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Abstract: The Prairie Pothole Region (PPR) contains numerous depressional wetlands known as
potholes that provide habitats for waterfowl and other wetland-dependent species. Mapping these
wetlands is essential for identifying viable waterfowl habitat and conservation planning scenarios, yet
it is a challenging task due to the small size of the potholes, and the presence of emergent vegetation.
This study develops an open-source process within the Google Earth Engine platform for mapping the
spatial distribution of wetlands through the integration of Sentinel-1 C-band SAR (synthetic aperture
radar) data with high-resolution (10-m) Sentinel-2 bands. We used two machine-learning algorithms
(random forest (RF) and support vector machine (SVM)) to identify wetlands across the study area
through supervised classification of the multisensor composite. We trained the algorithms with
ground truth data provided through field studies and aerial photography. The accuracy was assessed
by comparing the predicted and actual wetland and non-wetland classes using statistical coefficients
(overall accuracy, Kappa, sensitivity, and specificity). For this purpose, we used four different out-of-
sample test subsets, including the same year, next year, small vegetated, and small non-vegetated test
sets to evaluate the methods on different spatial and temporal scales. The results were also compared
to Landsat-derived JRC surface water products, and the Sentinel-2-derived normalized difference
water index (NDWI). The wetlands derived from the RF model (overall accuracy 0.76 to 0.95) yielded
favorable results, and outperformed the SVM, NDWI, and JRC products in all four testing subsets.
To provide a further characterization of the potholes, the water bodies were stratified based on the
presence of emergent vegetation using Sentinel-2-derived NDVI, and, after excluding permanent
water bodies, using the JRC surface water product. The algorithm presented in the study is scalable
and can be adopted for identifying wetlands in other regions of the world.

Keywords: wetlands; Google Earth Engine; synthetic aperture radar; Sentinel-2; supervised classification

1. Introduction

Wetlands have been identified as valuable resources that provide a variety of ecological
and socioeconomic benefits [1], but they are also threatened due to human activities, such
as agricultural intensification and climate change [2]. These threats and others make
monitoring the spatiotemporal variation of wetlands’ hydrological processes crucial to
their effective management. Here, by hydrological processes, we refer to wetlands’ highly
variable environments characterized by hydric soils temporarily or permanently flooded
by water. When dry, wetlands resemble surrounding uplands, whereas when inundated,
they can have either moist soils or surface water that ranges from centimeters to meters
deep. There are also high levels of diversity in wetland cover classes, wherein some
inundated wetlands are filled with emergent or submerged vegetation, and others are
absent of all vegetation.

Though the dynamic nature of wetlands makes them ecologically valuable to numer-
ous flora and fauna, this also makes them difficult to monitor [3,4]. Monitoring depressional
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wetlands can also be challenging because these highly dynamic systems are primarily de-
pendent on climate and local weather systems for ponding, and can often be relatively
small (<40 ha) [5,6]. The interplay among water, vegetation, and soil results in wetlands
that share spectral reflectance characteristics of both aquatic and terrestrial environments.
Accurate and unbiased estimates of wetland surface water across the range of natural
conditions have therefore eluded scientists.

The Prairie Pothole Region (PPR) is one example of a high-risk, dynamic wetland
system composed of millions of temporary, seasonal, and semi-permanent depressional
wetlands, called potholes. These potholes are known for their cycles of drought and
deluge, which drive important ecosystem functions, such as the abundance of aquatic
invertebrates [5]. The PPR covers an extensive area of approximately 750,000 km2, including
parts of five US states and three Canadian provinces (Figure 1), and provides habitat for
over 50% of North America’s migratory waterfowl [7,8]. Hydroperiods in the potholes
vary from days to years, but seasonal wetlands that maintain water for less than four
months are common [9,10]. Reduced surface water area and changes in hydrology are
common in PPR wetlands, for example, as caused by tile draining to allow for higher
agricultural production [11], or upland sediment erosion into wetlands, which, though
a natural process, is often accelerated by agricultural activity, which fills potholes, and
reduces their volume [12]. The total wetland loss in the PPR caused by climate change and
human activity was estimated to be 30,000 ha between 1997 and 2009 [10]. A resulting shift
towards smaller wetlands and shortened hydroperiods [13–15] has underscored a need to
understand how these altered hydrological conditions affect ecosystem services and habitat
provisioning at broad spatial scales, which starts with an accurate and repeatable estimate
of spatial variation in wetland surface water.

