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Abstract: Suaeda salsa (L.) Pall. (S. salsa) acts as a pioneer species in coastal wetlands due to its
high salt tolerance. It has significant biodiversity maintenance, socioeconomic values (e.g., tourism)
due to its vibrant color, and carbon sequestration (blue carbon). Bohai Bay region, the mainly
distributed area of S. salsa, is an economic intensive region with the largest economic aggregate and
population in northern China. The coastal wetland is one of the most vulnerable ecosystems with
the urbanization and economic developments. S. salsa in Bohai Bay has been changed significantly
due to several threats to its habitat in past decades. In this paper, we analyzed all available archived
Landsat TM/ETM+/OLI images of the Bohai Bay region by using a decision tree algorithm method
based on the Google Earth Engine (GEE) platform to generate annual maps of S. salsa from 1990 to
2020 at a 30-m spatial resolution. The temporal-spatial dynamic changes in S. salsa were studied
by landscape metric analysis. The influencing factors of S. salsa changes were analyzed based on
principal component analysis (PCA) and a logistic regression model (LRM). The results showed that
S. salsa was mainly distributed in three regions: the Liao River Delta (Liaoning Province), Yellow
River Delta (Shandong Province), and Hai River Estuary (Hebei Province, Tianjin). During the past
31 years, the total area of S. salsa has dramatically decreased from 692.93 km2 to 51.04 km2, which
means that 92.63% of the area of S. salsa in the Bohai Bay region was lost. In the 641.89 km2 area of
S. salsa that was lost, 348.80 km2 of this area was converted to other anthropic land use categories,
while 293.09 km2 was degraded to bare land. The landscape fragmentation of S. salsa has gradually
intensified since 1990. National Nature Reserves have played an important role in the restoration
of suitable S. salsa habitats. The analysis results for the natural influencing factors indicated that
precipitation, temperature, elevation, and distance to the coastline were considered to be the major
influencing factors for S. salsa changes. The results are valuable for monitoring the dynamic changes
of S. salsa and can be used as effective factors for the restoration of S. salsa in coastal wetlands.

Keywords: coastal wetland; Suaeda salsa; time series Landsat images; influencing factor analysis;
Bohai Bay region

1. Introduction

Wetlands are often recognized as nature-based solutions that can provide a variety of
comprehensive services that are of social, economic, and environmental value to humans [1].
Coastal wetlands are located where ocean and land are interspersed, and they are sensitive
to external stresses and are vulnerable to human activities [2]. Coastal populations and
wetlands have been intertwined for centuries and have experienced intense and varied
human impacts [3]. Coastal wetlands, which mostly include tidal flats and coastal vegeta-
tion (e.g., mangroves and saltmarshes), are seriously threatened and have continuously
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decreased in their areas [4]. Many studies have been carried out on the restoration [5],
evaluation, management, evolution mechanisms [6], biomass, and carbon storage in coastal
wetlands [7]. However, more notably, vegetation, as an important component of coastal
wetlands, can comprehensively reflect the characteristics of coastal wetlands. Vegetation
changes can provide good indicators for understanding and evaluating the status of coastal
wetlands. Some studies have found that the global vegetation densities in wetlands are
decreasing due to climate change and the impacts of interference from human activities [8].

As an important salt-tolerant plant in coastal wetlands, S. salsa is an annual herba-
ceous euhalophyte with strong ecological tolerance and is an indicator plant with strong
adaptability [9]. This species plays a key role in carbon sequestration (“blue carbon”),
shoreline protection, pollutant reduction, and biodiversity maintenance [10]. In historical
periods, excessive human activities (e.g., reclamation and aquaculture) and natural factors
(e.g., climate, microtopography, salinity stress, and hydrological processes) have obviously
reduced and threatened the remaining coastal wetland vegetation in the region [11–13].
Suaeda salsa (L.) Pall. (S. salsa) is widely distributed in the coastal wetlands in the Bohai Bay
region and is a dominant species for wetland restoration due to its high tolerance to salinity.
The growing season of S. salsa stretches from April to September annually, and this forms
a famous landscape called the “red beach”, which provides great tourism and economic
value [14]. S. salsa has gradually degraded, and some areas have even disappeared due to
natural factors and anthropogenic activities for a long time in the Bohai Bay region [15,16].
Governments and researchers have begun to monitor the spatial distribution of S. salsa
and restore and repair its suitable habitats. In recent years, S. salsa habitats have been
gradually established with remarkable effects, and the coastal wetlands have improved.
Studies on S. salsa have mainly focused on its physiological and ecological adaptability,
including seed germination [12], salt tolerance mechanisms [17], and plant growth charac-
teristics [9,18,19]. Unfortunately, few studies have been performed on the characteristics of
S. salsa distributions and their annual dynamic changes for long-term series.

