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Abstract: The rapid assessment of building damage in earthquake-stricken areas is of paramount
importance for emergency response. The development of remote sensing technology has aided in
deriving reliable and precise building damage assessments of extensive areas following disasters.
It is well documented that convolutional neural network methods have superior performance in
earthquake building damage assessment compared with traditional machine learning methods.
However, deep learning models require a large number of samples, and sufficient numbers of
samples are usually not available in the newly earthquake-stricken areas rapidly enough. At the
same time, the historical samples inevitably differ from the new earthquake-affected areas due to
the discrepancy of regional building characteristics. For this purpose, this study proposes a data
transfer algorithm for evaluating the impact of a single historical training sample on the model
performance. Then, beneficial samples are selected to transfer knowledge from the historical data
for facilitating the calibration of the new model. Four models are designed with two earthquake
damage building datasets and the performance of the models is compared and evaluated. The results
show that the data transfer algorithm proposed in this work improves the reliability of the building
damage assessment model significantly by filtering samples from the historical data that are suitable
for the new task. The performance of the model built based on the data transfer method on the test
set of new earthquakes task is approximately 8% higher in overall accuracy compared with the model
trained directly with the new earthquake samples when the training data for the new task is only
10% of the historical data and is operating under the objective of four classes of building damage.
The proposed data transfer algorithm has effectively enhanced the precision of the seismic building
damage assessment in a data-limited context. Thus, it could be applicable to the building damage
assessment of new disasters.

Keywords: building damage; transfer learning; earthquake; deep learning; convolutional neural
networks

1. Introduction

Major earthquakes are one of the most destructive and devastating natural disasters,
often triggering extensive secondary disasters that result in widespread building collapse
and infrastructure damage [1–5]. In this context, the extensive building damage triggered by
earthquake disasters is an overwhelming cause of human casualties and loss of assets [6,7].
Rapidly assessing the damage of the building during the emergency response period
following the earthquake is an essential process, which would help to mitigate the loss of
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life and property [8–10]. Although traditional post-disaster field investigations are more
accurate for damage mapping, it is time-consuming and less secure. In comparison, satellite
or UAV-based imagery allows for faster, more precise, and more extensive coverage of the
disaster-affected area, which could be analyzed for building damage assessment purposes,
which could support the emergency response [11,12].

Earthquake building damage detection and assessment are performed based on pre-
and post-earthquake images or a single post-earthquake image using various types of
remote sensing data, including optical, LiDAR, and SAR [13,14]. In terms of detection
and classification methods, visual interpretation [15], transformation-based methods [16],
and post-classification comparison from multiple periods have been used [17,18]. In re-
cent years, machine learning and deep learning methods have also been employed for
earthquake building damage assessment [19–21]. Among these, the deep learning methods
(Convolutional Neural Networks, CNNs) have been demonstrated to be more effective at
assessing the seismic building damage classes, with their superior accuracy owing to their
automatic feature extraction capability that allows them to extract the high-level features
more effectively [22–24]. CNNs can not only automatically learn low-level and mid-level
features from the raw images, but also automatically extract higher-level features with
discriminating representation according to the problem [25]. The low-level CNNs could
extract the basic features of buildings, such as the color, the edges, and the corners, and the
deep-level CNNs derives high-level features, such as problem-specific features related to
the new task [26]. Such automatic feature extraction abilities are an advantage compared to
traditional machine learning models that require setting the features through expert experi-
ence for remote sensing image building detection [27,28]. The powerful learning capability
of deep CNNs is mainly due to the use of multiple feature extraction stages, which can
automatically learn representational features from the raw images according to the target
task. Recent studies have demonstrated the impressive performance of deep CNNs for au-
tomatic feature extraction and the detection of buildings [29–31]. For instance, Vetrivel et al.
(2016) compared the results of two supervised classification methods (expert knowledge
extraction of image features and convolutional neural network automatic feature extraction)
for collapsed building detection. The results showed that the convolutional neural network
that automatically extracted features performed better. Moreover, the authors noted that
with the increase in the remote sensing image spatial resolution, the performance of the
convolutional neural network method for feature extraction will have more significant
advantages [32]. Ci et al. (2019) built an earthquake building damage class assessment
model based on the combination of a convolutional neural network and an ordered regres-
sion. The results demonstrated that the classification accuracy of the proposed model was
significantly higher than that of traditional machine learning methods [33]. However, the
established deep learning-based seismic building damage assessment models require a
large amount of sample data for training, which is usually difficult to obtain during the
emergency response period in a new earthquake-affected area. At the same time, these
models were trained based on damaged building data within a single earthquake-stricken
area, which affects the extrapolation capability of the trained models when they are applied
to new earthquake scenarios that lack data. In addressing the issue of insufficient training
data, transfer learning has been mostly used in the literature. For instance, Yu et al. (2019)
found that the performance of the accuracy of image-based tumor diagnosis could effec-
tively be improved by fine-tuning the pre-trained image deep learning model [34]. Qin et al.
(2021) demonstrated that transfer learning outperforms traditional convolutional neural
networks for landslide detection [35]. Few works in the literature use transfer learning
to assess and recognize structural and building damage, but most of these works focus
on feature-based and knowledge-based transfer learning [36,37]. Only a small amount of
attention has been focused on the transfer of sample instance data. Among these, there are
very limited seismic building damage studies based on data transfer.

