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Abstract: Monitoring vegetation net primary productivity (NPP) is very important for evaluating
ecosystem health. However, the nonlinear characteristics of the vegetation NPP remain unclear in the
six provinces along the Maritime Silk Road in China. In this study, using NDVI and meteorological
data from 1982 to 2015, NPP was estimated with the Carnegie-Ames-Stanford Approach (CASA)
model based on vegetation type dynamics, and its nonlinear characteristics were explored through
the ensemble empirical mode decomposition (EEMD) method. The results showed that: (1) The total
NPP in the changed vegetation types caused by ecological engineering and urbanization increased but
decreased in those caused by agricultural reclamation and vegetation destruction, (2) the vegetation
NPP was dominated by interannual variations, mainly in the middle of the study area, while by
long-term trends, mainly in the southwest and northeast, (3) for most of the vegetation types, NPP
was dominated by the monotonically increasing trend. Although vegetation NPP in the urban land
mainly showed a decreasing trend (monotonic decrease and decrease from increase), there were large
areas in which NPP increased from decreasing. Although vegetation NPP in the farmland mainly
showed increasing trends, there were large areas that faced the risk of NPP decreasing; (4) dynamical
changes of vegetation type by agricultural reclamation and vegetation destruction made the NPP
trend monotonically decrease in large areas, leading to ecosystem degradation, while those caused by
urbanization and ecological engineering mainly made the NPP increase from decreasing, leading to
later recovery from early degradation. Our results highlighted the importance of vegetation type
dynamics for accurately estimating vegetation NPP, as well as for assessing their impacts, and the
importance of nonlinear analysis for deepening our understanding of vegetation NPP changes.

Keywords: net primary productivity (NPP); multiple time scales; nonlinear trend; vegetation type
dynamics; EEMD method

1. Introduction

The net primary productivity (NPP) of vegetation, the amount of organic matter accu-
mulated by green plants in unit time and unit area, directly reflects the productivity of a
plant community. The NPP can determine the carbon sources and sinks in an ecosystem;
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thus, it plays a very important role in the global change and carbon balances [1–6]. Eval-
uating the change in the vegetation, NPP cannot only help us understand the changes in
vegetation NPP, but also further evaluate the ecosystem health [7].

With the development of remote sensing technology, parameter models for estimating
NPP with remote sensing have become more and more widely used due to their easy and
simple operation. The theoretical basis of the parametric model is the mechanism of plant
photosynthesis, that is, the model of the light energy utilization rate [8]. The Carnegie–
Ames–Stanford Approach (CASA), a parametric model proposed by Potter, et al. [9], has
been improved by Piao, et al. [10] and Zhu, et al. [11] in recent years. It requires the
normalized difference vegetation index (NDVI), total solar radiation, temperature, and
precipitation data with few easily obtained parameters, and thus, is considered to be
one of the most appropriate models for estimating the vegetation NPP at large scales [9].
In recent years, many scholars have used the CASA model to estimate the vegetation
NPP, and further explored its temporal trends, persistence, and mutations from local to
global scales [12–19]. In these studies, the CASA model assumed that the vegetation types
remained unchanged. In reality, under the impacts of human activities, the vegetation
types changed a great deal. In addition, previous studies on the impacts of vegetation type
changes on vegetation NPP only considered the changes between the start and the end years.
They can only analyze the statistical changes of vegetation type, but not the dynamical
changes of vegetation type throughout the whole period. Thus, ignoring vegetation type
dynamics cannot reflect the process of vegetation type, which makes it difficult to truly
reflect the impact of vegetation type changes on vegetation NPP. Therefore, the vegetation
type dynamics must be considered to improve the accuracy of the NPP calculation and to
assess their impacts on vegetation NPP.

Although numerous studies have monitored the changes in the vegetation NPP [20,21],
most of them focused on the linear and monotonic trend with linear regression or the
Manner–Kendall trend detecting method [22,23], and its nonlinear characteristics remain
unclear. Vegetation changes are nonlinear and non-stationary [23,24]. Therefore, the
changes in the vegetation NPP are also nonlinear, characterized by variations of multiple
time scales and nonlinear trend. Thus, it is urgently needed to reveal the nonlinear charac-
teristics to accurately assess the vegetation NPP changes. Liu, et al. [22] and Jia, et al. [25]
successfully explored the multi-time scale characteristics and nonlinear trend of the vegeta-
tion NPP in northwest China using the EEMD method, a widely used multiple-time scale
analysis method [26]. However, they did not consider the dynamics of vegetation types
when estimating the vegetation NPP and assessing their impacts. Affected by human activ-
ities, such as ecological engineering, urbanization, and agricultural reclamation, vegetation
types inevitably changed from time to time on a large scale [27–30] and had great impacts
on the vegetation NPP. Thus, the NPP cannot be accurately estimated and the impacts of
vegetation type changes on the vegetation NPP cannot be well studied when ignoring the
dynamical changes of vegetation types.

The six coastal provinces along the southeast China are the most developed economy
area in China with frequent human activities [31]. With the advancement of urbanization,
the rapid development of trade, and large-scale agricultural reclamation, human activities
had affected the dynamics of vegetation types and greatly changed vegetation NPP, further
threatening ecosystem health [32–34]. In addition, coastal zones with strong land-ocean
interactions are very sensitive to climate changes and human activities [35]. Therefore,
under the dual pressure of human activities and climate change, the ecology of this area
is relatively fragile. However, there are currently few studies that have assessed the NPP
changes in coastal ecosystems. With the proposition and implementation of the One Belt
One Road policy, this area, as an important passage of the 21st century Maritime Silk
Road, has not only ushered in major opportunities for economic development, but also
faced huge ecological environmental challenges. Therefore, it is necessary to evaluate
the ecosystem health by evaluating vegetation NPP changes. To assess the changes of
vegetation NPP accurately, the variations on multiple time scales and the nonlinear trend
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should be explored, both of which remain unclear. Therefore, monitoring the nonlinear
characteristics of the vegetation NPP changes by considering vegetation type dynamics is
of great significance for evaluating ecosystem health in the areas along the Maritime Silk
Road [7,36]. Specifically, the objectives of this study were (1) to calculate the vegetation
NPP during 1982–2015 using the CASA model by considering vegetation type dynamics,
(2) to reveal multi-time scale variations and the nonlinear trend of the NPP for different
vegetation types using the EEMD method, and (3) to assess the influences of vegetation
type dynamics on the nonlinear trend of the vegetation NPP.