Long-term coastal wetland vegetation monitoring is the key to assessing the influences
of natural and anthropogenic events, as well as those of restoration efforts [20]. Remote
sensing (RS) technology provides an effective tool to characterize any area at high resolu-
tion and has become a strategy for wetland vegetation monitoring at regional scales [21].
The operational monitoring of diverse vegetation communities, such as those growing in
coastal wetlands, can be supported by various RS data sources [22] to provide quantitative
spatial information regarding the vegetation parameters and temporal evolution [23]. Many
researchers have carried out RS classifications based on the Google Earth Engine (GEE)
platform, which provides many very useful machine learning algorithms (10 algorithms)
that are very effective for extracting land uses from imagery [24]. Classification algorithms,
such as K-Means, have more limitations, such as overfitting, high collinearity, high sensitiv-
ity to outliers, high dimensionality, and high noise levels [25]. Random forests (RF), which
are based on machine learning, are more commonly used for land use classifications [26],
but a method to extract specific vegetation information based on RS data has rarely been
reported. Decision tree classification (based on expert knowledge) is a method to obtain
classification rules and carry out classifications based on RS and other spatial data through
expert experience summaries. The method has the advantages of low training complexity,
a rapid prediction process, and easy model expression in aquatic vegetation information
extraction [27,28]. However, many land cover data products have wetland layers, for
instance, the 30-m land cover map that was generated using Landsat TM/ETM+ data
under the Fine Resolution Observation and Monitoring of Global Land Cover (FROM-GLC)
project [22,28]. Previous land cover classification maps have usually regarded wetlands
as single land types [29]. A layer that represents the information on the annual spatial
distributions of specific plant species in coastal wetlands was included by using land cover
data products with different classification systems. Early studies have deficiencies due to
short-term series and large time interval spans, and appropriately increasing the number
of samples can better reveal the changes in landscape patterns in long-term series [30].
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This paper integrates all of the available archived Landsat images (ETM+/OLI) from
1990 to 2020 of the Bohai Bay region based on the GEE platform to (1) extract the annual
distributions of S. salsa in the study area, (2) analyze the distributions and area changes of
S. salsa in the past 31 years, and (3) evaluate the key influencing factors for the changes in
S. salsa. The work is of great significance for rapid annual monitoring of S. salsa. The results
will be valuable to support the sustainable management and restoration of coastal wetlands.

2. Material and Methods
2.1. Study Area

The Bohai Bay region (35◦711–42◦127N, 115◦711–123◦516E, ~ 144238.56 km2) (Figure 1)
covers the Liaodong Peninsula, Shandong Peninsula, and Beijing-Tianjin-Hebei region,
which constitute an urban agglomeration around the Bohai Sea. It belongs to humid semi-
humid monsoon climates. The region is composed of 14 cities within the most densely
populated urban area, and the total GDP accounts for 10.62% of China [31]. This region
is the political, economic, and cultural center of northern China [29]. The coast of the
Bohai Bay region has abundant coastal wetland resources in northern China and includes
the muddy estuary of the Liao River, Yellow River, and Hai River, which were formed
by sediment accumulation. S. salsa is mainly distributed in the study area. Tidal flats
and salt marshes are widely distributed due to the natural conditions in the Bohai Bay
region [32]. With climate change and the rapid socioeconomic development during the past
decades, the S. salsa area in the region has lost greatly, and ecosystem functions have been
degraded [33]. Particularly, Liao River Delta, Yellow River Delta, and Hai River estuary are
located in the study area, parts of which are well developed, such as aquafarms and ports,
especially in the Hai River estuary. Two protected areas have been established along the
deltas, including the Liao River Delta National Nature Reserve since 1986 and Yellow River
Delta National Nature Reserve since 1992 [34,35]. S. salsa has the potential for ecological
and tourism value and economic development in the region. In recent years, the total area
of S. salsa has exhibited a decreasing trend, and the landscape fragmentation of patches
was obvious in the Bohai Bay region [11,36].
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2.2. Data Preprocessing