To address this issue, this study proposes a data transfer algorithm based on instance
evaluation to be able to maximize the use of historical heterogeneous data. Based on this
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knowledge, trained models, and historical data, the beneficial samples from historical data
are effectively screened out to be used for improving the new task prediction. We attempt
to solve the issue that only very limited labeled samples are available in the emergency
response phase after the occurrence of a new earthquake.

2. Materials and Methods
2.1. Post-Earthquake High-Resolution Remote Sensing Images

In this study, high-resolution remote sensing images following two earthquakes were
used to develop a transfer learning model for assessment of seismic building damage
classes. These two earthquakes were the Yushu earthquake [38] in Qinghai Province
in 2010 and the Ludian earthquake [39] in Yunnan Province in 2014. On 14 April 2010,
an earthquake with a magnitude of 6.9 Mw occurred in the Yushu Tibetan autonomous
prefecture, Qinghai Province, with an epicenter near 33.2◦N and 96.6◦E and a depth of
14 km. The Yushu earthquake destroyed a large number of buildings in Jiegu town and
the surrounding areas in the Yushu Tibetan Autonomous Prefecture. The remote sensing
images following the Yushu earthquake were 0.1 m spatial resolution aerial image data
acquired on 16 April 2010, containing R, G, and B bands, and the collapsed buildings
images near the Jiegu town are shown in Figure 1a. On 3 August 2014, an earthquake with
a magnitude of 6.1 Mw occurred near 27.1◦N and 103.3◦E in the Ludian County, Zhaotong
City, Yunnan Province, and the epicenter had a depth of 12 km. The remote sensing images
following the Ludian earthquake were 0.2 m spatial resolution UAV image data acquired
on 7 August and 14 August 2014, which contained R, G, and B bands, and the post-quake
collapsed buildings near Longtoushan town are shown in Figure 1b.
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Figure 1. Damaged building on remote sensing images following the (a) Yushu earthquake and
(b) Ludian earthquake.

2.2. Labeling of Damaged Buildings in Remote Sensing Images

The visual interpretation approach was used to vectorize the building outlines on the
post-earthquake remote-sensing images. Based on the analysis of the length-to-width ratio
of multiple vectorized buildings and the spatial resolution of remote sensing images, it was
found that producing the building samples in a standard image of size 88×88 could better
present the characteristics of various buildings. The building damage classes were set
into four categories, including intact damaged (no observable damage), lightly damaged,
heavily damaged, and collapsed, by examining the building features, including outline,
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geometry, texture, and the relationship with the surrounding area, on the remote sensing
images and by incorporating the criteria for classifying earthquake-induced building
damage from the literature. The damage classes of the building samples in the images were
evaluated one by one through visual interpretation, with the field investigations after the
2014 Ludian earthquake as a reference. The numbers of building samples of each damage
class for the Ludian and Yushu earthquakes are shown in Table 1 after visual interpretation,
and the morphological samples of the damaged buildings in remote sensing images are
shown in Table 2.

Table 1. The sample size of damaged buildings in the Ludian dataset and the Yushu dataset [33].

Damage Classes Description Ludian Dataset Yushu Dataset

D0 No observable damage 2680 778
D1 Light damage 5013 918
D2 Heavy damage 2807 665
D3 Collapse 3280 1140

Total 13,780 3501

Table 2. Sample of damaged buildings on remote sensing images in the Ludian and Yushu datasets.