2. Materials and Methods
2.1. Study Area

The six provinces along the Maritime Silk Road are located in the coastal areas of
China, including Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong and Hainan (Figure 1),
including 423 county-level administrative regions with an area of 55,561 square kilometers
(108◦37′–123◦10′E, 18◦10′–35◦20′N). The areas are dominated by a subtropical monsoon
climate, and the terrain is mainly mountainous, hilly and plain. The vegetation types are
mainly forest and farmland. The temperature of the areas is between 10 ◦C~27 ◦C year-
round, decreasing from the southeast to the northwest. The annual average precipitation is
abundant, greater than 1000 mm in most of the study area.
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Figure 1. Study area: (a) elevation, (b) average temperature, (c) precipitation, and (d) location of the
study area in China.

2.2. Data Sources

The NDVI datasets, a fusion product of MODIS and AVHRR data [37,38], were ob-
tained from the Vegetation Index and Phenology (VIP) Laboratory (http://vip.arizona.edu/
accessed on 16 September 2020), with a 0.05◦ spatial resolution during 1982 and 2015. The
data has been corrected for orbital drift, sensor calibration, viewing geometry, volcanic
aerosols, atmospheric water vapor, and cloud cover [39–41].

http://vip.arizona.edu/
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The monthly temperature and precipitation data were collected by approximately
75 weather stations, provided by the China Meteorological Science data sharing service
network (http://data.cma.cn accessed on 16 September 2020). The meteorological data
were interpolated to the monthly average temperature and total precipitation data with the
same resolution as the NDVI data (0.05◦) using the professional meteorological interpola-
tion software ANUSPLIN (https://fennerschool.anu.edu.au/research/products/anusplin;
accessed on 16 September 2020) [42].

The vegetation type data for 1992–2015 were obtained from the European Center
for Medium Range Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu/ ac-
cessed on 16 September 2020), with an initial spatial resolution of 300 m. Based on the
original 22 categories, the vegetation types were reclassified into 10 categories: evergreen
broad-leaved forest, deciduous broad-leaved forest, evergreen coniferous forest, decidu-
ous coniferous forest, mixed forest, farmland, wetland, grassland, shrub and urban land.
Usually, long time series analysis requires at least 30 samples [43]. There is no vegetation
type data for 1982–1991; however, during that period, the reform and opening up had
just begun, there were no large-scale human activities due to economic backwardness in
China, and thus the vegetation types changed very little. Therefore, we assumed that the
vegetation types remained unchanged from 1982 to 1992, and the calculation of the NPP
during that period was based on the vegetation types in 1992. Vegetation type data were
resampled to a spatial resolution of 0.05 ◦ using the nearest neighbor interpolation method
to match the NDVI data.

The total solar radiation data for 1982–2015 were obtained from the ECMWF (https:
//cds.climate.copernicus.eu/ accessed on 16 September 2020), with a spatial resolution of
0.1◦ and a daily time resolution. The daily solar radiation data were summed to monthly
data and were resampled to 0.05◦ through bilinear interpolation.

2.3. CASA Model

The CASA model is based on remote sensing NDVI data, precipitation, temperature,
solar radiation, and vegetation types [9,44]. The CASA model we used was improved by
Piao, et al. [10] and Zhu, et al. [11]. Its structure is shown in Figure 2.

Figure 2. Flowchart of the CASA model.

http://data.cma.cn
https://fennerschool.anu.edu.au/research/products/anusplin
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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The CASA model is determined by the photosynthetic effective radiation (APAR) and
the actual light energy utilization (ε) [45–47], which can be described as follows [10,11]:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

NPP(x, t), APAR(x, t) and ε(x, t) are the vegetation NPP, photosynthetically active
radiation absorbed, and photosynthetically active radiation absorbed of pixel x in month t,
respectively [48–51].

The APAR is determined by the total solar radiation (SOL) and the absorption ratio of
the photosynthetically active radiation (FPAR):

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

where SOL(x, t), FPAR(x, t) are the total solar radiation absorption ratio of the photosyn-
thetically active radiation in pixel x in month t, respectively. The value of 0.5 is a rough,
widely used estimation of the ratio of the photosynthetically active radiation (PAR) to the
total solar radiation [10,11].

The FPAR has a linear relationship with the NDVI [52] and Simple Ratio (SR) In-
dex [53,54]. According to this relationship, the FPAR can be determined with the NDVI
and SR.

The formula of the FPAR from the NDVI is as follows:

FPARNDVI(x, t) = NDVI(x,t)−NDVImin
NDVImax−NDVImin

× (FPARmax − FPARmin)

+FPARmin
(3)

In Equation (3), NDVI(x, t) is the NDVI in pixel x in month t. NDVImax and NDVImin
are the maximum and minimum NDVI values of the corresponding vegetation types,
respectively. FPARmax and FPARmin are set as 0.95 and 0.001, respectively.

The formula of the ratio vegetation index SR is as follows:

SR(x, t) =
1 + NDVI(x, t)
1− NDVI(x, t)

(4)

The FPAR from SR can be calculated as follows:

FPARSR(x, t) =
SR(x, t)− SRmin
SRmax − SRmin

× (FPARmax − FPARmin) + FPARmin (5)

In Equation (5), SRmax and SRmin are the maximum and minimum SR values of the
corresponding vegetation types, respectively.

The final formula for FPAR [55] is as follows:

FPAR(x, t) = αFPARNDVI + (1− α)FPARSR (6)

α is the adjustment coefficient (generally 0.5).
The actual light use efficiency is affected by temperature stress coefficient (Tε1, Tε2)

and the water stress coefficient (Wε):

ε(x, t) = εmax × Tε(x, t)×Wε(x, t) (7)

In Equation (7), εmax is the maximum light use efficiency of the vegetation, which is
an important parameter in the CASA model, greatly affects the final calculation results. Its
values changed in different vegetation types, ranging from 0.09 to 2.16 gC/MJ. In this study,
we adopted the maximum light use efficiency of the vegetation proposed by Running [56],
Running, et al. [57] and Zhu, et al. [58] (Table 1). For a more detailed description of the
CASA model, please refer to Piao, et al. [10], Zhu, et al. [11] and Zhu, et al. [58].
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Table 1. Maximum light utilization rate of the vegetation types in the six provinces along the southeast
coast of China.