Remote sensing analysis can provide broad-scale spatial and temporal information
about wetland surface water [16,17]. Previous studies utilized various remote sensing
technologies to monitor wetlands across the PPR [8,18]. For example, [8] used high-
resolution NAIP data and LIDAR Digital Elevation Models (DEMs) to map PPR wetland
inundation, and tested the results with the Wildlife Service National Wetlands Inventory
(NWI). However, though NAIP and DEMs can provide fine spatial resolution data (<1 m),
these methods cannot capture temporal variation within a season, as NAIP and LiDAR data
are not collected intraannually. Optical sensors, such as Sentinel-2 and Landsat, can detect
surface water, and have often been used with success for deep, permanent, large water
bodies [19,20]. For example, the Joint Research Centre (JRC) provided Landsat-derived
surface water products useful for capturing large wetlands. However, the JRC and other
products that rely on moderate resolution spectral data often underperform in detecting
water in small potholes with dense vegetation canopies and mixed pixels. Others have
used Sentinel-1 synthetic aperture radar (SAR) data (spatial resolution: 10 m) to map water
extent in the PPR with reasonable success [21,22], as SAR data is robust to cloud cover, and
10 m data provide reasonable spatial resolution. However, no study has solved all of the
challenges for mapping the spatial and temporal variation of surface water in the PPR, and
made their algorithm available for long-term monitoring by the research and conservation
community. There is a need for open-science algorithms that capture the variation of
surface water, can map water even below emergent vegetation, and still represent surface
water in smaller potholes.

This study relies on geospatial informatics, which is an expanding field, and includes
remote sensing of landscape-scale big data, the development of machine learning tools,
and integration with High-Performance Computational (HPC) cloud computing resources.
Geospatial informatics offers a unique opportunity for the fast processing of broad-scale
remote sensing data in a short time, providing a more comprehensive set of applications,
and addressing the limitation of traditional methods [23,24]. The Google Earth Engine
(GEE) cloud geospatial computing platform provides a web-based interface to fast parallel
processing on Google HPCs with planetary-scale analysis capabilities. The GEE provides
a multi-petabyte catalog of global satellite and geospatial datasets [25], such as Landsat,
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MODIS, and Sentinels. It also gives users the ability to analyze, manipulate, and map
the results, and create web-based applications to repeat the analysis [26]. As part of our
work, we utilized the capabilities of GEE to create an open-source algorithm for mapping
wetlands that can readily be shared with conservation managers and the science community
for continued use and development.
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Figure 1. The location of the Prairie Pothole Region (PPR) (A); the location of the study site in the US
and the state of North Dakota (B); distribution of ground truth points in the study site (C).

To help solve the historical problems of surface water mapping in the PPR, this paper
presents a multi-sensor fusion approach that integrates selected fine-resolution (10-m)
bands of Sentinel-2 with 10-m Sentinel-1 SAR data, allowing an estimate of both large
and small inundated areas. The integration of SAR with optical data also offers comple-
mentary information, and can significantly improve the interpretation and classification of
results [27,28], for example, by allowing surface water estimates beneath closed-canopy
herbaceous vegetation. Altogether, this study aims to provide scalable surface water es-
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timates that can assist with habitat models for wetland-dependent organisms, such as
waterbirds or aquatic invertebrates. We will provide our algorithm in a format that can be
freely shared and readily implemented by those with minimal coding and modeling experi-
ence, such as conservation managers. We achieved this through the following objectives:
(1) we developed an open-source framework to map the spatial variation in wetland surface
inundation and vegetation based on Sentinel-1 SAR data and Sentinel-2 high-resolution
bands within the GEE platform; (2) we deployed this algorithm over a portion of PPR in the
high priority conservation area of the PPR; (3) we analyzed the accuracy of this algorithm
for generating the information needed for setting conservation targets.

2. Study Area

Our study area was a portion of PPR in North Dakota, USA (Figure 1). The area is dom-
inated by natural grasslands, agricultural areas, and a relatively high density of potholes,
which, in this area, often present as small and elliptical water bodies. These numerous
small wetlands provide natural habitats for wetland-dependent animals and plant species.
We selected this area due to the high density of small potholes, high conservation priority,
and availability of ground truth data. We mainly focused our algorithm on a subset of the
PPR identified as a high priority conservation site for waterfowl by the United States Fish
and Wildlife Service.

3. Data

The data includes a set of aerial imagery to serve as ground truth data, the high-
resolution bands (bands 2, 3, 4, and 8) of Sentinel-2, and C-band SAR data Sentinel-1 sensor.
We describe the details of the dataset below.

