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Abstract: The urban heat island (UHI) effect, the phenomenon by which cities are warmer than
rural surroundings, is increasingly important in a rapidly urbanizing and warming world, but
fine-scale differences in temperature within cities are difficult to observe accurately. Networks of
air temperature (Tair) sensors rarely offer the spatial density needed to capture neighborhood-level
disparities in warming, while satellite measures of land surface temperature (LST) do not reflect the
air temperatures that people physically experience. This analysis combines both Tair measurements
recorded by a spatially-dense stationary sensor network in Dane County, Wisconsin, and remotely-
sensed measurements of LST over the same area—to improve the use and interpretation of LST
in UHI studies. The data analyzed span three summer months (June, July, and August) and eight
years (2012–2019). Overall, Tair and LST displayed greater agreement in spatial distribution than in
magnitude. The relationship between day of the year and correlation was fit to a parabolic curve
(R2 = 0.76, p = 0.0002) that peaked in late July. The seasonal evolution in the relationship between Tair

and LST, along with particularly high variability in LST across agricultural land cover suggest that
plant phenology contributes to a seasonally varying relationship between Tair and LST measurements
of the UHI.

Keywords: urban heat island; land surface temperature; sensor arrays; Landsat

1. Introduction

In the context of a rapidly urbanizing planet [1,2] and rising global temperatures [3],
the extra heat burden experienced in cities raises concern. The common pattern of increased
temperatures in cities, referred to as the urban heat island (UHI) effect, has been tied to poor
air quality [4], increased energy consumption [5,6], and multiple health risks, including
increased mortality [7]. Extreme heat is already one of the deadliest weather-related
threats [8], and the combined effect of climate change and urbanization are expected to
increase dangerous exposure to extreme heat among urban populations [9]. Detailed and
accurate monitoring of UHIs is needed to adequately predict and prepare for extreme heat
risk [10,11].

Historically, a variety of data sources have been used to observe and analyze UHIs,
each with its own advantages and drawbacks. Observational studies may rely on mea-
surements from pairs of urban and rural air temperature (Tair) sensors (e.g., [12]) or use
networks of dozens or hundreds of sensors [13]. Mobile sensors have also been used to
measure Tair at high spatial resolution along urban transects [14–17]. These mobile transects
typically cannot provide a historical temperature record, while weather stations that offer
a long historic record may provide limited spatial coverage, and few high-density sensor
networks have been maintained for longer than five years [13]. Therefore, an alternative to
using Tair measurements to study the canopy-level UHI is studying the surface urban heat
island (SUHI) with satellite data [18]. Satellite measurements of land surface temperature

Remote Sens. 2022, 14, 165. https://doi.org/10.3390/rs14010165 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010165
https://doi.org/10.3390/rs14010165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0400-758X
https://doi.org/10.3390/rs14010165
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010165?type=check_update&version=1


Remote Sens. 2022, 14, 165 2 of 19

(LST) have been used in UHI research since 1972 [19], but these methods have increased
exponentially since 2005 due to advances in remote sensing and big data analysis tech-
niques [18]. Because satellite data can offer long historic records and continuous spatial
coverage over large swaths of land, albeit, with limited sampling frequency, remotely-
sensed LST can be used for applications such as studying how the UHI changes as a city
grows, comparing UHIs across multiple cities, and correlating temperatures with land
cover [20,21].

Although both the canopy-level UHI and the SUHI are used in urban climate studies,
Tair and LST are not directly analogous [18,20]. People can physically experience the
difference between high and low air temperatures, but it is less clear whether satellite-
derived LST accurately captures short-term excessive heat conditions that threaten human
health [22]. Given the ubiquity of satellite data in UHI studies, it is important to understand
if and how remotely-sensed LST reflects the temperature conditions that urban residents
physically experience. These questions of how Tair and LST relate to each other and
whether one can be used to predict the other have been widely explored, in both urban and
non-urban settings.

In homogeneous rural environments, LST is generally predictive of Tair, but this
relationship is impacted by other variables, including cloud cover, wind, time of day,
season, and surrounding land cover [23–26]. Typically, LST experiences greater diurnal
variability than Tair, reaching higher temperatures during the day and lower temperatures
overnight [22,27]. The magnitude of the difference between LST and Tair is greatest, and
correlation is lowest, during the summer season and in the early afternoon, when both air
temperatures and LST are highest [23,28]. Windy and cloudy conditions have consistently
been found to decrease the magnitude of the difference between LST and Tair and increase
the correlation between these two measures of temperature [20,23,24,27]. However, satellite
data is often unavailable or less accurate under cloudy conditions [29]. Variability in the
surrounding land cover is another factor that can decrease the correlation between Tair
and LST [20]; as a result, some of the strongest linear relationships between Tair and LST
have been observed across locations that were specifically selected for their consistent
surrounding year-round vegetated cover [23,27].