Dataset No Observable
Damage Light Damage Heavy Damage Collapse

Ludian dataset
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The dataset obtained from the damaged buildings of the Ludian earthquake is referred
to as the “Ludian dataset”. The dataset obtained from the damaged buildings of the
Yushu earthquake is referred to as the “Yushu dataset”. The Ludian dataset contains
a total of 2680 buildings with D0 damage level, 5013 buildings with D1 damage level,
2807 buildings with D2 damage level, and 3280 buildings with D3 damage level, for a total
of 13,780 buildings. The Yushu dataset contains a total of 778 buildings with D0 damage,
918 buildings with D1 damage, 665 buildings with D2 damage, and 1140 buildings with D3
damage, for a total of 3501 buildings. In general, the sample size of the building samples
of each damage level is relatively balanced within the two earthquake datasets, and the
Ludian dataset is more abundant.

Although both the “Ludian dataset” and the “Yushu dataset” contain remote sensing
image data acquired following the earthquake, the building damage classes and label
evaluation criteria are identical in these two datasets. There are still differences between
the two datasets due to various reasons, such as their geographical regions, imaging
periods, aerial platforms, sensor parameters, local customs, etc., which are reflected by the
different distribution of DN values of pixels in the remote sensing images. Such differences
are tangible in the actual seismic building damage assessment. This study attempts to
investigate the extrapolation of the model to different seismic scenarios, different regions,
and the effect of the different amount of training data on the accuracy.
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2.3. Transfer Learning

Transfer learning is a method of transferring the knowledge trained or learned from
deep learning models to a new pending task. The advantage of transfer learning over
traditional machine learning models is that the trained models and knowledge from
historical data can be transferred to the new task instead of retraining a new model. This
significantly reduces the number of training samples required for a new model, while at the
same time it can improve the accuracy of the new model with the help of existing models,
knowledge, and historical data [40].

Regarding the training for the Ludian dataset and the Yushu dataset, the Ludian
dataset, with a more abundant sample size, is chosen as the historical earthquake scenario,
and the Yushu dataset, with a relatively smaller sample size, is used as the new task
scenario. Such a design is similar to the practical new earthquake scenario; i.e., there
are more historical earthquake building damage samples, while new samples are usually
relatively limited for the new earthquakes. In this case, the challenge for the building
damage assessment of new earthquake scenarios is that there are already a small number
of training samples and test samples with the same distribution. However, the number of
these samples is too small, so it may not be possible to derive a reliable model by relying
on these limited training and testing samples. It is also difficult to increase the number
of training samples of new earthquakes, which would take more time and would not be
sufficient for the rapid damage assessment for the emergency response. At the same time,
there are a larger number of auxiliary samples (historical data). However, the distribution
between these auxiliary samples and the training samples of the new earthquake scenario
is not consistent.

The problem to be solved here is how to derive, with the help of these auxiliary
samples, a new model that has the highest possible classification accuracy when applied to
the new test samples. For this purpose, the following model framework is designed in this
study (Figure 2).

Firstly, a convolutional neural network (CNN) combined with an ordered regression
model is employed to build a seismic building damage class assessment model based on the
Ludian dataset. This deep learning model architecture consists of a CNN feature extractor,
i.e., the visual geometry group network (VGG), and an ordered regression classifier, which
has been demonstrated to outperform other model architectures in seismic building damage
class assessment. In this study, the VGG-OR network is employed to develop a VGG-
OR(LD) model for the Ludian dataset. Then, four schemes are designed to evaluate the
performance of different transfer learning schemes through comparative tests. The first
scheme is to directly transfer the trained model, i.e., VGG-OR(LD), to the testing set of the
“new” Yushu dataset for prediction. The second scheme is to retrain a new model based
on the “new” Yushu dataset and the VGG-OR architecture, i.e., VGG-OR(YS). The third
scheme is to utilize the training set of the “new” Yushu dataset to fine-tune the parameters
of the VGG-OR(LD) model to derive a new model, i.e., VGG-OR(FT). The last scheme is to
propose a new data transfer algorithm. The proposed data transfer algorithm is designed to
identify potential samples of the historical data that are beneficial to the Yushu dataset, and
these beneficial historical samples are used jointly with the training samples of the Yushu
dataset to fine-tune the parameters of the VGG-OR(LD) model to derive a new model, i.e.,
VGG-OR(DT).