Vegetation Types Maximum Light Utilization (gC/MJ)

Deciduous Broad-Leaved Forest 1.044
Evergreen Broad-Leaved Forest 1.259

Deciduous Coniferous Forest 1.103
Evergreen Coniferous Forest 1.008

Mixed Forest 1.116
Shrub 0.888

Grassland 0.768
Wetland 0.608

Farmland 0.608
Urban and Rural Land 0.542

Other 0

When estimating NPP with CASA model, previous studies assumed that the vegeta-
tion type is unchanged. However, vegetation type can affect FPAR by affecting NDVImax
and NDVImin in Equation (3), SRmax and SRmin in Equation (5) respectively. Meanwhile,
in Equation (7), εmax in different pixels varied when the vegetation type changed. Thus,
vegetation types can ultimately affect the estimation of NPP by affecting FPAR and εmax.
Thus, we considered that the vegetation type is changed with time when estimating NPP
with CASA model.

2.4. Verification Method of NPP Calculation

The calculated NPP was usually verified by field investigation and comparison with
the results of multiple models or the results of previous studies [59,60]. The study area,
including six southeast coastal provinces, is too large to verify the NPP using a large
number of in-situ measurements. Moreover, there is only one site in the research area in
the Fluxnet network (https://fluxnet.org/ accessed on 16 September 2020), which cannot
be used for verification. Therefore, in this study, we chose two widely used datasets
for validation [61], that is, the MODIS-17A3HGF series products of the United States
from 2000 to 2015 [62,63] and GLO_PEM based on the light utilization model from the
Resource and Environmental Science and Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn/data.aspx?DATAID=204; accessed on 9 October) from 2000 to 2010.
MODIS-NPP and GLO_PEM-NPP had much higher resolution than our estimated NPP
but are only available from 2000 to 2020 and from 2000 to 2010, respectively. Therefore,
our study only used these two datasets for NPP verification. These two datasets were
resampled to a spatial resolution of 0.05 ◦ using the bilinear interpolation method to match
the calculated NPP data.

To evaluate the performance of CASA model; in each year, we compared our estimated
CASA-NPP of all pixels (more than 20,000 pixels) in the study area with the MODIS-NPP
and GLO_PEM-NPP using a linear regression method, respectively. When constructing
the linear regression, our estimated CASA-NPP was set as a dependent variable, while the
MODIS-NPP/GLO_PEM-NPP was set as independent variable. Then, the coefficient of
determination (R2) and the root mean square error (RMSE), two widely used statistics for
validation [64–68], were calculated for each year, and used to validate the modeled NPP.
These two statistics can be described as follows [69]:

R2 = (
∑n

i=1(Xi − X)(Yi −Y)√
∑n

i=1(Xi − X)2
√

∑n
i=1(Yi −Y)2

)
2

(8)

RMSE =

√
∑n

i=1(Xi −Yi)
2

n
(9)

where Yi and Xi represents our estimated NPP and the NPP for comparison in pixel i,
respectively. Y and X are their mean values of all pixels.

https://fluxnet.org/
http://www.resdc.cn/data.aspx?DATAID=204
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This R2 is a measure of how well the regression fits the actual data. It varies between
0–1, the more the value approaches 1, the better the result is [70,71]. A model with high R2

and low RMSE were considered as a good model [72].

2.5. Ensemble Empirical Mode Decomposition (EEMD) Method

The EEMD method is based on empirical mode decomposition (EMD) [73], which
can be used to divide a non-stationary time series into a finite set of components with a
decreasing frequency and a residual trend [26]. The original data was composed with a
certain proportion of white noise into new signal. The characteristics of different scales and
secular trend in the new signal are decomposed step by step. Then, the set average is carried
out to make the added white noise cancel and to generate a series of signals with different
characteristics intrinsic mode function (IMFs) and a trend component (residue) [74]. The
decomposed IMF component is based on the local time scale characteristics of the sequence
itself. Each IMF component represents the change in the original time series on a different
time scale. The residue reflects the long-term trend of the original sequence. This method
avoids the interference damage of the original signal information and can solve the problem
of mode aliasing caused by the discontinuous signal interval.

The decomposition steps of the EEMD [75] are as follows:

1. Add a Gaussian white noise series w1(t) to the original data x(t). The amplitude
of the Gaussian white noise series was set to 0.2 times standard deviation of the
original data.

x1(t) = x(t) + w1(t) (10)

2. Form the upper and lower envelope curves of the time series data x1(t) by connecting
local maxima and minima with cubic splines, respectively; then the time series data
x1(t) minus the mean value m1(t) of the upper and lower envelope curves.

f1(t) = x1(t)−m1(t) (11)

3. Determine whether f1(t) satisfies the given criterion (close enough to zero at any-
where). If yes, stop sifting. Otherwise, take f1(t) as a new time series data and repeat
step 2. In this way, obtain the first IMF: im f1(t).

f2(t) = f1(t)−m2(t) (12)

im f1(t) = fk(t) = fk−1(t)−mk(t) (13)

4. Obtain the remainder R1(t) by subtracting im f1(t) from x1(t). If R1(t) still contains
oscillatory component; repeat 2 and 3 but with R1(t) being the new time series data.

R1(t) = x1(t)− im f1(t) (14)

Rn(t) = Rn−1(t)− im fn(t) (15)

Thus, x1(t) is decomposed into n IMFs with decreasing frequencies and a residual
trend that is monotonic or has at most one extremum.

x1(t) =
n

∑
j=1

im f j(t) + Rn(t) (16)

5. Repeat steps 1–4 for l times (l was set to 100 in this study) with different Gaussian
white noise series added each time. Obtain the ensemble means of the corresponding
IMFs and trends of the decompositions as the final results.

A MATLAB EEMD package is downloadable at http://rcada.ncu.edu.tw/research1.htm
accessed on 16 September 2020.

http://rcada.ncu.edu.tw/research1.htm
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The EEMD trend of NPP at a certain time t is represented as the increase of the Rn
value since the start time, 1982, that is:

Trend(t) = R(t)− Rn(1982) (17)

For the trends that are time-varying, their rates of change are also temporally local
quantities and can be calculated as:

Ratetrend(t) = Trend(t)− Trend(t− 1) (18)

For EEMD trends, we also conducted a significance test approach to test the EEMD
trends [76–78]. The detailed process is as follows:

1. Generate 5000 white noise sequences with the same time length as the NPP sequences
and conduct EEMD to extract their long-term trend.

2. Divide the EEMD trend of the spatial location by the standard deviation of the
corresponding NPP data.

3. It was found that the propagation value of 1.64 times the standard deviation of the
white noise sequence trend is the 90% confidence interval.

4. Judge whether the trend value is outside the confidence interval. If it is outside the
confidence interval, it is considered significant, otherwise it is considered insignificant.

Based on the significance of the EEMD trend, the nonlinear trend of the EEMD can be
divided into five categories (Table 2).

Table 2. The nonlinear trend of the EEMD.