All of the available archived standard level 1 terrain corrected (L1T) orthorectified
Landsat imagery (~430 images) for the study area were used to generate annual S. salsa
maps for the period from 1990 to 2020 based on the GEE platform. The observations of
Landsat images in path/row (121–122,32–33) from 1 June 1990 to 31 October 2020 were
chosen. The image data were selected from August to early November because the spectral
characteristics of S. salsa differ from those of other coastal wetland vegetation types in
this period [16]. Low-quality observations, including those with clouds (more than 10%),
cloud shadows, cirrus, snow/ice, and scan-line corrector (SLC)-off gaps, were addressed by
using the F-mask band and were not used in the data analyses [37]. The Landsat imagery
preprocessing tasks were conducted as described in the flow chart (Figure 2). Furthermore,
the artificial coastlines were delineated through visual interpretation. The topography data
were obtained from the Geospatial Data Cloud (http://www.gscloud.cn/) and accessed
on 30 July 2021. The daily meteorological data from 1990 to 2020 were collected from the
China Meteorological Data Network (http://data.cma.cn/) and accessed on 30 July 2021.
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A robust decision tree algorithm was used to produce annual S. salsa maps from
1990 to 2020 at a 30-m spatial resolution. Decision tree classification is a method used
to conduct classification rules and carry out remote sensing classifications through sum-
maries of expert knowledge and experience, simple mathematical statistics, and induc-
tive methods [38]. The main features in the study area were first classified as follows:
non-vegetation and vegetation. Non-vegetation mainly includes water bodies, mud-
flats, and buildings. For vegetation, S. salsa was distinguished from the other land
cover types based on its spectral characteristics from August to early November in each
year. By setting the conditions in the decision tree classification method according to
the spectral reflectance differences of different features, these indices were used to iden-
tify S. salsa (NDVI > 0.07, Red < 0.109, SWIR1 > 0.03, SWIR2 < 0.05, NIR*Red < 0.0109,
Green–Red < 0.006, NIR-Red < 0.07) and (Green–Red)/(Green + Red) < 0.04), which could
be distinguished from other features [39,40]. Based on the S. salsa results from the GEE
platform, the final results for the S. salsa distributions were obtained by verification with
field surveys to strengthen the positional accuracies. Several land types, such as ponds and
salt pans, affected the overall accuracy of the results, as they have similar characteristics:
low vegetation density and seasonal inundation. Visual adjustments were used to modify
and remove interference to improve the accuracy. The annual S. salsa maps in the Bohai Bay

http://www.gscloud.cn/
http://data.cma.cn/
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region were produced by using the abovementioned imagery, algorithm, and GEE platform.
A region of interest (ROI) approach and field surveys were combined to verify and assess
the accuracy of the maps. Two times duplicated field sample were conducted to produce
ROI points in October 2018 and October 2019, respectively, which followed the same route
and sample points (Figure 1). The study area was divided into S. salsa regions and regions
with no S. salsa, and the ROI points (120 in three main areas) were generated with field
surveys [30]. The location of the sites where mainly distributed in Liao River delta, Yellow
River delta and Hai River estuary was showed in Figure 1. The final points were checked by
using field surveys and photos, and invalid points were excluded. Three typical sampling
areas where S. salsa is densely distributed were selected to study the S. salsa distributions
and are shown in Figure 3. Then, a confusion matrix was used to evaluate the overall
accuracy and kappa coefficients of the results, for which the overall accuracy and kappa
coefficients of S. salsa maps were all above 85.50% and 0.85, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 3. Locations of selected typical regions of interest of S. salsa. 

2.3. Analysis of Pattern Fragmentation 

Quantifying the dynamics of the S. salsa distributions under natural and anthropo-

genic changes is critical for understanding coastal sustainability. Landscape metrics are 

generally applied to describe landscape patterns at various scales [41]. Based on the mean-

ings of landscape metrics [42], the largest patch index(LPI), patch density (PD), landscape 

shape index (LSI), and aggregation index (AI) were chosen. LPI represented the percent-

age of the largest patch area to the total area of types. The values reflected the intensity 

and frequency of the disturbance. PD reflected the degree of patch fragmentation, as the 

higher the value the more serious the fragmentation of patches. LSI reflected the complex-

ity of patch shape, as the higher the value the more complex the patch shape. AI reflected 

the degree of patch dispersion, as the higher the value the higher the degree of patch ag-

gregation[43]. The landscape metrics were calculated using FRAGSTATS 4.2 (University 

of Massachusetts in Amherst, Amherst, MA, USA). 