Due to the heterogeneity of the urban landscape, the relationship between Tair and
LST is more complex in these settings, and past analyses of this relationship have revealed
mixed results [14,18,30,31]. The temperature range observed in the SUHI is typically
greater than the difference between urban and rural Tair, and the magnitude of the SUHI
usually peaks during the day, rather than the night-time peak observed in the canopy-
level UHI [32]. Despite these typical patterns, the variables that shape the relationship
between urban Tair and LST depend on each city’s unique geography [31]. In Vancouver,
Canada, Tair recorded at weather stations across the city and Landsat LST observations
were found to be poorly correlated [33]. Similarly, no correlation was observed between the
magnitude of the Tair and LST-based UHIs in Hangzhou, China, regardless of the season or
time of day [34]. Studies in both Leipzig, Germany, and Birmingham, UK produced high
correlations between measurements of Tair and LST and a weaker relationship between the
magnitude of the SUHI and the canopy level [14,35]. Overall, no consistent and universal
relationship has been established between these two different measures of temperatures in
urban environments [18,20].

Cities that have been the subject of past Tair and LST comparisons, such as Vancouver,
Los Angeles, Hangzhou, and Birmingham, generally have large populations, with more
than one million residents in their surrounding metropolitan areas [31,33–35]. Networks
of urban temperature sensors are most commonly in cities with similarly large popula-
tions [13]. Urban warming is often greatest in the most populated cities, and these trends
certainly merit further research [17]; however, only a minority of urban residents live in the
largest cities [36]. In the U.S., for example, less than 8% of the population lives in cities with
over 1,000,000 residents, while nearly twice as many people live in cities with populations
between 100,000 and 500,000 [36]. Our analysis focuses on one of these less populated
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U.S. urban areas: the city of Madison, Wisconsin, which has a population of 258,000, and
the surrounding county, which has a total population of 547,000 over roughly 3100 km2

(1200 mi2) of land [37].
This study uses data from a spatially dense network of air temperature sensors through-

out the Madison area to build on past investigations of the relationship between the SUHI
and canopy-level UHI. In addition to its high spatial resolution, our sensor array is dis-
tinguished by the diversity of land use covered. Although most of the network is within
city limits, 40% of the sensors are located outside these boundaries, providing coverage of
agricultural land dominated by annual crops, as well as nearby forest, grasslands, wetlands,
and neighboring towns [13]. Similar to other mid-sized cities in the Corn Belt, land cover in
Madison quickly transitions from urban development to cropland near the city limits [38].
The spatial density of the Madison sensor network allows for a uniquely detailed exami-
nation of how urban warming varies across a representative Midwest city. By comparing
Tair measured by this sensor network with satellite measurements of summer LST, we
investigate how accurately the SUHI represents Tair across the heterogeneous landscape of
Dane County, Wisconsin. This study explores how the relationship between summer Tair
and LST changes with land cover and throughout the growing season. By comparing Tair
and LST along these lines, we can better understand when and how to use satellite data to
study urban warming in a mid-sized city within a heterogeneous agricultural region.

2. Materials and Methods
2.1. Study Area

This study focuses on Dane County (Wisconsin) and the city of Madison, located near
the center of the county. Dane County has a population of roughly 547,000, and nearly half
of the county’s residents (260,000 total) live within the city of Madison [37]. A chain of four
lakes lies within and around the city. The county’s rural areas are primarily agricultural,
but also contain forest, wetlands, and grasslands (Figure 1a). Across Dane County, 15% of
the land area is developed and 46% of the area is cropland, with corn and soybeans the
two most commonly grown crops [39].

2.2. Satellite Data

This analysis uses Landsat 7 and Landsat 8 scenes from the U.S. Geological Survey
(USGS) Analysis Ready Data (ARD) Provisional Surface Temperature product. These
two sensors have different thermal band wavelengths (10.4–12.5 µm for Landsat 7 and
10.6–11.2 µm for Landsat 8 band 10) and resolutions (60 m for Landsat 7 and 100 m for
Landsat 8), but USGS produces 30-m LST from both, using higher resolution input from
visible and shortwave bands to resample the coarser thermal data [40]. The USGS ARD
product was chosen for this analysis due to the detailed land surface emissivity incorpo-
rated in these data [40]. Calculating LST requires measurements of the radiance received at
the satellite, as well as knowledge of the sensor viewing angle, thermal band wavelength,
the emissivity of the land surface, and atmospheric transmissivity, path radiance, and down-
welling irradiance [40]. The sensor measurements, viewing angle, and thermal wavelength
are straightforward to measure, and the atmospheric parameters can be calculated with
a radiative transfer model [40]. However, estimating surface emissivity is more difficult,
as it requires inputs that are independent of the sensor, and small errors in emissivity
can produce much larger errors in LST [40]. Instead of using land cover classifications
or vegetation indices to estimate emissivity [40,41], the USGS ARD product incorporates
emissivity from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Emissivity Data Set (GED) [42]. This dataset averages millions of ASTER
datapoints collected between 2000 to 2008 to produce a monthly worldwide database at
100 m resolution with an error of roughly 1% [42]. Because surface emissivity is more
precisely known over water than the land surface, the USGS ARD product has been found
to have an average error of less than 1 ◦C over water and 2.2–2.3 ◦C over land [40].
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town Madison. Locations of all stationary air temperature/relative humidity sensors are indicated 
with black dots. Green markers indicate the locations of the five sensors used as central reference 
points. 
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Figure 1. Maps of land cover over (a) the entire study area (Dane County, Wisconsin), and (b) down-
town Madison. Locations of all stationary air temperature/relative humidity sensors are indicated
with black dots. Green markers indicate the locations of the five sensors used as central refer-
ence points.

