. Contributions of Different Factors to GWS

The contribution of climate factors and human factors to GWS has been evaluated
using the method proposed in Section 2.3.4. Generally, the larger the value of η, the greater
contribution it makes to GWS changes. The respective contributions are shown in Table 4.

Table 4. Contributions (%) of climate factors and human factors to GWS changes in the HC and its
three subregions.

HC SLRB HRB SYRB

ηC ηH ηC ηH ηC ηH ηC ηH

2003 53.73 −46.27 81.23 −18.77 37.28 −62.72 47.37 −52.63
2004 51.86 −48.14 27.78 −72.22 63.97 −36.03 71.66 −28.34
2005 −15.23 −84.77 −69.58 −30.42 −88.34 −11.66 −70.40 −29.60
2006 63.40 −36.60 75.86 −24.14 84.24 −15.76 73.67 −26.33
2007 −40.64 −59.36 −85.64 −14.36 −90.70 −9.30 −42.28 −57.72
2008 32.43 −67.57 −38.21 −61.79 12.85 −87.15 −58.48 −41.52
2009 65.73 −34.27 74.17 −25.83 81.21 −18.79 84.84 −15.16
2010 −61.61 −38.39 −87.49 −12.51 −87.27 −12.73 −90.15 −9.85
2011 70.55 −29.45 90.63 −9.37 84.20 −15.80 71.01 −28.99
2012 −11.98 −88.02 −88.78 −11.22 15.48 −84.52 −39.99 −60.01
2013 56.40 −43.60 62.68 −37.32 54.32 −45.68 80.03 −19.97
2014 55.33 −44.67 78.58 −21.42 46.74 −53.26 47.75 −52.25
2015 54.91 −45.09 78.35 −21.65 64.81 −35.19 −30.96 −69.04
2016 42.46 −57.54 −14.58 −85.42 8.81 −91.19 15.24 −84.76

As shown in Table 4, human factors are an important factor affecting GWS among
climate and human factors in the HC and its subregions. For example, the impact of human
activities shows a downward trend before 2010 and then begin to rise in the SYRB, which
matches well with the change in trend of groundwater withdrawal in Figure 12. This is
consistent with the conclusion drawn from other research conducted in this region, e.g.,
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Liu et al. [44]. As for HRB, GWS changes affected by human factors show an upward trend
with the increase in groundwater withdrawal. In the HC, the effects of climate change on
GWS changes account for ~48%, while those of human activities contributed ~52%. This
indicates that human activity has been the dominant factor driving the continuous reduction
in groundwater. Wang et al. [5] reported that irrigation was continuously increased during
the period of 2000–2016 in the HC. Moreover, Niu et al. [76] and Zhou et al. [77] also reported
a similar situation in the subregions of the HC. This is consistent with our conclusion that
human factors have become the dominant factor affecting GWS in the HC.

4.3. Limitation and Furture Work

In this study, there are some limitations, although reasonable results have been
achieved. First, the GWFM proposed in this study is based on the same assumptions
as the ETC method, such as error orthogonality and zero-error cross-correlation. Second,
this study only uses GLDAS, ERA5, and WGHM, without considering other data sources.
Third, there is only an eight-year overlap period with the GRACE data due to the short
and discontinuous in situ groundwater-level measurement data. It is impossible to test the
performance of the GWFM over a longer time frame.

In follow-up work, more data will be introduced to develop the model to compare
and analyze GWSA in arid regions where in situ groundwater-level measurements are
scarce. Furthermore, we will conduct a comparative analysis with the existing multi-model
combination of technology to further improve the GWFM.

5. Conclusions

This study estimates GWSA by combining GRACE data with hydrological models.
These data have their own unique characteristics and are developed for a global scale.
Therefore, estimation of regional water-storage state generated by a single model may have
greater uncertainty. In response to this problem, a GWFM is presented that can merge
multi-source GWSA. The useful conclusions are as follows:

(1) To obtain an accurate estimation of GWSA, this paper proposes a groundwater
weighted fusion model. A comprehensive example is defined to verify the per-
formance of the GWFM, and the superiority of the GWFM is verified by in situ
groundwater-level measurements. The results show that the GWFM can effectively
integrate the advantages of each data set sand produce a more reliable GWSA than
the original results. Compared with GRACE-based GWSA, GWFM-based GWSA can
obtain higher CC and NSE, CC increases by 9–40%, NSE increases by 23–657%, while
RMSE decreases by 9–28%.

(2) The GWSA result of the HC from 2003 to 2016 is calculated based on the GWFM.
GWFM-based GWSA show an overall downward trend from 2003 to 2016, but 2011
is a turning point. From 2003 to 2010, there is a rapid downward trend, which is
−2.37 ± 0.38 mm/yr, while the downward trend from 2011 to 2016 is significantly
slowed, at −0.46 ± 1.35 mm/yr. This may be related to the local implementation
of corresponding water-saving policies. In terms of spatial changes, in the central
and southern part of the SLRB, the central part of the HRB and the northern part of
the SYRB, which are the main GWS depleted areas, have a large downward trend.
Furthermore, GWFM-based GWSA can better retain the characteristics of regional
GWSA relative to the arithmetic average result, especially in the southeast of the SYRB.

(3) A simple and effective method is used to evaluate the contribution of climate factors
and human factors to GWS. The results show that the amount of groundwater with-
drawal has a significant impact on GWS, especially in the HRB, where the amount
of groundwater withdrawal is increasing every year. As for the HC, the effects of
climate change on GWS changes account for ~48%, while those of human activities
contributed ~52%. In general, human activities, especially agricultural irrigation, have
become the main reason for GWS decline in the HC.
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Acronym Full Name
GRACE Gravity Recovery and Climate Experiment
TWS terrestrial water storage
GWS groundwater storage
GWSA groundwater storage anomalies
GWFM groundwater weighted fusion model
ETC extended triple collocation
HC Hexi Corridor
SYRB Shiyang River Basin
HRB Hei River Basin
SLRB Shule River Basin
SM soil moisture
SWE snow water equivalent
CWS canopy water storage
GLDAS Global Land Data Assimilation System
WGHM WaterGAP Global Hydrology model
CIGEM China Institute of Geological Environment Monitoring
CC correlation coefficient
RMSE root mean squared error
NSE Nash-Sutcliffe efficiency coefficient
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