Type Description

No significant change the trend is not significant in any year
Monotonic increase/decrease the trend exhibits a monotonic increase/decrease with

statistical significance in at least one year

Initial increase then decrease/Initial
decrease then increase

the trend initially increases and then decreases/decreases and
then increases, including a local maximum/minimum, with

statistical significance in at least one year

2.6. Classification of Changed and Unchanged Vegetation Types by Considering Vegetation
Type Dynamics

In this study area, the area of changed vegetation type is indeed not large, but the
impact of vegetation type changes on NPP cannot be ignored. We used 2015 NPP minus
1982 NPP and calculated each pixel by taking the absolute value to judge the change of
NPP; we found that the average NPP change was 162.53 gC/m2/year, while the aver-
age NPP change of unchanged vegetation type was 156.57 gC/m2/year, and the aver-
age NPP change of changed vegetation type was 193.63 gC/m2/year. In total, the NPP
change was 3080 kgC/year, while the total NPP change of the changed vegetation type was
590 kgC/year, accounting for close to 20%, which should not be ignored. Thus, changes in
vegetation types had a great impact on vegetation NPP, especially for areas where vege-
tation NPP reduced. Exploring the impacts of changes of vegetation types on vegetation
NPP changes will provide some scientific reference for ecological protections and recovery.

In this study, vegetation types were divided into changed and unchanged vegetation
types by considering dynamics of vegetation type. To represent the process types of
vegetation changes, we have compared the spatial distribution of vegetation types in each
year from 1992 to 2015 pixel-by-pixel. If the vegetation type in one pixel kept unchanged
during the whole period, it was assumed as an unchanged vegetation type in that pixel. If
the vegetation type changed in any year, it was assumed as a changed vegetation type. For
changed vegetation types, it was possible that there were several times of interconversion
among different vegetation types during the whole period. If vegetation type A changed
to vegetation type B, and B kept unchanged for n years, then we assumed the vegetation
type changes from A to B lasted for n years. If there are several times of such changes of
vegetation type from A to B, we will sum the lasting time of each change, and finally get the
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total lasting time of the changed vegetation types from A to B. We will calculate the total
lasting time of each kind of change of vegetation type from one to another and determine
the changes of vegetation types with the longest lasting time as the classification of the
changed vegetation type.

There were 11 vegetation types in the study area (Figure 3); thus, there were a possible
110 categories of changed vegetation types (11 × 10). In fact, when we performed spatial
overlaying analysis for the changes of vegetation types during 1992–2015 in ArcMap10.3,
there were only 95 categories of changed vegetation types. It would be too complicated to
analyze all of them. In addition, the study area was located in the most developed economy
area of China with intense human activities such as urbanization, agricultural reclamation,
ecological engineering, and so on. Thus, we assumed that the changes of vegetation type
were mainly caused by human activities. To reduce the complexity of changes of vegetation
types, we reclassified the changes into four categories as the following:

1. Changed vegetation type caused by ecological engineering: conversion of non-
vegetated land to vegetated land, farmland and urban land to forestland or grassland,
and grassland to forestland.

2. Changed vegetation type caused by urbanization: conversion of forestland, grassland,
and farmland to urban and rural construction land.

3. Changed vegetation type caused by agricultural reclamation: conversion of woodland,
grassland and unused land into farmland.

4. Changed vegetation type caused by vegetation destruction: conversion of vegetated
land such as forestland, grassland, and farmland into non-vegetated land.
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Figure 3. Unchanged (evergreen broad-leaved forest, deciduous broad-leaved forest, evergreen
coniferous forest, deciduous coniferous forest, mixed forest, farmland, wetland, grassland, shrub,
urban and rural land) and changed vegetation types in the study area during 1992–2015. The white
areas in the study area representing the non-vegetation type.

Different from previous studies that only considered the start and end year during
the study period, we considered the vegetation types in each year, that is, vegetation type
dynamics during the whole study period. So, in this study, the unchanged and changed
vegetation types can be used to better represent the process of vegetation type changes
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and more accurately assess the impacts of vegetation type dynamics on vegetation NPP. To
assess the influence of vegetation type dynamics on the nonlinear trend of the vegetation
NPP, we analyzed the spatial distribution and area percentages of different types of the
nonlinear trends in 11 categories of unchanged vegetation types and four categories of
changed vegetation types.

3. Results
3.1. Verification of NPP Calculation

As can be seen from Figure 4a, the NPP calculated in this study are between the MODIS-
NPP and GLO_PEM-NPP. For RMSE, the average RMSE compared with the MODIS-NPP
and GLO_PEM-NPP are 123.75 gC/m2 and 210.79 gC/m2 (Figure 4c), respectively. R2

between our modelled NPP and MODIS-NPP and GLO-PEM NPP in each year are all
above and close to 0.8, respectively (Figure 4b). Thus, the performance of our modelled
NPP is good. Moreover, a high R2 means that the fluctuation characteristics between two
data series are similar; thus, our calculated NPP is suitable and reliable for the subsequent
multi-scale analysis in this study.
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Figure 4. Comparison of the NPP calculation results with the MODIS-17A3HGF data during
2000–2015, and with the GLO_PEM data during 2000–2010,respectively: (a) temporal changes in the
estimated NPP obtained using the CASA model and the NPP from MODIS and GLO-PEM, (b) the R2

of the CASA-NPP fitted by the MODIS-NPP and GLO_PEM-NPP, (c) the RMSE t of the CASA-NPP
fitted by the MODIS-NPP and GLO_PEM-NPP.



Remote Sens. 2022, 14, 15 11 of 25

3.2. Spatial Distribution of the Average Annual NPP

The average annual, maximum and minimum NPP during 1982–2015 in this area
was 837.07 gC/m2/year, 2792.19 gC/m2/year, and 35.39 gC/m2/year, respectively. The
average NPP decreased from the southwest to the northeast (Figure 5).
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Figure 5. Spatial distribution of the average annual NPP in the six provinces along the southeast
coast of China in the unchanged vegetation types from 1982 to 2015.

To study the NPP of the different vegetation types and their multi-time scale char-
acteristics, we extracted the unchanged vegetation types during 1982–2015 (Table 3).The
average annual value of the NPP per unit area in different vegetation types ranked from the
largest to the smallest as follows: evergreen broad-leaved forest > mixed forest > deciduous
coniferous forest > deciduous broad-leaved forest > evergreen coniferous forest > shrub >
grassland > wetland > farmland > urban and rural land.

Table 3. Annual mean NPP of the unchanged vegetation types in the six provinces along the southeast
coast of China.