3.1. Ground Truth

Researchers from Duck Unlimited Inc., a non-profit conservation organization, pro-
vided the ground truth data. These data include georeferenced aerial photographs of the
PPR wetlands in North Dakota collected through a partnership with the United States Fish
and Wildlife Service (USFWS). The USFWS used a fixed-wing aircraft to collect imagery
in a 1.5 m spatial resolution. If necessary, the images were orthorectified by technicians
or research scientists, and used to estimate wet areas during spring and summer for the
research projects. We used the summer data of two years (2016 and 2017). These datasets
were provided in shapefile formats, and showed wetland boundaries, delineating dry and
inundated wetland areas. Some of these wetlands also contained emergent vegetation
cover, as identified by field observers (range: 0–80% vegetation cover).

We examined the spectral reflectance of wetland and non-wetland classes, which
differed substantially, as indicated by a plot generated for a portion of the study area
(Figure 2). The spectral characteristics of wetlands and open water especially differ due
to mixed pixels, differences in water depth, the potential presence of vegetation, and
variation in water turbidity. Compared to forest and agriculture, deep open water exhibited
lower spectral reflectance, as water rapidly absorbs electromagnetic radiation, especially
longer wavelengths, and attenuation increases with water depth. The spectral reflectance
of wetlands is intermediate to upland vegetation and open water, making wetlands a
distinct and highly variable land cover type. Wetlands and moist soils show a dampened
near-infrared (NIR) and shortwave infrared (SWIR) reflectance compared with upland
vegetation, but are too shallow to attenuate all electromagnetic radiation, as often occurs
in deep open water. The spectral characteristics of wetlands will also change rapidly
with inundation and vegetation status. To account for this in our ground truth point
selection, we selected random points within the digitized wetland surface water area
polygon shapefiles to provide the ground truth pixels in GEE. We also included non-
wetland training data that represented agriculture, forest, and urban areas. We collected
those points using visual observation of high-resolution Google Earth images. The total
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number of points (including wetland and non-wetland classes) for the years 2016 and 2017
were 895 and 2231, respectively.
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Figure 2. Spectral reflectance during summer months from Sentinel-2 optical bands of large bodies
of deep open water compared to inundated wetlands and other land cover types in a portion of the
study area. Wetland water shows different spectral characteristics compared to deep open water,
likely due to the presence of submerged and emergent vegetation. The error bar shows the standard
deviation of spectral reflectance of pixels for each land cover type.

Additionally, we provided two out-of-sample subsets for small-vegetated (1440 points)
and non-vegetated wetlands (1680 points). Ducks Unlimited provided the vegetation
data within the surface water polygons. We used those additional points in a separate
accuracy assessment process to evaluate the performance of our method for the smallest
wetlands, which are the most challenging to classify as they contain the highest proportion
of mixed pixels. The average time difference between ground truth data (wetlands and
non-wetlands) and satellite data acquisition was one month.

3.2. Sentinel-1

Sentinel-1 obtains C-band synthetic aperture radar (SAR) images at various polariza-
tions and resolutions. C-band Level-1 Ground Range Detected (GRD) data were obtained
through GEE. These data were collected in the Interferometric Wide (IW) swath mode
with a spatial resolution of 10 m, a swath width of 250 km, and a repeat cycle of 12 days.
These data are available in GEE as preprocessed datasets that express each pixel’s backscat-
ter coefficient (σ◦) in decibels (dB). The preprocessing steps include applying orbit files,
thermal noise removal, radiometric calibration, and orthorectification (terrain correction).
This study used two polarization modes: single co-polarization with vertical transmits
and receive (VV), and dual-band co-polarization with vertical transmit and horizontal
receive (VH). A total of 20 ascending orbit Sentinel-1 SAR scenes spanning two months
were collected over the study area. We used median values of the S1 temporal time series
in the multisensory band composite. A median composite can provide a cleaner image
with reduced speckle noise [29]. These data were acquired from July to September 2016.
The descending orbit data were excluded from the study because they lacked sufficient
coverage orbit over the study area (Table 1). Unlike optical sensors, SAR data can be
acquired day and night and during cloudy conditions, completely independent of solar
radiation, which is particularly important in high latitudes, and increases the availability
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of multi-temporal observations for assessing wetland hydroperiods. Moreover, SAR data
is sensitive to both open water and below-canopy inundation, making it advantageous to
identify inundation in vegetated wetlands [30]. The C-band SAR data of Sentinel-1 is also
known to be useful for the discrimination of water and non-water classes in non-forested
wetlands with short herbaceous vegetation (e.g., bog and fen) [31]. This is in contrast to the
longer wavelengths, such as L-band SAR data, that are preferred to detect inundation areas
in forests due to higher penetration depth [32].

Table 1. Multisensor satellite data and spectral reflectance indices were used for supervised classifica-
tion to identify the water bodies in the study area.