We limited this analysis to the summer months (June through August), which is when
urban warming poses the greatest threat to human health and when Madison’s urban-rural
temperature difference is largest [13]. We further limited the study period to the years
from 2012 through 2019 to overlap all eight years that the Madison temperature sensor
network has been operational. Using the USGS EarthExplorer tool, we initially identified
101 Landsat 7 or Landsat 8 scenes recorded during this study period. Because clouds emit
radiation at lower temperatures than the land surface that they obscure, scenes with heavy
cloud cover are not usable for LST analysis [43]. After filtering for dates with less than 30%
cloud cover and visually inspecting the results to eliminate scenes where clouds obscured
Dane County, we chose 15 dates, including at least one scene from each year of the study
period and a relatively even distribution across both satellites and all three summer months
(Table 1). Although all 15 dates had clear skies, meteorological conditions were otherwise
representative of the typical range seen during the summer in Madison, with daily low
temperatures ranging from 8.9 ◦C to 21.7 ◦C, daily highs ranging from 21.7 ◦C to 33.9 ◦C,
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and daily wind speeds between a mean of 1.21 m/s and 4.47 m/s and a maximum of
3.58 m/s and 8.05 m/s (Table 1).

Table 1. Dates, satellite, daily high and low air temperatures, and daily mean and maximum wind
speed for the 15 scenes analyzed. Daily temperature data and wind speed were recorded at the Dane
County Regional Airport and accessed through the Midwestern Regional Climate Center’s online
data portal.

Date Satellite Tmax (◦C) Tmin (◦C) Mean Wind
Speed (m/s)

Max Wind
Speed (m/s)

7/30/12 Landsat 7 32.2 18.3 1.65 3.58
8/31/12 Landsat 7 32.8 19.4 2.59 5.81
8/18/13 Landsat 7 26.7 11.1 1.21 4.02
8/13/14 Landsat 8 26.7 12.8 2.50 4.92
7/31/15 Landsat 8 27.2 19.4 3.26 6.71
7/9/16 Landsat 7 26.7 16.1 2.95 6.26

7/25/16 Landsat 7 29.4 19.4 2.01 4.47
6/2/17 Landsat 8 27.8 8.9 1.39 3.58

7/28/17 Landsat 7 26.1 15.6 4.02 7.15
6/5/18 Landsat 8 21.7 11.7 2.91 4.92

6/13/18 Landsat 7 26.1 15.6 3.00 6.71
6/29/18 Landsat 7 33.9 21.7 4.47 6.71
7/7/18 Landsat 8 26.1 10.6 2.77 7.15
6/8/19 Landsat 8 27.2 12.8 3.13 8.05

8/27/19 Landsat 8 24.4 16.1 2.41 5.81

Because Dane County spans two tiles on the ARD grid (h20v07 and h20v06), 30 scenes
were downloaded in total. Unlike other satellite products that use temporally variable
tile boundaries, ARD tiles are defined with fixed, non-overlapping coordinates so that
adjacent scenes can be mosaicked without requiring additional processing [44]. Therefore,
after masking cloudy pixels and scan line artifacts, the two scenes for each date were
simply stitched together using ENVI’s Seamless Mosaic tool, then clipped to Dane County
boundaries. We also chose to mask the water area from all 15 Landsat scenes, because the
sensor network does not extend over the local lakes, preventing comparison between LST
and Tair over these areas. The resulting 30m Landsat scenes were used in the land cover
analysis after these processing steps. However, the comparisons between LST and Tair
required both datasets to share the same spatial resolution. The interpolated sensor data
has a 400 m resolution, so we needed to reduce the resolution of each Landsat scene from
30 m to 400 m, using the “aggregate” function in R’s raster package [45]. Because 30 m is
not an integer factor of 400 m, aggregating the Landsat scenes to this coarser resolution
required resampling the raster. Aggregating and resampling satellite data can introduce
errors and reduce the level of detail in spatial patterns, occasionally distorting or obscuring
patterns entirely [46,47]; however, this processing was necessary to produce LST data files
that could be compared with Tair.