Vegetation Types ECF EBF DCF DBF MF SH GL WL FL UGL

Area (km2) 84,078.11 70,141.72 13,649.04 13,045.61 12,269.77 14,884.64 10,488.21 15,028.32 214,879.06 8649.18
Area Percentage (%) 18.39 15.34 2.99 2.85 2.68 3.26 2.29 3.29 47.01 1.89

NPP (gC/m2) 1065.58 1396.92 1183.89 1113.12 1190.52 915.57 791.75 610.88 537.77 390.19
Total NPP (1010gC) 8959.18 9798.26 1615.90 1452.14 1460.74 1362.80 830.41 918.05 11,555.45 337.48

Percentage of Total NPP (%) 23.40 25.59 4.22 3.79 3.81 3.56 2.17 2.40 30.18 0.88

NOTE: ECF—Evergreen Coniferous Forest, EBF—Evergreen Broad-Leaved Forest, DCF—Deciduous Coniferous
Forest, DBF—Deciduous Broad-Leaved Forest, MF—Mixed Forest, SH—Shrub, GL—Grassland, WL—Wetland,
FL—Farmland, UGL—Urban and Rural Land.

3.3. Changes in the Vegetation NPP during 1982–2015
3.3.1. NPP Changes of the Unchanged Vegetation Types

The NPP changes per unit area of the evergreen broad-leaved forests were larger than
those of the other vegetation types, while that of urban and rural land was the smallest and
decreased (Table 4). However, the farmland contributed the most to the total NPP changes
(67.16%), followed by the evergreen coniferous forests and evergreen broad-leaved forests.
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Table 4. Contribution of the different unchanged vegetation types to the total NPP changes in the six
provinces along the southeast coast of China.

Vegetation Types ECF EBF DCF DBF MF SH GL WL FL UGL

NPP Changes Per Unit Area (gC/m2/year) 152.10 194.69 167.45 164.98 161.94 144.39 106.06 79.91 96.10 −10.88
Total NPP Changes (1012gC) 39,195.20 34,984.29 1154.78 1026.63 897.90 1169.08 431.69 668.29 162,674.19 −29.82

Contribution to Total NPP Change (%) 16.18 14.44 0.48 0.42 0.37 0.48 0.18 0.28 67.16 0.01

NOTE: ECF—Evergreen Coniferous Forest, EBF—Evergreen Broad-Leaved Forest, DCF—Deciduous Coniferous
Forest, DBF—Deciduous Broad-Leaved Forest, MF—Mixed Forest, SH—Shrub, GL—Grassland, WL—Wetland,
FL—Farmland, UGL—Urban And Rural Land.

3.3.2. NPP Changes of the Changed Vegetation Types

We use the vegetation NPP in 2015 and the vegetation NPP in 1982 to subtract and
extract the NPP changes of all pixels under the changed vegetation type (Table 5). The
changes of NPP in the changed vegetation types were mainly caused by reclamation and
urbanization, accounted for 53.43% and 38.76%, respectively. In addition, the NPP changes
caused by the reclamation and urbanization were much greater than those caused by
ecological engineering and vegetation destruction. In particular, the proportion of the
change in the vegetation NPP caused by agricultural reclamation was as high as 58.92%,
which was the main reason for the decrease in the vegetation NPP. However, urbanization
led to an increase in the vegetation NPP. Although the proportion of the ecological greening
project area was small, the proportion of the NPP increase caused by the ecological greening
project was high (15.87%).

Table 5. 2015–1982 NPP variation of all pixels and the absolute value of its proportion under the
changed vegetation types.

Vegetation Change Types Ecological Engineering Urbanization Agricultural Reclamation Vegetation Destruction Summary

Area (km2) 3546.92 22,393.72 30,870.27 961.88 57,772.79
Area Percentage (%) 6.14 38.76 53.43 1.66 100

NPP Variation (gC/m2/year) 49,889.18 26,809.73 −121,900.9 −13,350.09 −58,552.08
Sum of Absolute Value of

NPP Variation (gC/m2/year) 50,326.49 65,590.67 186,869.09 14,359.83 317,146.09

Proportion of Sum of
Absolute Value of NPP

Change (%)
15.87 20.68 58.92 4.53 100

3.4. Multi-Time Scale Variations of the Vegetation NPP

The NPP was decomposed into four IMF components and one increasing trend at the
regional scale (Figure 6). The average periods of the four IMF components were ~3, 6, 15,
and 32 years (Table 6). The variance contribution of the IMF1 was the largest, accounting
for 41.01%, followed by the long-term trend (26.62%). In addition, the contribution of the
variation on the 6-year time scale was greater than 17%, indicating that the interannual
variations including 3- and 6-year time scales dominated the vegetation NPP changes.
Thus, vegetation NPP was vulnerable to external disturbance at short timescales. We also
noticed that the variance contribution rate on the 15-year time scale was greater than 10%,
which also means that interdecadal changes cannot be ignored.
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Figure 6. EEMD analysis of the average NPP changes during 1982–2015. IMF1-IMF 4 and Residue
representing variations on different time scales and long-term trend, respectively.

Table 6. Variance contribution rate (VC, %) and average period (year) of the average NPP change of
all pixels on different time scales.

Variable Types Statistical Indicators IMF1 IMF2 IMF3 IMF4 Residue

Period
Mean 3 6 15 32 -

Std 0.32 1.17 3.99 5.99 -

Variance Contribution
Mean 41.01 17.68 11.96 2.72 26.62

Std 15.84 10.32 9.2 4.59 20.73

On the 3-year time scale, in most of the study area, especially in the middle of the
study area dominated by woodland, the variance contribution rate was greater than 36%
(Figure 7a). However, in the northeastern and southwestern parts dominated by farmland,
mixed with a small amount of urban and rural land, the variance contributions were less
than 36%.

On the 6-year time scale, 58.69% of the regions had variance contribution rates of
less than 18%. However, the spatial distributions of the variance contribution rates on the
6-year and 3-year time scales were similar, that is, low in the southwest and northeast but
high in the middle.

On the 15-year time scale, variance contribution rates were mostly smaller than 10%.
Only 38.75% of the areas had variance contribution rates greater than 12%, mainly dis-
tributed in northeast Hainan and southwest Guangdong, in northwest Jiangsu.

For the long-term trend, the variance contribution rates in some areas of central and
southern Fujian, southwest Guangdong and eastern and northwestern Hainan were also
greater than 29%, which indicated that long-term trends were also important for vegetation
NPP changes.