Data Acquisition Date Resolution (m) Variable Description

Sentinel-1 July to September 2016 10 VV Backscattering coefficient for vertically polarized
transmit and vertically polarized receive

Sentinel-1 July to September 2016 10 VH Backscattering coefficient for vertically polarized
transmit and horizontally polarized receive

Sentinel-2 May to October 2016 10 B2, B3, B4, B8 Green, Blue, Red, Near-infrared
NDVI May to October 2016 10 (B8 − B4)/(B8 + B4) Derived from Sentinel-2 bands
NDWI May to October 2016 10 (B3 − B8/(B3 + B8) Derived from Sentinel-2 bands

3.3. Sentinel-2

We used a total of 118 Sentinel-2 (S2) images with level 1C processing to surface
reflectance as part of this study. S2 is a wide-swath multi-spectral earth observation
mission with spatial resolution varying from 10 to 60 m. The multi-spectral data include
13 bands in the visible, near-infrared (NIR), and shortwave spectra, revisiting every 10 days
under the same viewing angle. The level 1-C products within GEE are orthorectified
and radiometrically corrected, providing top-of-atmosphere (TOA) reflectance values. We
adopted an automatic cloud masking procedure using the QA60 band of the S2 1C product
to mask the opaque and cirrus clouds. We also set the cloud coverage within S2 scenes to a
maximum of 10 percent over the time of data acquisition. Due to frequent cloud coverage
over the study area, we used a median of 5 months (May to October 2016) of the reflectance
values. We used four bands of S2 (blue, green, red, and near-infrared) with a spatial
resolution of 10 m to create the band compositions for supervised classifications using
machine learning algorithms. We used median values of S2 temporal images to be used in
the multisensory band composite. Additionally, we calculated the normalized difference
vegetation index (NDVI) [33] and normalized difference water index (NDWI) [34] using
the four bands of S2, and used them as predictors in the classification process (Figure 3).
Figure 4 shows the variation of NDWI over two potholes in the study area, showing periods
of inundation and drought. Typically, NDWI > 0.3 and <0.3 indicates the presence and
absence of detectable surface water [35]
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3.4. JRC Global Surface Water Products

This study focused on depressional wetlands that, by definition, are not permanent
water, and often change inundation status quickly due to climate variability. We used the
JRC product to differentiate wetlands from permanent water bodies across the entire study
area. The Joint Research Centre’s Global Surface Water (JRC GSW) product contains the
surface water’s spatial and temporal distribution at 30 m resolution. The product provides
different characteristics of surface water, including occurrence, intensity, seasonality, re-
currence, transitions, and maximum water extent [36]. The JRC GSW data were generated
using more than 3 million scenes from various Landsat missions (Landsat 5, 7, and 8)
between 1984 to 2019. The pixels were classified into water and non-water classes using an
expert system. JRC GSW presents results each month for the entire period (1984–2019) for
change detection. We defined permanent water bodies as those classified as water in >90%
of the observations within the period (1984–2019), and filtered those pixels from the study.
The permanent wet pixels were excluded from the final results to map the surface waters
that only belong to wetlands.
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4. Methods

We developed an open-source process in GEE based on machine learning algorithms
and multisensory remote sensing data for wetlands identification, as follows. First, a total
of 895 ground truth points for 2016, including inundated wetlands and non-wetland classes,
were randomly divided into two subsets of training (comprising 637 data points) and testing
(comprising 258 data points). The training subset was used for training the machine learning
algorithms, and the testing subset was withheld from the model, and used for the accuracy
assessment. We created a multisensory band composite by integrating Sentinel-1 SAR data
to selected Sentinel-2 high-resolution bands (Figure 3; Table 1). We used this Sentinel-1
and Sentinel-2 composite as predictors in the classification. We evaluated two machine
learning algorithms, random forest (RF) and support vector machine (SVM), to establish
a relationship between the multisensory composite bands as predictors and the training
ground truth data. The optimum model (the model with the highest accuracy for classifying
testing data) was used to classify the multisensory composite into two classes of wetlands
and non-wetland pixels to identify wetlands in our study area. The generalizability of the
optimum model was tested again using an additional 2231 ground truth points from a
novel year, 2017.