2.3. Stationary Air Temperature Data

The Tair data used in this analysis comes from an observational network of 146 HOBO
U23 Pro v2 temperature and relative humidity data loggers mounted on utility poles
throughout the Madison area. Each sensor is installed 3.5 m above the ground, a height that
was chosen to avoid damage from passing pedestrians or vehicles. The first 135 sensors
were launched in March 2012, 16 more were added over the following year, and five sensors
have been broken or lost since then. This sensor array has been recording Tair and relative
humidity measurements every 15 min since being launched. This network, one of the
largest and densest in the world, is described more fully in [13]. To provide a consistent
comparison with the LST data, this analysis used Tair measurements collected on the same
days as the satellite data. All 15 Landsat scenes were recorded between 11:30 a.m. and
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11:45 a.m. local time, so we selected sensor measurements from 11:30 a.m. local time to
understand the relationship between approximately simultaneous Tair and LST conditions.
Additionally, because the differences in magnitude between Tair and LST are often greatest
near noon [23] and past research [31,48] has found satellite-derived LST to be more closely
correlated to Tair at night than during the day, we also used Tair measurements from 12 h
prior to each satellite overpass (11:30 pm) to allow for analysis of the relationship between
LST and overnight Tair.

For all 15 dates studied, 400-m spatial interpolations of daytime and nighttime Tair
were produced using regression kriging, a technique that incorporates land surface covari-
ates and has been found to produce more accurate spatial models of urban temperatures
than ordinary kriging [13,49]. Following the process described in [13], impervious surface
cover within a 500-m radius (from the 2016 National Land Cover Database), and topogra-
phy and lake effects within each 400-m grid cell were used as covariates, and lake area was
masked from the final interpolated files.

2.4. Land Cover Data

Our analysis of how temperature anomalies differ by land cover used data from the
2016 National Land Cover Database (NLCD), which provides detailed classifications across
the continental U.S. at 30-m spatial resolution [50]. Across Dane County, 15 different NLCD
classes are represented (Table 2). Past research has found that the classification accuracy
of satellite-derived land cover datasets, such as NLCD, can be improved by consolidating
similar classes [51]. Because our primary focus was on the differences in temperature
anomaly between urban areas, unmanaged rural land, and managed agriculture, rather
than the differences within these three general categories, we chose to consolidate the
15 represented NLCD classes into 8 broader groups. Two of these 8 categories—bare land
and shrub and grassland—were excluded from the land cover analysis because they each
comprise less than 1% of Dane County land area and were therefore assumed to have a
minimal impact on the local UHI. Although 3.19% of Dane County is open water, this
category was also excluded from analysis, because none of the sensors are located over
water, preventing comparison between LST and Tair in this category. The full set of original
and reclassified categories are listed in Table 2.

Table 2. Original NLCD classes and consolidated land cover categories used in the land cover analysis.

NLCD Number NLCD Name Consolidated Categories Percent of Dane County

11 Open Water Water 3.19%

21 Developed, Open Space Lower intensity development 11.42%22 Developed, Low Intensity

23 Developed, Medium Intensity Higher intensity development 3.58%24 Developed, High Intensity

31 Barren Land (Rock/Sand/Clay) Bare land 0.20%

41 Deciduous Forest
Forest 14.48%42 Evergreen Forest

43 Mixed Forest

52 Shrub/Scrub Shrub and grassland 0.36%71 Grassland/Herbaceous

81 Pasture/Hay Agriculture 60.21%82 Cultivated Crops

90 Woody Wetlands
Wetland 6.57%95 Emergent Herbaceous Wetlands
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2.5. Data Analysis
2.5.1. Temperature Anomalies

Temperatures can vary greatly between different dates or times of the day. Therefore,
temperature anomalies, or the difference in temperature between a given location and
a reference point, were analyzed instead of absolute temperatures to provide a more
consistent basis for comparison. In UHI studies, reference points are often rural, so that the
anomaly at a specific location represents the UHI magnitude relative to a rural baseline;
however, identifying an appropriate rural site can be tricky [52,53]. A forested reference
site, for example, may produce a different seasonal pattern than an agricultural site, even
for the same city. Given the heterogeneity of Dane County’s rural landscape, this analysis
used central urban temperatures as a reference to avoid preferencing one type of rural
land over another. Using the approach described in [15], the reference temperature was
calculated as the average across five downtown sensors (Figure 1b) in the area with the
greatest population density and highest observed air temperatures [13,54]. To calculate
temperature anomaly, the temperatures (either LST or Tair) across these five sensors on that
date and time were first averaged, then subtracted from the temperature at each pixel. The
resulting LST anomaly (LSTanom) or Tair anomaly (Tair(anom)) at a given location represents
how much cooler that point is compared to downtown Madison.

2.5.2. Tair vs. LST Comparisons

Analysis of the relationship between LSTanom and Tair(anom) included both the magni-
tude of difference and the correlation in spatial pattern. We used two different metrics to
quantify the difference between the Tair and LST-based UHIs. The root mean square error
(RMSE) is used to describe how LSTanom and Tair(anom) differ in overall magnitude. RMSE
was calculated using the following formula,

RMSE =

√√√√ N

∑
i=1

(
T̂anom, i − Tanom, i

)2

N
(1)

where Tanom,i represents the 11:30 a.m. Tair(anom) at pixel location i, T̂anom,i represents
a different measure of UHI (either LSTanom or 11:30 p.m. Tair(anom)) being compared
to 11:30 a.m. Tair(anom) at pixel location i, and N represents the total number of pixels
in the scene. Pearson correlation coefficients were calculated between paired scenes to
describe how LSTanom and Tair(anom) differed in shape. These metrics were used to compare
temperature anomalies averaged over all 15 dates studied, as well as to compare between
individual dates. Wind speed, daily high and low temperature, and day of the year were all
considered as factors that might account for the variability in RMSE and correlation. Lastly,
LSTanom and Tair(anom) were compared by land cover. All analysis and visualizations were
produced using R [55] with the raster [45] and rgdal [56] packages.