In summary, vegetation NPP is controlled by interannual variations in the middle of
the study area, dominated by the woodland with the largest increment per unit area, while
controlled by long-term trend in the northeastern and southwestern parts, dominated by
the farmland with the highest contribution to the total NPP increment.
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Figure 7. Spatial distribution of the variance contribution rates of different time scales to NPP changes,
classified using 20% quantiles: (a) 3-year time scale, (b) 6-year time scale, (c) 15-year time scale, and
(d) long-term trend.

3.5. Spatial Distribution of the Nonlinear Trend of the Vegetation NPP
3.5.1. Nonlinear Trend of the Vegetation NPP in Unchanged Vegetation Types

The vegetation NPP in large areas (37.03%) exhibited an insignificant trend, mainly
in the northern-central part of the study area dominated by evergreen coniferous forest,
evergreen broad-leaved forest, and farmland (Figure 8a).

For the significant nonlinear trend, the monotonic increasing trend accounted for
greater than 30%, mainly in Hainan, the Lei Zhou Peninsula in southwest Guangdong,
northeast Fujian, and northern Jiangsu, mainly dominated by farmland, evergreen broad-
leaved forest, and deciduous broad-leaved forest. In addition, the proportions of area that
the NPP trend changed from decreasing to increasing trends were as high as 17%, mainly in
northern Hainan, western Guangdong and near the Pearl River Delta, which is dominated
by farmland and urban-rural land mixed with a small amount of evergreen broad-leaved
forest. This showed that almost half of this area in the ecosystem was monotonically
improved or improved from degradation.

Moreover, although the proportion of monotonic decrease was very small (3.93%), the
proportion that the NPP trend changed from increase to decrease reached 10.63%, mainly
in parts of central and southern Jiangsu and a small part of Fujian, which is dominated by
mainly farmland and evergreen coniferous forest. It demonstrated that the ecosystems in
these areas were facing the risk of degradation from recovery.
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Figure 8. Spatial distribution of the non-linear trend of the vegetation NPP changes: (a) unchanged
vegetation types, and (b) changed vegetation types. The white areas in (a,b) representing the changed
and unchangedvegetation types, respectively.

The proportion of insignificant change in all of the vegetation types was higher than
that for each significant change type, especially for most of the forest and wetland vegetation
(Table 7). Moreover, for the significant changes, except for the urban and rural land, most of
the vegetation types were dominated by monotonic increase trends, around 30%, indicating
that most of the vegetation NPP was improved, except for the urban and rural land.
Meanwhile, except for the urban and rural land and the evergreen coniferous forest, the
proportion of areas with the trend that initially decreased and then increased for the other
vegetation types was close to 20%, indicating the great potential for ecosystem recovery.
Although the proportion of areas that underwent monotonic decrease was very low for
most of the vegetation types, except for the urban and rural land, the proportion of areas
that initially increased and then decreased was close to 10%, indicating some risk of NPP
decreasing, especially for the evergreen coniferous forest and farmland.

Table 7. Area percentage (%) of the nonlinear trend classification under different vegetation types.

Vegetation Types Not Significant Monotonic Increase Monotonic Decrease Initial Increase then
Decrease

Initial Decrease
then Increase

Evergreen Coniferous Forest 40.29 32.09 2.26 10.39 14.97
Evergreen Broad-Leaved

Forests 38.67 29.95 3.2 8.23 19.95

Deciduous Coniferous Forest 37.47 29.47 3.58 8.63 20.84
Deciduous Broad-Leaved

Forest 34.36 33.48 2.86 9.25 20.04

Mixed Forest 38.88 29.51 3.75 6.09 21.78
Shrub 35.33 31.85 2.32 9.07 21.43

Grassland 35.07 29.86 4.11 7.95 23.01
Wetland 39.01 27.72 3.63 9.37 20.27

Farmland 35.36 32.28 4.44 12.33 15.59
Urban and Rural Land 35.88 12.62 18.94 9.97 22.59

3.5.2. Nonlinear Trend of the Vegetation NPP in Changed Vegetation Types

For the changed vegetation types (Figure 8b), the proportion of areas of the insignif-
icant change in the trend were much lower than for the unchanged vegetation types,
indicating that the vegetation type changes changed the vegetation NPP greatly. In addi-
tion, the areas of monotonic trends were very close to the areas of trend reversal. Unlike the
unchanged vegetation types, the vegetation NPP was dominated by an initial decrease and
then an increase (21.66%), and by a monotonic decrease (19.79%). The trends of areas that
initially decreased and then increased and monotonically increased were mainly distributed
in the central part of Zhejiang, the coastal areas of Fujian, central Guangdong, the Pearl
River Delta, and its adjacent coastal areas, which accounted for 38.86%. The trends of initial
increase and then decrease and then monotonic decrease mainly occurred in northwest
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and southeast Fujian, southern Jiangsu, some of the coastal areas of Zhejiang, and some of
central and northern Guangdong, which accounted for 33.54%. Although the proportion of
NPP monotonic increase and increased from decreasing trends were very large (close to
40%), the proportion of NPP decrease was also very large (>30%), that is, the changes in
the vegetation type may have led to both the improvement and degradation.

Except for urbanization (40.13%) and agricultural reclamation (21.91%), the proportion
of non-significant NPP change was very low in the changed vegetation types (Table 8).
The trends of NPP in changed vegetation types caused by ecological engineering and
urbanization were mainly dominated by trend reversal from decreasing to increasing and
monotonic increase. This showed that ecological engineering was conducive to ecosystem
restoration. Meanwhile, after urbanization had caused a certain amount of damage to the
vegetation NPP, it also caused some degree of ecosystem restoration. It should be noted
that agricultural reclamation caused a large part (35.44%) of the vegetation NPP to exhibit a
monotonic decrease. In addition, although 17.04% of the agricultural reclamation gave NPP
the potential to transition from decreasing to increase, 16.85% was at a risk of transitioning
from increasing to decrease. Vegetation destruction led NPP to a monotonic decrease and
trend reversal from increasing to decreasing (37.5% and 25%, respectively).

Table 8. Area percentage (%) of nonlinear trend classification of changed vegetation types.

Nonlinear Trend Classification Ecological Engineering Urbanization Agricultural Reclamation Vegetation Destruction

Not significant 9.32 40.13 21.91 0
Monotonic increase 41.53 16.38 8.76 0
Monotonic decrease 0.85 9.4 35.44 37.5

Initial increase then decrease 3.39 11.41 16.85 25
Initial decrease then increase 44.92 22.68 17.04 37.5

4. Discussion
4.1. Vegetation NPP Changes in Changed and Unchanged Vegetation Types during 1982–2015

For the different vegetation types, the average annual value of the NPP per unit area
was similar to the research results of Piao, et al. [10]. Chen, et al. [79] found that forestland
is the main source of the NPP. Similarly, our results show that the proportions of the total
NPP occupied by evergreen coniferous forest and evergreen broad-leaved forest were the
two highest in the study area; however, the proportion occupied by farmland was also
very high. The possible reason for this is that the improvement in agricultural production
conditions and climate warming increased the crop yield [80,81], and thus increased the
NPP of the farmland vegetation.