Additionally, we tested the method by performing an accuracy assessment on small
vegetated and small non-vegetated wetlands (see explanation below). Next, we excluded
the permanent water bodies from the map using the JRC products as described above.
Finally, we mapped the emergent vegetation within the identified wetlands using Sentinel-
2-derived NDVI. We describe the details of the adopted methodology below. Figure 5
shows the workflow of the method.
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4.1. Supervised Classification

Supervised machine learning algorithms establish relationships between input vari-
ables and target prediction [37–39]. We compared two popular machine learning algorithms,
namely random forest (RF) and support vector machine (SVM), as supervised classifiers
of surface water inundation, as predicted by the multisensory composite of Sentinel-1,
Sentinel-2, NDVI, and NDWI (Table 1). These algorithms, which are available as func-
tions within the GEE platform, were trained using the training subset, where the ground
truth data served as a binary categorical response variable (0 = not an inundated wetland,
1 = inundated wetland). The trained algorithms were tested using the test subset, which
was withheld from model fitting, and the model with the best performance was selected
for the classification of the multisensory composite to identify the water bodies across
the study area. The best performance was identified through accuracy assessment using
statistical coefficients.



Remote Sens. 2022, 14, 159 10 of 20

RF is an advanced version of a decision tree algorithm. Decision tree algorithms
are robust predictive machine learning models that utilize a tree structure to establish
relationships between inputs and outcomes. A tree structure mirrors how a tree starts
at a wide trunk and splits into smaller branches as it is developed upward. Likewise, a
decision tree learner uses a structure of branching decisions that lead examples into a final
predicted class value. RF improves decision trees by combining bootstrap aggregation with
random feature selection to add additional diversity to the model [40]. Further, though
a decision tree is constructed on a whole dataset using all the features of interest, RF
randomly selects observations and specific features to create multiple decision trees, and
then averages the results to make predictions, which results in a more robust model [41].
The hyperparameters of the RF, including the number of trees, min leaf population, and bag
fraction, were determined through a trial–error procedure in which we added the values
gradually to obtain the least error values in the training data prediction outcome. The
optimum hyperparameters of the RF model in this study are presented in Table 2.

Table 2. The optimum hyperparameters of the SVM and RF algorithms used for surface water
classification.

SVM RF

Parameter Value Parameter Value
Kernel type Radial basis function Number of trees 170

Decision procedure voting Min Leaf Population 1
Hyper parameter gamma 0.5 Bag fraction 0.5

Cost C parameter 10

The SVM classification tool uses machine learning theory to maximize predictive
accuracy while automatically avoiding over-fitting the data [42]. SVM can be defined as
systems that use the hypothesis space of linear functions in a high dimensional feature
space, trained with a learning algorithm from the optimization theory [43]. SVM can be
imagined as a surface that creates a boundary between plotted points in a multidimensional
space representing their feature values. An SVM’s goal is to create a flat border, called a
hyperplane, which divides the space to develop relatively homogeneous partitions on either
side. We adjusted the hyperparameters needed for SVM through a trial–error procedure to
identify the optimum structure of the SVM model (Table 2).

4.2. Identification of Wetland Surface Water

We used the 2017 testing data to estimate wetland surface water via the trained
algorithm without refitting the model. As we mentioned before, the JRC product was used
to exclude the permanent water pixels in order to identify surface water in wetlands across
the test site. The remaining water pixels were stratified based on the presence of emergent
vegetation, allowing us to determine the accuracy of detecting surface water in vegetated
vs. non-vegetated wetlands, where vegetation status was inferred from NDVI values. The
Jenks natural breaks optimization method was used to classify the wetlands into three
low, medium, and high NDVI clusters (Table 3). The Jenks method is a data clustering
technique designed to determine the best combination of values into different classes. This
is performed by attempting to minimize the variance within classes, and maximize the
variance between classes. NDVI values below zero typically represent open water [44], and
increase with increasing vegetation cover until they saturate for high vegetation closed
canopies [45].
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Table 3. NDVI cut-off values for classifying vegetation status in the identified wetlands.

Class NDVI Values Cover Type

Low −0.50 to 0.00 Open water
Medium 0.00 to 0.20 Sparsely vegetated wetland

High 0.20 to 0.77 Densely vegetated wetland

4.3. Accuracy Assessment

The SVM and RF algorithms used to classify the multisensor composite were evaluated
by constructing a confusion matrix for each model. The accuracy assessment was performed
on the test subset in which the predictions and the ground truth data were compared using
statistical coefficients (Equations (1–4)). Accuracy assessment was also carried out for
the next year (2017) to evaluate the generalizability of the optimum model. The ground
truth points for the year 2017 were only used for testing the model. Additionally, we
performed separate accuracy assessments for small vegetated and small non-vegetated
wetlands. To assess the accuracy of the methodology on small and highly vegetated
wetlands, we provided a test set of 679 random points from small wetlands in the study
area, with an additional 763 points from non-wetland classes from the 2016 aerial survey
inventory. These were novel points that were not used as part of model training. These
points came from wetlands with areas that ranged between 10 to 850 m2, and the presence
of emergent vegetation ranged from 40 to 100%. We used the same procedure for small
(10 to 850 m2) non-vegetated wetlands by providing a test set of 1680 points (1311 wetland
and 369 non-wetland classes).