3. Results
3.1. Overall Trends

Averaged over all 15 dates studied, the spatial distributions of LSTanom, 11:30 p.m.
Tair(anom), and 11:30 a.m. Tair(anom) generally resembled each other (Figure 2). All three
temperature anomalies were highest where the impervious surface cover was high, includ-
ing within Madison city limits and in the business districts of smaller Dane County cities,
and coolest over rural land. These similarities were evident in the correlations between
each temperature anomaly pair; the correlation coefficient was 0.74 between LSTanom and
11:30 a.m. Tair(anom), and 0.68 between LSTanom and 11:30 p.m. Tair(anom). Correlation be-
tween the day and night Tair(anom) (r = 0.80) was stronger than either of these surface and air
temperature pairs. Despite the similarities in spatial pattern, the difference in magnitude
between day Tair, night Tair, and LST were substantial. LSTanom had the largest range,
varying from –15.44 ◦C to 3.97 ◦C. Overall, Madison’s overnight Tair-based UHI had an ab-
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solute magnitude of approximately 4.3 ◦C, as 11:30 p.m. Tair(anom) ranged from −4.10 ◦C to
0.20 ◦C. Daytime Tair displayed the smallest heat island intensity, with a difference of just
1.22 ◦C between the hottest and coldest pixels.
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Figure 2. (a) LST, (b) 11:30 a.m. Tair, and (c) 11:30 p.m. Tair anomalies at 400-m resolution, averaged
over the 15 dates studied. Temperatures of the lakes (in white) are masked out.

The magnitude of difference between Tair(anom) and LSTanom varied by time of day
and between rural and urban settings (Figure 3). Across all pixels, the difference between
surface and air temperatures was greater during the day than at night (p < 0.001). This
smaller difference at night than during the day held true for both urban (Figure 3b) and
rural (Figure 3c) settings (p < 0.001 for both cases). In addition to this disparity between
day and night, the difference between Tair(anom) and LSTanom was lower for urban pixels
than rural ones, at both 11:30 a.m. (p < 0.001) and 11:30 p.m. (p < 0.001).
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averaged over all 15 dates of study across (a) all pixels, (b) all urban pixels, and (c) all rural pixels.
Urban pixels are all those categorized as higher and lower density development, and rural pixels are
all those categorized as forest, agriculture, grasslands, barren, or wetlands.

3.2. Comparisons between Individual Dates

A wide range of statistically significant (p < 0.001) correlations between Tair(anom) and
LSTanom were found over all 15 individual dates studied (Table 3). Although the same
analysis was conducted for all 15 dates, Figure 4 highlights just two dates—5 and 7 July
2018—that display the two extremes observed, despite occurring roughly one month apart.
The spatial patterns of 11:30 a.m. Tair(anom) (Figure 4a,b) were more similar across both
dates (r = 0.95), than the spatial patterns of LSTanom (r = 0.45). The clear SUHI pattern
visible on 7 July (Figure 4d) was absent on 5 June (Figure 4c). Instead, hot and cold patches
were scattered throughout urban and rural areas of Dane County. Overall, RMSE between
LSTanom and 11:30 a.m. Tair(anom) was higher on 7 July 2018 (10.06 ◦C) than on 5 June 2018
(6.21 ◦C).

Table 3. Correlation coefficients between all three measures of temperature and 15 dates studied,
arranged by day in the summer season. All of the correlation coefficients in the table are statistically
significant (p < 0.001).

Day of Year Date
Correlation Coefficients

11:30 a.m. Tair(anom) vs. LSTanom 11:30 p.m. Tair(anom) vs. LSTanom
11:30 a.m. Tair(anom) vs.

11:30 p.m. Tair(anom)

153 6/2/17 0.12 0.24 0.44
156 6/5/18 0.2 0.048 0.37
159 6/8/19 0.22 0.28 0.48
164 6/13/18 0.56 0.35 0.33
180 6/29/18 0.69 0.45 0.71
188 7/7/18 0.74 0.58 0.79
191 7/9/16 0.78 0.55 0.68
207 7/25/16 0.77 0.48 0.68
209 7/28/17 0.76 0.72 0.72
212 7/30/12 0.74 0.70 0.78
212 7/31/15 0.7 0.58 0.69
225 8/13/14 0.39 0.40 0.37
230 8/18/13 0.64 0.42 0.62
239 8/27/19 0.74 0.63 0.67
244 8/31/12 0.37 0.18 0.024
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Figure 4. (a,b) Tair(anom) and (c,d) LSTanom for two different dates during summer 2018. (e,f) show
scatterplots of Tair(anom) plotted against LSTanom. All panels in the left column display data from
5 June 2018 and panels in the right column displays data from 7 July 2018. Temperatures of the lakes
(in white) are masked out from (a) through (d).