From 1982 to 2015, the vegetation NPP increased in most areas, which is consistent
with the research results of Wen, et al. [82]. This may be due to the overall warming
of the coastal areas. The increase in the daytime temperature promoted photosynthesis
and increased the NPP [4]. Moreover, the increase in the concentration of CO2 due to
anthropogenic activity, and the resultant fertilization effect, also promoted an increase in
the vegetation NPP [83,84]. For the different vegetation types, the evergreen broad-leaved
forest had the largest increase in the NPP per unit area, which is consistent with the results
of Mao, et al. [85]. This may be because the warming climate and closing hillsides for
afforestation promoted the substantial increase in the NPP per unit area of the forestland.
Piao, et al. [86] found that woodland plays an irreplaceable role in China’s vegetation
greening, and we found that NPP increase per unit area in woodland is much higher than
other vegetation types, indicating that woodland has a promoting effect on the vegetation
greening and the increase in the NPP. However, the farmland contributed the most to the
total increase in the NPP, which is consistent with the results of Pan, et al. [87]’s finding
that the NPP of farmland has increased nearly 3–4 times. It is because farmland had the
largest area and a high increase in the NPP per unit area due to the increases in nitrogen use
and irrigation, and the improvement of agricultural techniques [88], and the large area of
farmland, also contributed to the largest increase in the NPP of farmland [89]. In addition,
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we found that the total urban and rural land NPP decreased, which likely reflects the fact
that the natural ecological environment of the coastal cities is under great pressure due to
population migration and economic development, and thus, the NPP decreased [90].

Liu, et al. [91] pointed out that changes in land use will cause a decrease in the NPP.
However, we found that vegetation type changes caused by different human activities have
different effects on the NPP. Vegetation type changes caused by ecological engineering and
urbanization increased the NPP, whereas those caused by agricultural reclamation and
vegetation destruction decreased the NPP. Ecological engineering promoted the expansion
of forestland and thus increased the NPP [92]. Agricultural reclamation changed the original
high productivity vegetation to farmland and thus reduced the vegetation NPP [93,94];
Cao, et al. [95] pointed out that urbanization and desertification cause a decrease in the NPP.
Liu, et al. [96] also pointed out that urbanization hinders vegetation greening. We found
that vegetation destruction did reduce the vegetation NPP, and the vegetation NPP of the
unchanged urban land did decrease a little, which was consistent with Yang, et al. [97]’s
finding that, in urban land, NDVI mostly showed a significant downward trend. However,
new urban and rural land increased the NPP of the vegetation. The reason for this may
be that since the 20th century, the coupling coordination degree between the urbanization
and ecological environment in the coastal cities has continuously improved; thus, the
ecological environment has improved [90]. Moreover, the eastern coastal area of the study
area, which is economically developed, can invest a large amount of funds in new urban
land to improve the urban environment, thus increasing the total NPP [21]. In addition,
due to the lack of proper management and human activities, vegetation destruction in
some areas caused vegetation browning, further decreasing the NPP.

4.2. Variations in the Vegetation NPP on Multiple Time Scales

On the regional scale, the NPP changes in the six coastal provinces along Southeast
China were mainly dominated by a 3-year cycle and an increasing trend, with variance
contribution rates of 41.01% and 26.62%, respectively, which was consistent with the results
of Wang, et al. [98], that is, annual NPP exhibited a fluctuating growth trend from 1982 to
2012. Our results were similar to those of Jia, et al. [25] and Xu, et al. [99]. However, our
study revealed that the NPP variations on the 6-year time scale also contributed a lot to the
changes in the vegetation NPP (17.68%). In addition, the spatial distributions of interannual
variations on the 3-year and 6-year time scales were similar, while the distributions of the
long-term variations on the 15-year time scale and the long-term trend are similar. This
indicates that the interannual variations had a greater impact on the vegetation NPP in
the central region of the study area, mainly dominated by woodland. This means that
woodland is easily affected by short-term disturbances, while the long-term scale changes
had a greater impact in the southwestern and northeastern parts, where the vegetation types
were dominated by farmland. It means that the farmland is not susceptible to short-term
disturbances under human management, and the ecosystem is stable [100]. For the entire
study area, the interannual variations on the 3-year and 6-year time scales dominated the
changes. Thus, there is still a great risk posed by the external driving factors, and measures
should be taken to protect the vegetation ecosystem from short term disturbances [101].

4.3. Effects of Vegetation Types on Nonlinear Trends in the Vegetation NPP

Although the vegetation in China exhibited a greening trend [86], and previous studies
have found that significant changes have taken place in the farmland, urban and rural land,
and woodland in the southeastern coastal area [102–104], our study found that 37.03% of
the vegetation NPP did not change significantly, especially in most of the woodlands and
wetlands. Only 31.17% exhibited a monotonic increase trend, mainly in the northeastern,
southwestern, and central coastal areas, which were mainly dominated by farmland and
woodland. This indicated that the improvement of agricultural production conditions
and the advancement of agricultural technology [88,105,106], and ecological protection
projects, have increased the forest NPP [107]. However, although the vegetation NPP of the
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farmland was mainly dominated by monotonic increase and initial decrease then increase,
the proportions of the trends that underwent initial increase then decrease and monotonic
decrease trends (>16%) were much larger than the other vegetation types, which indicates
that there was a greater risk of NPP decreasing in some farmlands. The possible reason
is that, with increasing economic development, a large area of farmlands was abandoned
due to the migration of farmers to cities, and thus, the vegetation NPP decreased [108,109].
The vegetation NPP of most of the vegetation types, except for the urban and rural land,
was dominated by the monotonic increase trend and the trend of initial decrease and then
increase. It may be due to the implementation of the ecological protection project in the
coastal areas since 2010, which included ecosystem restoration and afforestation [110].
For the urban and rural land, the proportion of the monotonic decrease trends (18.94%)
and the trend that initially increased and then decreased (9.97%) were very large. In the
meantime, the proportions of monotonic increase trends (12.62%) and trends that initially
decreased and then increased (22.59%) were also very high. It demonstrated that that
urbanization could bring about not only the negative [111], but also positive, effects on
vegetation NPP [112]. It is worth noting that the trend of the vegetation NPP in 10% of
the study area initially increased and then decreased, indicating that there is a risk of NPP
decreasing in these areas. Especially for the evergreen coniferous forests, the proportion of
areas of the initial increase then decrease trend were very close to the proportion of areas of
the initial decrease then increase trend, indicating coexistence of ecosystem recovery and
degradation. Therefore, non-linear analysis of the trends can explore the hidden recovery
potential and the possible degradation risks [113].