Acuracy =
TP + TN

TP + TN + FP + FN
(1)

Speci f ity =
TN

TN + FP
(2)

Sensitivity =
TP

TP + FN
(3)

In the equations above, N indicates the total number of observations; n denotes the
number of accurately classified wetland and non-wetland pixels; TP, TN, FP, and FN refer
to true positive, true negative, false positive, and false negative, respectively.

Kappa =
Po − Pe

1− Pe
(4)

where po is the relative observed agreement, and pe is the hypothetical probability of chance
agreement:

Po =
TP + TN

n
(5)

and
Pe =

1√
N
((TP + FN)(TP + FP) + (FP + TN)(FN + TN)) (6)

5. Results

The trained SVM and RF algorithms were used to classify multisensor composites
for the years 2016 and 2017. The accuracy assessment showed SVM and RF models
yielded favorable results across the testing data. However, the RF outperformed the
SVM in both 2016 and 2017 testing data. Therefore, the RF model was selected as the
optimum model for wetland inundation mapping. The overall testing data accuracy
for the SVM and RF model for the year 2016 was 0.88 and 0.95 (Table 4), and for the
year 2017 was 0.88 and 0.94, respectively (Table 5). A summary of accuracy assessment
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using overall accuracy, Kappa, Sensitivity, and specificity for the years 2016 and 2017 is
shown in Tables 4 and 5, respectively.

Table 4. Accuracy assessment of supervised classification of wetland surface water (WSW) vs. other
classes (OC) for the year 2016 on the test data subset that was withheld from model calibration.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.95 0.9 0.94 0.96 136 8 107 4
SVM 0.88 0.75 0.75 0.98 129 14 114 1
JRC 0.73 0.5 0.99 0.55 218 271 330 2

NDWI 0.68 0.38 0.67 0.48 287 89 184 305

Table 5. Accuracy assessment of supervised classification of wetland surface water (WSW) vs. other
classes (OC) for 2017 on the test data subset that was withheld from model calibration.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.94 0.87 0.9 0.99 757 250 1206 18
SVM 0.88 0.76 0.76 0.98 771 236 1205 19

NDWI 0.7 0.36 0.72 0.86 584 423 1131 93
JRC 0.72 0.41 0.99 0.75 612 395 1178 2

We mapped wetland surface water across the study area for the years 2016 and 2017.
Figures 6 and 7 show the identified wetlands across the study area for the years 2016
and 2017, respectively. The spatial resolution of the final maps is 10 m. The local wetland
inundation in the study area can also be extracted based on the results. For example,
a portion of the study area is magnified in Figure 8. A visual comparison between the
aerial survey (ground truth data) and wetland surface water map (based on RF classifier)
in Figure 9 shows that surface water in wetlands was mapped with acceptable accuracy
(overall accuracy: 0.95; Kappa: 0.9). As we mentioned before, we also tested our algorithm
in the identification of surface water in small vegetated and small non-vegetated wetlands.
We compared the results with NDWI and Landsat-derived JRC surface water products
(Tables 6 and 7). The results showed higher accuracy in RF as the optimum model (overall
accuracy 0.76) compared to JRC (overall accuracy 0.60) and NDWI (overall accuracy 0.62)
in surface water detection in small and highly vegetated wetlands (Table 6). The RF (overall
accuracy 0.81) also outperformed the NDWI (overall accuracy 0.44) and JRC (overall
accuracy 0.41) in small non-vegetated wetlands (Table 7).
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Figure 6. Spatial distribution in inundated wetlands (A), spatial distribution of surface water (B) 
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Figure 6. Spatial distribution in inundated wetlands (A), spatial distribution of surface water (B) in
August 2016.
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Figure 7. Spatial distribution of emergent vegetation in inundated wetlands (A), spatial distribution
of surface water (B) in August 2017.
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Figure 8. Visual comparison of wetland inundation maps between predicted (A) and observed 
wetlands in aerial surveys (B) in a portion of the study area. The accuracy assessment for small 
vegetated wetlands and small non-vegetated wetlands are presented in Tables 6 and 7, respec-
tively. 
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Table 7. Accuracy assessment for detection of wetland surface water (WSW) vs. other classes in 
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NDWI 0.44 0.14 0.99 0.28 379 941 365 4 

JRC 0.41 0.13 1 0.27 324 987 368 1 

Figure 8. Visual comparison of wetland inundation maps between predicted (A) and observed
wetlands in aerial surveys (B) in a portion of the study area. The accuracy assessment for small
vegetated wetlands and small non-vegetated wetlands are presented in Tables 6 and 7, respectively.