On both 5 and 7 July 2018, the scatterplot between 11:30 a.m. Tair(anom) and LSTanom
displays an artifact of the regression kriging; rural points that shared the same covariate
values and were all substantial distances from the sensor network all share the same
predicted Tair despite differing in LST, producing the vertical lines seen in Figure 4e,f. This
artifact does not obscure the fact that there was a stronger linear relationship between
11:30 a.m. Tair(anom) and LSTanom on 7 July 2018 than there was one month earlier. The
pattern of lower correlation on 5 June 2018 and higher correlation on 7 July 2018 was not
limited to the comparison between LSTanom and 11:30 a.m. Tair(anom). This trend was also
evident in comparisons between day and night Tair(anom). On 6–7 July, the correlation
between 11:30 a.m. and 11:30 p.m. Tair(anom) was 0.79, while the same comparison for the
4–5 June scene had an r-value of just 0.37.
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Although results from only two dates are depicted in Figure 4, all 15 dates displayed
similar trends. Dates with low correlation between LSTanom and 11:30 a.m. Tair(anom) typi-
cally had low RMSE values as well. Figure 5a shows a positive linear trend between these
two statistical metrics (R2 = 0.54, p = 0.002). Overall, on days when the spatial distribution
of LSTanom most closely resembled the spatial distribution of 11:30 a.m. Tair(anom), the
magnitude of the differences between these anomalies was also at its largest. No linear
trend (R2 = 0.0003, p = 0.95) was present between these metrics for the 11:30 p.m. Tair(anom)
and 11:30 a.m. Tair(anom) comparison (Figure 5b). The impact of wind speed and daily
high and low temperatures on RMSE and correlation coefficient was also explored, but no
relationship was found.
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3.3. Trends by Day of Year

Correlation between LST and 11:30 a.m. Tair was lowest at the beginning and end of
the summer, peaking in late July. Some summer weeks were represented more frequently
than others; for example, four scenes from the last week of July were included, but no scenes
between 14 and 28 June or between 1 and 12 August were suitable for analysis. Despite
these gaps, a parabolic curve (R2 = 0.76, p = 0.0002) was fit to the relationship between the
day of the year and the correlation between LSTanom and 11:30 a.m. Tair(anom) (Figure 6a).
The correlation coefficient between 11:30 a.m. Tair(anom) and 11:30 p.m. Tair(anom) also
followed a parabolic curve when plotted against the day of the year (Figure 6b), but the fit
was weaker (R2 = 0.58, p = 0.002).

3.4. Impacts of Land Cover

Although the spatial patterns of the Tair-based UHI were quite similar over all 15 dates,
the shape and intensity of the SUHI varied greatly between days. Grouping LSTanom by
land cover shows that this variability in LST was greater for some land uses than for others
(p < 0.001). Both lower and higher intensity development, for example, displayed low
variability in LSTanom across all 15 dates, and the standard deviation of the median pixel in
these two categories was just 0.69 ◦C and 1.27 ◦C, respectively (Figure 7c,e). Forests and
wetlands both displayed slightly greater variability, with standard deviations of 1.98 ◦C
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and 1.84 ◦C, respectively (Figure 7d,f). In contrast, median LSTanom values across all
agricultural land in Dane County was highly variable, with a maximum value of −5.14 ◦C
on 2 June 2017, a minimum value of −13.37 ◦C on 9 July 2016, and an overall standard
deviation of 2.81 ◦C, 0.83 ◦C higher than the next most variable category (Figure 7b). The
variance across all fifteen days was higher for agriculture than for medium-high density
development (p < 0.001) or for open-low density development (p = 0.003), but there was no
statistically significant difference between the variance for agricultural and forested land
(p = 0.101) or between agriculture and wetlands (p = 0.063). In addition to the relatively
high standard deviation in median LSTanom for agriculture, the spread of LSTanom was also
more variable for agriculture than any other land cover class. The interquartile range of
LSTanom for agriculture was largest early in the season, with an average value of 4.59 ◦C
across all five June dates. Across six July dates and four August dates, the agricultural
interquartile ranges fell to 2.91 ◦C and 3.04 ◦C, respectively. No other land cover categories
demonstrated such variability in spread; the interquartile range was consistently large for
the two developed classes and narrow for the two other vegetated classes.
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Over all 15 days, LST was consistently lowest for forest and wetland pixels and highest
for medium- to high-density development. Lower intensity development was the second
warmest category on every date other than 2 June 2017. On most days, median agricultural
LSTanom was higher than the other two vegetated classes and lower than the two developed
land categories, but the difference between agricultural LST and the four other land cover
classes shifted throughout the summer season. Across the three early June dates, median
LSTanom for agriculture fell within 1 ◦C of the median for open-low development, while
over the latter half of the summer, median LSTanom values across agricultural land were
closer to the medians for forest and wetland pixels than to the developed land categories
(Figure 7a).
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4. Discussion
4.1. Increased Understanding of the UHI in a Mid-Sized Midwestern City