Remote Sens. 2022, 14, 201 6 of 15

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 15 
 

 

different distribution of DN values of pixels in the remote sensing images. Such differ-
ences are tangible in the actual seismic building damage assessment. This study attempts 
to investigate the extrapolation of the model to different seismic scenarios, different re-
gions, and the effect of the different amount of training data on the accuracy. 

2.3. Transfer Learning 
Transfer learning is a method of transferring the knowledge trained or learned from 

deep learning models to a new pending task. The advantage of transfer learning over tra-
ditional machine learning models is that the trained models and knowledge from histori-
cal data can be transferred to the new task instead of retraining a new model. This signif-
icantly reduces the number of training samples required for a new model, while at the 
same time it can improve the accuracy of the new model with the help of existing models, 
knowledge, and historical data [40]. 

 
Figure 2. Model framework performed in this study. 

Regarding the training for the Ludian dataset and the Yushu dataset, the Ludian da-
taset, with a more abundant sample size, is chosen as the historical earthquake scenario, 
and the Yushu dataset, with a relatively smaller sample size, is used as the new task 

Figure 2. Model framework performed in this study.

The basic idea of the data transfer algorithm proposed in this study is that although
the historical samples and the target training samples are more or less different from each
other, there should still be a portion of the historical sample that is suitable for assisting in
training the model that could be adapted to the test sample of the new task. Therefore, the
critical implementation of this data transfer algorithm is to build an evaluation model that
retains the eligible historical data and removes the historical data that differs significantly
from the target data. These retained historical samples would be used as added data to be
used with the target training samples to improve the reliability of the model after filtering.
The data transfer algorithm process proposed in this study is illustrated in Table 3 and
Figure 3. The effect of the historical sample on the accuracy of the model in the test set of
the new task is evaluated using the loss function proposed by Koh and Liang (2017), and
the beneficial samples are selected for improving the model with the training set of the new
task [41].
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Table 3. Data transfer algorithm processes.

Input
ZS: Historical dataset (Ludian dataset)

ZT,train: Training set from the new task dataset (Yushu dataset)
ZT,val: Validation set from the new task dataset (Yushu dataset)

i, j: subscript
fθ : f refers to the CNN model and θ refers to the parameter of the CNN model

Iloss
(
zi, zj

)
: loss function

Start
θpre: Pre-trained parameters obtained by training based on the historical dataset ZS

fθ0

ZS→ fθpre

Processes
1. For each zi ∈ ZS, zj ∈ ZT,val, calculate the loss function on the validation set:

For zi in ZS
For zj in ZT,val

Calculating Iloss
(
zi, zj

)
If ∑

j
Iloss

(
zi, zj

)
> 0, then remove zi from ZS

2. Beneficial samples Z′s
4. Combined ZT,train ∪ Z′s as the training set, Fine-tuning the pre-trained parameters θpre to θT

fθpre

ZT,train∪Z′s→ fθT

Output
Z′s: Beneficial samples after selection

θT: Optimized model parameters
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In the existing transfer learning studies, it is found that the best transfer learning
effectiveness is achieved when the amount of data in the new task is close to 10% of the
amount of the historical data. When the data size of the new task is more than 20% of
the historical data size, the effectiveness of transfer learning decreases and may even be
weaker than that of direct training based on only the new training data [42,43]. Therefore,
this study limits the data size of the new task to approximately 10% of the historical data
size when comparing the performance of the models, and also explores the effect of the
training sample size for the new task on the performance of the different models.