Table 6. Accuracy assessment for detection of wetland surface water (WSW) vs. other classes (OC) in
wetlands that are both small (<850 m2) and highly vegetated wetlands (vegetation > 40%) from the
year 2016 on the test data subset that was withheld from model calibration.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.76 0.51 0.97 0.69 342 334 753 10
SVM 0.73 0.44 0.84 0.68 324 352 694 69

NDWI 0.62 0.19 0.94 0.58 131 545 755 8
JRC 0.6 0.15 1 0.57 99 577 763 0

Table 7. Accuracy assessment for detection of wetland surface water (WSW) vs. other classes in small
(<850 m2) and non-vegetated (vegetation < 40%) wetlands for 2016.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.81 0.57 0.98 0.55 1027 287 344 25
SVM 0.72 0.41 0.97 0.43 858 456 346 23

NDWI 0.44 0.14 0.99 0.28 379 941 365 4
JRC 0.41 0.13 1 0.27 324 987 368 1

Figures 6 and 7 show the identified wetlands after excluding the permanent wet pixels
for the years 2016 and 2017, respectively. The presence of emergent vegetation within the
identified wetlands, as indicated by NDVI, for both years is also shown in Figures 6 and 7.
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lands that were not detected in the JRC (A); frequency of surface water occurrence from the year 
1984 to 2019 obtained from the Landsat-derived JRC products (B); surface water visualization us-
ing the Sentinel-2 derived NDWI (C); water extent for the year 2017 derived from the Land-
sat-derived JRC product (D). 
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son with ground truth data, as well as results from Landsat-derived surface water 
products. The inundation of relatively large and deep water bodies can be identified in 
most existing remote sensing products. However, mapping wetland surface water in the 
PPR region is challenging due to two main reasons: (1) most PPR wetlands are very 
small and are highly sensitive to climate variability; and (2) the wetlands can be dry or 
wet, and they can contain different species of vegetation that can mask surface water. 
Therefore, these wetlands have complex spectral characteristics that complicate the de-
tection of surface water extent from satellite sensors. Our approach also provides infor-
mation regarding emergent vegetation within those wetlands. This is important because 
emergent vegetation provides shelter and food for aquatic vertebrates, such as water-

Figure 9. The result of wetland inundation maps for the year 2017 was obtained from the multisensor
composite classification using random forest. The image shows the identified wetland. The back-
ground image is Sentinel-1 VV. The black arrows show some examples of those small wetlands that
were not detected in the JRC (A); frequency of surface water occurrence from the year 1984 to 2019
obtained from the Landsat-derived JRC products (B); surface water visualization using the Sentinel-2
derived NDWI (C); water extent for the year 2017 derived from the Landsat-derived JRC product (D).

6. Discussion

This study developed an automated workflow within the GEE platform for mapping
wetland surface water for 2016 and 2017 by applying the RF classifier to a combination of
Sentinel-1, Sentinel-2 band data, and spectral reflectance indices derived from Sentinel-2.
The results were evaluated using statistical coefficients and visual comparison with ground
truth data, as well as results from Landsat-derived surface water products. The inundation
of relatively large and deep water bodies can be identified in most existing remote sensing
products. However, mapping wetland surface water in the PPR region is challenging due
to two main reasons: (1) most PPR wetlands are very small and are highly sensitive to
climate variability; and (2) the wetlands can be dry or wet, and they can contain different
species of vegetation that can mask surface water. Therefore, these wetlands have complex
spectral characteristics that complicate the detection of surface water extent from satellite
sensors. Our approach also provides information regarding emergent vegetation within
those wetlands. This is important because emergent vegetation provides shelter and food
for aquatic vertebrates, such as waterfowl communities [46]. Our method can also detect
water below those vegetation canopies; water that would otherwise be excluded from
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habitat maps. We also provide an open-science algorithm in GEE for repeating these
estimates, which can form the basis of long-term wetland surface water monitoring in
the PPR.