This study expanded upon past work using an observation network in Madison,
Wisconsin to study the region’s urban climate. By evaluating a longer period of record
and incorporating two different measures of temperature, our results simultaneously
support past findings and allow for a more nuanced look at Madison’s urban climatology.
An analysis of the first 20 months of sensor data (spanning two summers, including the
historically warm summer of 2012) found that the Tair-based UHI was largest in August
when it averaged 1.5 ◦C during the day and 4 ◦C at night [13]. Our analysis used a
different methodology, evaluated fewer dates, and spanned a longer temporal range, yet
we produced similar results. A 2014 analysis of the first year of Madison sensor network
data identified a positive correlation between temperature and density of development and
a visible distinction between land within Madison city limits, which experienced urban
warming, and rural Dane County, where air temperatures were consistently lower [13].
We find these same spatial patterns in all eight summers of our own Tair analysis. For the
first time, we show that these same patterns were also visible in summertime LSTanom.
Our results offer new insight into the impact that the rural portions of the county have on
regional UHI trends. We showed that high variability in agricultural LSTanom may drive
variability in the relationship between LST and Tair.

Instead of comparing urban temperatures to a rural reference point, we compared
temperatures to those recorded at central downtown sensors, essentially quantifying rural
cooling instead of urban warming. This methodology avoids the ambiguity of identifying
an appropriate rural reference. Past studies have shown that slight differences between
chosen rural reference points can greatly impact the calculated UHI magnitude, making it
difficult to compare UHIs between cities [52,53,57]. Our research highlights an additional
concern; because rural LSTanom was so variable, defining the UHI in reference to rural
locations would restrict temperature anomaly comparisons across dates. Given the ubiquity
of satellite data in UHI studies, the results seen here are worth considering more broadly.
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This finding is likely most relevant for other Midwestern cities, particularly those with
mid-sized populations. We believe that the observed variability in rural LST is tied to
Madison’s heavily agricultural rural surroundings, which resembles the landscape that
also surrounds many similarly-sized Midwestern cities.

4.2. Impacts of Plant Phenology on the SUHI

Previous research on urban phenology has found that UHIs can lengthen the growing
season and shape growth characteristics as far as 15 km outside of cities [58–61]. Midwest-
ern agriculture has been observed to impact the regional climate by reducing daytime high
temperatures [62,63]. The impact of agricultural phenology on temperature differences
across urban, peri-urban, and rural climates, however, has been less widely explored [64].
Across 15 summer dates between 2012 and 2019, we found a strong parabolic relationship
between the correlation coefficient and day of the year (Figure 6), while meteorological
factors (Table 1) did not have a noticeable impact on the relationship between Tair(anom) and
Tair(anom). These results, combined with the high variability in LSTanom across agricultural
land (Figure 7), suggest plant phenology as a key driver of the changing relationship
between Tair(anom) and LSTanom in Dane County.

Agricultural lands surrounding Madison experience significant changes in LST through-
out the growing season. The growing season in this region typically begins in early to
mid-May and ends in early to mid-October [58]. During the intervening months, the
rural landscape changes dramatically. Satellite imagery of agricultural land across Wis-
consin shows that statewide corn emergence typically begins between late April and early
May [65]. Rapid corn development and growth continue through July when maximum leaf
area index (LAI)—the ratio of leaf surface area to ground surface area—is reached, before
shifting to the grain fill stage. The emergence of soybeans typically occurs from mid-May
and follows a rapid growth and development cycle through July [65].

We hypothesize that spatial heterogeneity in the rural landscape in early June, when
some fields are bare soil and others have started to green but still have low LAI, explains the
higher and more variable LSTanom observed during these weeks (Figure 7). Low correlation
during late summer may indicate senescence, while peak correlation observed near the end
of July occurs when Dane County cropland is reaching maximum LAI and biomass [13].
These trends suggest that uniformly green fields and reduced bare soil area contribute to
the cooler and narrower range of LSTanom across agricultural land in late July.