2.4. Evaluation Methods

The confusion matrix, overall accuracy, kappa coefficient and mean squared error
(MSE) were used to evaluate the performance of the four models. The training procedure
of all the models in this study randomly divides the dataset into the training set, validation
set, and test set. The three sets (training set, validation set and test set) are not intersected
with each other. The training set is used to train the parameters of the deep learning model.
The validation set is used for model selection, where the optimal model is selected based on
the performance of the model with the validation set, or the models trained with different
hyperparameters, including model structure, learning rate, number of iterations, etc., are
selected based on the performance of these hyperparameters with the validation set. The
test set is employed to examine the extrapolation performance of the final selected optimal
model. Since the sample size of the Ludian dataset is comparatively sufficient for the
training of the VGG-OR(LD) model, the Ludian dataset is randomly divided into three
parts according to the ratio of 80%:10%:10%, mapping to the training set, the validation set,
and the test set, respectively. For a more detailed explanation of the VGG-OR(LD) model,
refer to the literature [33]. For the new earthquake scenario, i.e., the Yushu dataset, 60% of
the samples are randomly divided into the training set, 20% into the validation set, and the
remaining 20% into the test set, and the evaluation metrics are based on the test set. Thus,
for the VGG-OR(LD) model, the test set of the Yushu dataset was directly employed to
evaluate the performance of the model. For the VGG-OR(YS) model, the model is trained
using 60% of the Yushu training dataset combined with the CNN-OR model structure, then
20% of the Yushu validation dataset is utilized to fine-tune the parameters of the VGG-
OR(YS) model, and finally the performance of the VGG-OR(YS) model is evaluated using
20% of the Yushu test dataset. For the VGG-OR(FT) model, the training and validation
sets of the Yushu dataset were employed to fine-tune the parameters of the VGG-OR(LD)
model, and then the performance of the VGG-OR(FT) model was evaluated with the Yushu
test dataset. For the VGG-OR(DT) model, the data transfer algorithm proposed in this
work is used to identify the beneficial samples in the Ludian dataset, and these beneficial
samples are used together with the training and validation sets of the Yushu dataset to
fine-tune the VGG-OR(LD) model, and then the Yushu test dataset is employed to evaluate
the performance of the VGG-OR(DT) model. The details of each evaluation method are
described as follows.

The confusion matrix is widely used to evaluate the agreement of the observation
and the model’s classification, which is one of the underlying methods for evaluating
the performance of remote sensing image classification algorithms. This is achieved by
counting the number of algorithmic classification result labels corresponding to the true
category labels on a sample-by-sample basis. A confusion matrix is represented using C.
Assuming that the samples have a total of K classes, the matrix C is a K-row and K-column
matrix. C (i, j) represents the total number of samples whose observation category is i and
predicts category j.

The overall accuracy is the rate of consistency between the results classified by a model
and the observation. It can be derived using the following formula:

OA =
∑K

i C(i, i)

∑K
i ∑K

j C(i, j)
(1)
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Kappa coefficients are commonly used as a measure of classification accuracy [44].
The kappa coefficient would usually be between 0 and 1, and the larger the value, the better
the consistency. It is derived using the following formula:

pe =
∑K

i

(
∑K

j C(i, j) ∗∑K
j C(j, i)

)
N2 (2)

Kappa =
OA− pe

1− pe
(3)

where N denotes the total number of samples.
Mean squared error (MSE) is the mean value of the sum of squares of errors between

the predicted data and the actual value. The formula is:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

where yi refers to the actual value, ŷi refers to the predicted value, and N denotes the total
number of samples.

3. Results and Discussion
3.1. Model Trained by Ludian Dataset Can Be Transferred to Yushu Dataset

The VGG-OR(LD) model trained on the “Ludian dataset” was directly applied to the
test set of the “Yushu dataset” to evaluate the performance of directly transferring the
established “historical” model to the new task. The overall accuracy and kappa coefficients
of the VGG-OR(LD) model for the test set of the “Yushu dataset” are shown in Table 4 in
three sets of damage classes, including two classes (D0–2, D3), three classes (D0–1, D2, D3),
and four classes (D0, D1, D2, D3). In general, the direct transfer model performs relatively
well with the new dataset. The overall accuracy of the VGG-OR(LD) model in the new
task was above 90% with a kappa coefficient value of 0.8 in the dichotomous classification
(Set 1: nearly intact and damaged), which outperforms the existing related studies. The
performance of the VGG-OR(LD) model in the new task decreases significantly when the
damage classes are divided into three categories (Set 2: nearly intact, severe damage, and
complete collapse), yet the overall accuracy is 74% and the kappa coefficient value is 0.6,
which is comparable to the performance of the existing models in the literature [28,45,46].
Since the performance of the “historical” model is directly applied to the “new” dataset
from a different geographical region, without using the training samples from the new
dataset in the model, this is a good demonstration that the VGG-OR(LD) model performs
very well in the test set of the new task.

Table 4. Performance of the VGG-OR(LD) model applied to the Yushu dataset.