4.4. Effects of Vegetation Type Dynamics on the Nonlinear Trend of the Vegetation NPP

Although some studies have revealed the impacts of land use change on changes in the
vegetation NPP [91,95,114], they just considered the land use changes between the start and
end years, and few studies investigated the influence of the dynamics of vegetation type
during the whole periods on the nonlinear trend of the vegetation NPP. Except for changed
vegetation types caused by urbanization, the dynamics of vegetation types led to significant
changes in the vegetation NPP. Vegetation dynamics caused by agricultural reclamation
and vegetation destruction mainly led to a monotonic decrease in the vegetation NPP;
thus vegetation NPP decreased. Agricultural reclamation replaced the original vegetation
types with higher NPP, such as woodland and shrubs [94], thus leading to a decrease in
the vegetation NPP. Previous studies have found that urbanization leads to a decrease in
the vegetation NPP [82,115,116]. However, the results of this study show that dynamics
of vegetation type caused by urbanization mainly caused the trend of the vegetation NPP
to initially decrease and then increase or to monotonically increase, which also confirms
that urbanization had dual effects on vegetation NPP [97]. That is, urbanization led to not
only vegetation NPP increase, but also to an increase from decreasing. Because the areas
along the Maritime Silk Road are highly developed, lots of funds have been invested in
urban green spaces in order to improve urban greening, which has caused the trend of
the vegetation NPP to reverse from decreasing to increase and has led to direct vegetation
NPP increase [117]. In addition, the urban heat island effect increases the temperature
cities, which promotes increasing vegetation NPP [21]. Since 1978, China has implemented
large-scale ecological engineering, which led to many areas of vegetation greening [118].
We found that ecological engineering led to not only vegetation NPP increase but also more
vegetation NPP increase from decreasing trends, which is similar to the existing research
results [119–121]. This is explained by the fact that the ecological protection projects [120]
have increased the vegetation coverage and the richness of vegetation species [119]; in
addition, the increase in vegetation has slowed down the local soil erosion, which is
beneficial to the NPP of vegetation [121].
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4.5. Limitation and Future Direction

In this study, we verified our CASA-based NPP by comparing with two widely used
data sets, including MODIS-NPP and GLO_PEM-NPP because of unavailability of enough
field data in a large region; thus, there may be some uncertainty in our results. MODIS-NPP
and GLO_PEM-NPP had much higher resolution than our estimated NPP but are only
available from 2000 to 2020 and from 2000 to 2010, respectively. Usually, at least 30 years
of data is needed for long time series analysis such as the EEMD method to ensure the
reliability of the results [43]. In addition, since the time range of our research is 1982–2015,
the highest spatial resolution of the data we could find was 0.05 ◦; thus, the differences
between the regions shown on our pictures are relatively rough and need to be combined
with related tables for analysis. To obtain long time series of NPP with high resolution to
reduce uncertainty, we can attempt to fuse the existing high resolution NPP products with
our estimate of NPP in the future.

By considering the vegetation dynamics, we estimated vegetation NPP with CASA
model during 1982–2015. However, there is no data of vegetation types meeting our
research requirements during 1982 to 1991. Thus, we assumed that there was no change
in vegetation types during 1982–1991, which may cause some uncertainties in estimating
the NPP because there may exist small changes in vegetation types [122]. Therefore, future
research should be devoted to extracting a much longer time series of vegetation types.

In this study, we focused on the nonlinear characteristic of vegetation NPP when
considering vegetation type dynamics, and only considered the effects of dynamics of
vegetation types caused by human activities on the trends of vegetation NPP, ignoring the
influence of climate change. Climate change, especially for extreme climates [86,123–125],
had a huge impact on vegetation NPP [126–129]. Thus, we will explore the impacts of these
climate parameters on the long-term trend of NPP in future direction. In addition, the rising
CO2 concentration over the past decades can enhance plant photosynthesis by accelerating
the rate of carboxylation [80,130,131]. Moreover, the enhanced nitrogen deposition over
China in recent decades significantly increased plant foliar N concentrations in plants [132],
which may stimulate photosynthesis and thus enhance the uptake of atmospheric CO2.
Therefore, in future works, we will try to explore the driving forces of vegetation NPP
trends by considering both human and nature factors.

5. Conclusions

In this study, the vegetation NPP in the six coastal provinces along Southeast China
from 1982 to 2015 were calculated using the CASA model by considering vegetation type
dynamics; In addition, the nonlinear characteristics of the changes in the NPP were explored
using the EEMD method.

The total vegetation NPP increased in most areas. The NPP per unit area of the
evergreen broad-leaved forest increased the most; however, the total increment of the
NPP of farmland was the largest due to the large area. Vegetation NPP was dominated
by interannual variations on 3-year and 6-year time scales, and thus were likely to be
sensitive to external disturbances. The woodland, which had the largest increment per
unit area, distributed in the middle of the study area, was controlled by interannual
variations. The farmland, which made the highest contribution to the total increment of
the NPP, distributed in the northeastern and southwestern parts of the study area, was
dominated by the long-term trend. Ecological engineering and urbanization increased
the total NPP, while vegetation destruction and agricultural reclamation decreased the
total NPP. Most vegetation types, except for urban and rural land, were dominated by
monotonically increasing trends; however, NPP also faced potential reduction risks, because
the proportion of areas with an initially increasing and then decreasing trend were close
to 10%. Vegetation type dynamics resulted from agricultural reclamation and vegetation
destruction caused the NPP trend to monotonically decrease in a large area, leading to
vegetation NPP reduction. However, Vegetation type dynamics from urbanization and
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ecological engineering mainly caused the vegetation NPP trend to reverse from decreasing
to increase, resulting in vegetation NPP enhancement.

Revealing the nonlinear characteristics of the NPP of different vegetation types is
helpful in deepening our understanding of vegetation changes and further accurately
assessing the ecosystem health. Moreover, the effects of the dynamics of vegetation types
on the NPP trends showed that human activities bring about not only the challenges of
decreasing vegetation NPP but also the opportunity for vegetation NPP increasing in the
six coastal provinces along the southeast China.
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