Future research could incorporate additional agricultural data to further our under-
standing of how crop type, phenological development, and crop management decisions
impact LST. Our definition of agricultural land use considered all varieties of cultivated
crops and pasture as a single category. Past research shows that LST can vary greatly by
crop type [66]. Data sources like the USDA’s Cropland Data Layer [67] could aid analysis
of how specific crops cool the landscape. Differences in management practices, soil char-
acteristics, and plant health can also differentiate the thermal signature between plants
of the same species [66]. Different tillage practices, for example, result in varying levels
of residue cover and soil surface roughness, changing the surface energy balance [68].
In Dane County, 30% of farms practice no-till agriculture, and 20% use intensive tillage,
potentially contributing to the observed irregularities in early season LSTanom (USDA 2017).
Soil moisture is also linked to LST, suggesting that LSTanom at the beginning and end of the
growing season, when bare soil cover is greatest, may be driven by drought and moisture
conditions [69]. The two dates with the greatest deviations from the parabolic relationship
between day of year and correlation (Figure 6a) were both in late summer (27 August 2019
and 13 August 2014). Future investigation of soil moisture conditions and crop senescence
during these periods may help explain these two outliers. Additionally, future work could
improve our understanding of how agriculture shapes the SUHI by expanding the months
of study to include the entire growing season, from spring planting through fall harvest.
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4.3. Study Limitations and Future Work

Stationary sensor networks with the size and density seen in Madison, Wisconsin
are rare, while satellite measures of LST are widely accessible. As a result, satellite data
will continue to be a common data source used in UHI studies, and the relationship
between Tair and LST has become an increasingly important question. Our comparison
between the air and surface UHIs in Dane County contributes to previous explorations
of this research question, but it is important to acknowledge the limitations of this study.
Although our sensor array is among the largest urban networks in the world, the number
and placement of the temperature sensors are still more limited than the resolution offered
by the USGS ARD surface temperature product [13]. Therefore, to enable comparison
with the interpolated Tair data, the resolution of the LST files was reduced from 30 m to
400 m. In addition to the lower level of spatial detail offered by this coarser resolution,
this resampling and aggregation process introduces errors to each pixel value, on top of
the 2.2–2.3 ◦C land pixel error in the raw ARD data files [40,46,47]. Our study was further
limited by the range of meteorological conditions present during the 15 dates studied.
Past research in homogeneous rural settings has identified cloud cover and wind speed
as meteorological factors that impact the strength of the relationship between Tair and
LST [23,24]. We did not identify any impact of wind speed on the relationship between
Tair and LST and were unable to explore the impact of cloud cover due to concerns about
satellite image quality under cloudy conditions.

Despite these limitations, our results were generally consistent with similar studies
that compared LST-based and Tair-based measures of UHI in other urban settings. LST
typically exhibits a greater temperature range than measurements of Tair in the same
locations [32]. Due to this difference in temperature range, LST and Tair are generally poorly
correlated [20,32], but their spatial distributions may display greater similarities [14,33].
Our results support these conclusions; on all 15 dates studied, the range in LSTanom was
always greater than the range in Tair(anom), and the average correlation in spatial patterns
between LSTanom and Tair(anom) was relatively high, both during the day and at night.
Overall, in Madison, and potentially other comparable cities, the SUHI appears to reflect
the Tair-based UHI most accurately in late July, during the peak of the growing season. This
is a useful finding; however, the ability to model Tair from LST would make urban satellite
data even more valuable.

Several past studies have attempted to predict Tair from LST in specific locations,
typically employing statistical regressions, relying on empirical relationships between
vegetation indices and temperature, or using models of surface energy balance [11,70–73].
These models commonly produce estimates of Tair at relatively coarse spatial resolutions,
limited both by the availability of widespread ground stations for validation and the
1-km resolution of the MODIS sensors and have been found to produce errors of 1 to
3 ◦C [11,70–73]. This task is still typically described as an open challenge [18,74]. With
more than eight years of spatially-rich air temperature data available for model testing,
future research can potentially use the LST and Tair patterns observed in this analysis to
produce a methodology for predicting Dane County air temperatures from satellite data.

5. Conclusions

As urban populations continue to grow, it is essential to understand the unique climatic
patterns and risks posed by development. The mechanisms of urban warming are widely
understood and have been observed in cities around the world, but data sources used
to monitor UHIs are often imperfect. Stations that measure Tair can accurately record
nearby meteorological conditions but only provide limited spatial coverage. In comparison,
satellites measure LST over large swaths of land at once, but these scenes only reflect a
single moment in time. Beyond these spatial and temporal concerns, the applicability of
the SUHI to the lived experience of urban populations is unclear. Given these concerns,
our research combined two rich sources of temperature data in Dane County, Wisconsin—a
network of 150 stationary Tair sensors and a 30-m resolution Landsat surface temperature
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product—to better understand how Tair and LST relate to each other, as well as if and when
remote sensing data accurately reflect conditions of urban warming.

Overall, we found that although the magnitude of LST and Tair anomalies differ greatly,
these different measures of temperature display similar spatial patterns, suggesting that
satellite data can be useful for identifying where peak temperatures occur. Additionally, our
analysis suggests that the relationship between Tair and LST changes as the growing season
progresses; our data exhibited a maximum correlation during the middle of the summer
when the rural, agricultural landscapes are more homogeneous and row crops have reached
full canopy cover. These results highlight potential challenges in quantifying UHIs in
agricultural regions, but they can also inform further exploration of the unique climatology
of mid-sized Midwestern cities. With a greater understanding of the relationship between
LST and Tair in the region, the historic satellite record can be used to back-cast Tair UHI
patterns over recent decades, allowing for analysis of how urban growth and development
has shaped the local climate.
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