Sets Subclass Damage Grade Overall
Accuracy

Kappa
Coefficient

Set 1
Nearly intact D0, D1, D2

90.14% 0.80Damaged D3

Set 2
Nearly intact D0, D1

74.43% 0.60Severe damage D2
Complete collapse D3

Set 3

No observable damage D0

64.28% 0.49
Light damage D1

Heavy damaged D2
Collapse D3
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The overall accuracy of the VGG-OR(LD) model with the Yushu test set is approxi-
mately 64% when the damage classes are divided into four categories (Set 3: no observable
damage, light damage, severe damage, and complete collapse), which is significantly lower
than the overall accuracy of the VGG-OR(LD) model with the “Ludian dataset”, which
was 78%, indicating that the performance of the direct transfer model in more detailed
classification is still somewhat inadequate. The confusion matrix of the VGG-OR(LD)
model directly applied to the Yushu testing dataset with four classifications of building
damage levels is shown in Table 5. From Table 5, the classification accuracy of the model
for collapsed buildings (D3 level) is significantly higher than that of other building damage
levels, with the producer’s accuracy reaching 88% and the user’s accuracy reaching 90%. At
the same time, the values of the lower left and upper right corners of the confusion matrix
are both zero, which suggests that the model is less likely to misclassify across damage
levels. As this “historical” model is implemented straightforwardly on the “new” dataset
from a geographically distinct region, this indicates that the straightforward transfer model
performs fairly well. However, the direct application of the VGG-OR(LD) model to the
Yushu test set still has more misclassification and omission in the two damage levels of
D0 and D1, and further improvement of the model is needed. For this reason, this study
further explores the use of data transfer methods to attempt to enhance the classification
accuracy.

Table 5. Confusion matrix of the VGG-OR(LD) model applied to the Yushu dataset.

Observation
Prediction

D0 D1 D2 D3 Total

D0 46 46 19 0 111
D1 25 74 56 10 165
D2 8 27 48 21 104
D3 0 4 34 282 320

Total 79 151 157 313 700

3.2. Data Transfer Improves the Performance of a New Task with Insufficient Data

To further explore the applicability of the data transfer algorithm for improving the
model performance, three model schemes are designed in this study, including VGG-
OR(YS), VGG-OR(FT), and VGG-OR(DT). VGG-OR(YS) uses the VGG-OR model architec-
ture to retrain the model with the training data in the Yushu dataset. In VGG-OR(FT), the
VGG-OR(LD) model is used as the pre-trained model, and the training data in the “Yushu
dataset” are used to improve the model through fine-tuning (FT). For VGG-OR(DT), the
data transfer (DT) algorithm proposed in this study is used to select samples from the
“Ludian dataset” that are beneficial to the new task, and these beneficial historical samples
are used together with the training samples from the “Yushu dataset” to fine-tune the
parameters of the VGG-OR(LD) model.

Figure 4 indicates the accuracy of the VGG-OR(YS), VGG-OR(FT), and VGG-OR(DT)
models when the training sample of “Yushu dataset” accounts for 10% of the sample size
of the “Ludian dataset”. The results in Figure 4 showed that VGG-OR(DT) performed
better in the test set of the Yushu dataset with an overall accuracy of 74%, which was
significantly improved compared with the other three models, especially compared with
the VGG-OR(LD) model, where the overall accuracy was improved by approximately 10%,
the kappa coefficient was improved by approximately 0.12, and the MSE was lowered by
approximately 0.15. This demonstrates that the data transfer algorithm proposed in this
study is effective at improving the performance of the model for prediction in new tasks.
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10% of the historical data size.

It is also worth noting that the VGG-OR(FT) models also showed remarkable improve-
ments compared to the VGG-OR(LD) model, with the overall accuracy increasing from
64% to approximately 71%, the kappa coefficient increasing from 0.49 to 0.58, and the MSE
decreasing from 0.52 to 0.39. The fairly good performance of the VGG-OR(FT) models
sufficiently demonstrates that the new target data could significantly enhance and improve
the performance of the transfer model with the new task. In addition, both the VGG-OR(YS)
and VGG-OR(FT) models show a certain degree of performance improvement compared
to the VGG-OR(LD) model that was directly applied to the test set of the Yushu dataset.
This suggests that using a portion of the samples from the new task for model training or
parameter fine-tuning could improve the classification accuracy of the models in the test
set of the new task. Therefore, it is greatly important to acquire the new dataset as soon
as possible after a new disaster occurs, which would help to improve the classification
accuracy of the model.