A typical approach for mapping wetlands uses passive remote sensing that relies on
water’s optical properties, which differ from other land use types [47–49]. For instance,
water quickly absorbs electromagnetic radiation, and more rapidly attenuates longer wave-
lengths than shorter ones [50–52]. However, the application of optical sensors in identifying
PPR wetlands is limited, since both water depth and mixed pixels can change the water spec-
tral signature [50–52]. Moreover, organic carbon compounds, water turbidity, chlorophyll
content, and suspended materials can also add variation to water spectral properties. We
addressed this issue by integrating the high-resolution bands of optical and radar sensors.
Figure 9 shows a visual comparison of surface water derived from different remote sensing
data. The figure shows that many small wetlands were not captured in the Landsat-derived
surface water products, since the spatial resolution of Landsat products (30 m) is too coarse
to capture those wetlands. This is typical of many surface water classifiers that are focused
on deep open water, as they misclassify the highly variable spectral signatures of inundated
wetlands [53]. Moreover, optical sensors struggled to capture wetlands covered by emer-
gent vegetation. This study integrated Sentinel-1 SAR data into the high resolution (10 m)
optical bands of Sentinel-2 to create a more robust classifier (Figure 9A). We also used a
wider temporal window for the optical bands, which increased the number of observations
over the study area. This allows our algorithm to minimize the effects of cloud covers,
and identify the small wetlands by detecting frequently wet pixels. We performed an
independent accuracy assessment on small and highly vegetated, and small non-vegetated
wetlands. The results showed acceptable accuracy for both types of wetlands. We also
compared the results with surface water maps derived from optical sensors (Table 6). Our
algorithm performs better in identifying both large and small wetland water bodies than
the Landsat-derived JRC and Sentinel-2-derived NDWI algorithms (Tables 4–6).

The wetland surface water was also evaluated in vegetated and non-vegetated wet-
lands. Visual observation shows that the small inundated wetlands contain more vegetation
compared to larger and deeper water bodies. Comparing 2016 and 2017 wetland surface
water maps reveals abrupt changes in emergent vegetation in small wetlands. These results
agree with the findings of [54]. They reported that the small, ephemeral wetlands in the
PPR experienced more vegetation change variability than larger, semi-permanent wet-
lands [54]. Large and deep water bodies can be easily detected by various remote sensing
data. For example, [55] used Landsat time-series to create a global map of inland water
dynamics. However, identifying small water bodies in the PPR is challenging due to the
wetlands’ size and strong potential for dense vegetation cover. This is very important, as
the majority of wetlands in the PPR are small. This causes the surface water in potholes to
be highly dynamic. The total surface water area calculated from the JRC product and our
classification method was 294 km2 and 376 km2, respectively. Algorithms that miss surface
water in these small wetlands will be biased, and misrepresent the hydrologic variability on
the landscape. For example, small wetlands provide more foraging habitats for organisms
that rely on shallow water.

Cloud computing and the advent of multisensor remote sensing data in the GEE have
several advantages for large-scale and time-series analysis, such as monitoring wetlands
dynamics [56]. The use of the GEE cloud computing platform is more convenient than
traditional methods, considering its processing speed and ease of use [57]. As more machine
learning algorithms and remote sensing data become available within the GEE platform,
we expect remote sensing data processing to be simplified even further. Additionally, and
unlike most supercomputing centers, GEE is also designed to help researchers quickly
disseminate their results to other researchers and interested parties. Once an algorithm
has been developed on the GEE, users can generate systematic data products or deploy
interactive applications aided by the GEE’s resources [25]. The fully automated workflow
developed for this study allows us to refine the existing data and method, and rapidly
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apply it to a broad geographical scale to generate estimates in new years. One of the
disadvantages of using the GEE cloud computing platform is that it limits the number of
field samples and input features. This is especially challenging when the analysis is applied
to a large domain, which may reduce the efficiency of the implemented method.

7. Conclusions

Wetland habitat characteristics, including wetland surface water area and vegetation
presence, are essential for estimating waterfowl populations. The PPR contains millions
of small wetlands providing abundant and critical habitats for waterfowl in North Amer-
ica. Mapping wetlands is needed to set conservation targets and develop management
plans for waterfowl in the PPR. However, remote-sensing-based mapping of wetlands has
previously been challenging. Many small wetlands in the region were missed by existing
remote-sensing-derived surface water inventories due to limitations in the spatial resolu-
tion of remote sensing products. The trade-off between spectral and spatial resolution of
remote sensing products necessitates the use of complementary data for wetland detection
methods. Limiting the input parameters to the high-resolution bands of S2 helps detect
smaller wetlands; however, it will ignore the spectral information of the other bands. Given
its high resolution and ability to detect surface water, SAR can provide additional spectral
information when combined with S2. The pre-processing of the original S1 and S2 images,
and performing classification methods need massive computation. The GEE Cloud-based
platform hosts many open access remote sensing images that provide remote analysis to
apply machine learning algorithms for environmental monitoring. This study will share
the resulting algorithm, which is tailored towards the needs of waterfowl conservation
managers, with the management community, allowing its use for setting future conserva-
tion targets. These efforts will help conservation managers improve local estimates of pair
abundance and waterfowl populations’ distribution patterns in the study area, and similar
settings elsewhere.
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