In order to explore the influence of the training data sample size on the accuracy of
the transfer learning models in the new task, this study selects the data size of the “Yushu
dataset” equal to 2–20% of the “Ludian dataset” as the training data, and the remaining data
are used as testing data to evaluate the classification accuracy of the models. It is shown in
Figure 5 that VGG-OR(DT) and VGG-OR(FT) always performed better than VGG-OR(YS).
In particular, when the data size of the new task is quite limited, the improvement of the
classification accuracy of the VGG-OR(DT) model built with the data transfer algorithm
proposed in this study is more significant for the new task test set. When the data size
approaches 20%, the classification accuracy of the three models gradually improves. This
would be very helpful for the emergency response assessment when new disasters occur. It
is usually inconvenient to acquire a large number of new data samples for the affected area
immediately after a disaster, and the data transfer approach developed in this study could
be employed to select samples from the existing historical data that are beneficial to the
new task, which can be combined with a small amount of new sample data from the new
disaster scenario to significantly improve the classification accuracy of the model.
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3.3. The Applicability of Transfer Learning in New Scenarios

The data transfer methods proposed in this study could efficiently improve the ac-
curacy of seismic building damage assessment. When new earthquake events occur, a
building damage class assessment model applicable to the region of new earthquake events
can be derived from a small number of labeled damaged building samples from the stricken
region, combined with the already established model and historical dataset. The results of
this study show that when the training set of the new task reaches about 10% of the histori-
cal data, i.e., 1000 samples, combined with the data augmentation method, the model has
been able to achieve an overall accuracy of about 74% for the VGG-OR(DT) model derived
from transfer learning in four building damage categories (Set 3 in Table 4: no observable
damage, light damage, severe damage, and complete collapse). For the same number of
new datasets, the overall accuracy is 66% when used to retrain the model VGG-OR(YS). The
improvement of the classification accuracy of the transfer learning approach compared with
the re-training model is remarkable. With this amount of data, it only requires a relatively
short time to complete the manual labeling, which can greatly reduce the time required
for disaster damage assessment in the disaster emergency response phase. Therefore, we
believe that the reasonable use of historical data through transfer learning methods could
greatly improve the efficiency of remote sensing-based damage assessment and reserve
more time for emergency response decisions.

In addition to the implementation of the data transfer model in the new seismic
scenario, the data transfer model may be further extrapolated in other research areas in
the future to address the challenge of a lack of data samples in areas where modeling is
not possible. For example, for landslide and debris flow susceptibility modeling in the
mountainous areas of the Tibetan Plateau, where data are not available, the transfer of
applicable landslide samples or experiences from more abundant regions may be explored.
Related studies in regions with less data, such as in Africa, may also attempt to assist
modeling with applicable samples from other data-rich regions.

Moreover, local site effects can have a significant impact on building damage in
different locations [47]. Site effects lead to the amplification of seismic waves through strati-
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graphic and topographic effects, which may lead to a concentration of building damage
in certain locations [48–50]. It would be beneficial for the building damage assessment in
this study if site effects are taken into account. However, the purpose of this study is to
propose a new data transfer model to derive beneficial samples from existing historical
data through evaluation to assist in assessing rapid building damage assessment in areas
where new seismic hazards have occurred. In this case, the goal of transferring learning
to new areas may not be achieved by considering site effect factors. In future research on
high-accuracy building damage assessment modeling in a given region, the site effect factor
will be incorporated to improve the accuracy of the model.

4. Conclusions

This study investigates the effective use of historical data and the extrapolation perfor-
mance of the existing trained models to new or unknown data through transfer learning
approaches, attempting to address the limitations of deep learning models in practical seis-
mic building damage assessment applications. For this purpose, a data transfer algorithm
is proposed and applied to two historical earthquake building damage datasets (the Ludian
earthquake and the Yushu earthquake). The main findings of this study are as follows: (1)
The model built based on historical data can be effectively transferred to the new task, and
could assist in addressing the situation where there is not yet data available for the new
task. (2) The data transfer algorithm proposed in this study can filter data samples suitable
for the target task from historical data, and using these historical data could significantly
improve the reliability of the classification model. (3) The data transfer algorithm can
effectively improve the classification accuracy of the model in the case of limited data,
especially in the case of limited new data in the affected area during the disaster emergency
response phase, and the data transfer model would be helpful for improving the efficiency
and accuracy of rapid damage assessment.
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