2.4. Analysis of Influencing Factors 

Multivariate data analysis techniques, such as principal component analysis (PCA) 

and the logistic regression model (LRM), have been recognized as effective methods for 

analyzing the relationships among voluminous quantities of data [44]. To explore the key 

natural influencing factors for the S. salsa changes, we used mutually complementary 

methods in the analysis. The details are as follows: 

The correlation coefficients of the independent variables were analyzed firstly by the 

Pearson correlation. Then, PCA maximizes the correlations among the original variables 

and forms new variables that are mutually orthogonal or uncorrelated [45]. PCA can re-

duce complex data to a new set of variables, as the number of principal components is less 

than or equal to the number of original variables and provides linear combinations of the 

original dataset after decreasing the number of variables in the dataset. The identification 

and observation of the variation sources is enabled by PCA. In this paper, the correlation 

coefficients of the independent variables are shown in Figure 4. The results show that the 

independent variables were correlated with each other, and the PCA method was neces-

sary to analyze the major influencing factors. The data sufficiency for variable analysis 

was analyzed by the Kaiser-Meyer-Olkin Measure (KMO) and Bartlett’s test of sphericity. 

The results indicated that the KMO test (0.654) value that was larger than 0.5 indicated 

Figure 3. Locations of selected typical regions of interest of S. salsa.

2.3. Analysis of Pattern Fragmentation

Quantifying the dynamics of the S. salsa distributions under natural and anthropogenic
changes is critical for understanding coastal sustainability. Landscape metrics are generally
applied to describe landscape patterns at various scales [41]. Based on the meanings of
landscape metrics [42], the largest patch index (LPI), patch density (PD), landscape shape
index (LSI), and aggregation index (AI) were chosen. LPI represented the percentage of the
largest patch area to the total area of types. The values reflected the intensity and frequency
of the disturbance. PD reflected the degree of patch fragmentation, as the higher the value
the more serious the fragmentation of patches. LSI reflected the complexity of patch shape,
as the higher the value the more complex the patch shape. AI reflected the degree of patch
dispersion, as the higher the value the higher the degree of patch aggregation [43]. The
landscape metrics were calculated using FRAGSTATS 4.2 (University of Massachusetts in
Amherst, Amherst, MA, USA).

2.4. Analysis of Influencing Factors

Multivariate data analysis techniques, such as principal component analysis (PCA)
and the logistic regression model (LRM), have been recognized as effective methods for
analyzing the relationships among voluminous quantities of data [44]. To explore the key
natural influencing factors for the S. salsa changes, we used mutually complementary
methods in the analysis. The details are as follows:
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The correlation coefficients of the independent variables were analyzed firstly by the
Pearson correlation. Then, PCA maximizes the correlations among the original variables
and forms new variables that are mutually orthogonal or uncorrelated [45]. PCA can reduce
complex data to a new set of variables, as the number of principal components is less than
or equal to the number of original variables and provides linear combinations of the
original dataset after decreasing the number of variables in the dataset. The identification
and observation of the variation sources is enabled by PCA. In this paper, the correlation
coefficients of the independent variables are shown in Figure 4. The results show that the
independent variables were correlated with each other, and the PCA method was necessary
to analyze the major influencing factors. The data sufficiency for variable analysis was
analyzed by the Kaiser-Meyer-Olkin Measure (KMO) and Bartlett’s test of sphericity. The
results indicated that the KMO test (0.654) value that was larger than 0.5 indicated adequate
data. The Bartlett’s sphericity test (p < 0.001) showed a high degree of relationship for each
factor, and the data were suitable for further analysis.
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A logistic regression model can be applied to the model and examine the relationships
of several independent variables (Xn) to a dichotomous, single dependent variable (Y),
which indicates the occurrence or nonoccurrence of an event [46,47]. The method yields the
probability in each location based on the influencing factors and quantifies the relationships
among the different degradation conditions and their drivers. In this study, the independent
variables were defined as the natural influencing factors for S. salsa changes. The dependent
variables indicated either disappear or appear. The disappeared area of S. salsa due to the
transition into other land use types was removed because the occupied parts cannot be
restored in the future. S. salsa area was disappeared by natural factors and was discussed
only in logistic regression model. An amount of 630 samples were selected for use in the
logistic regression model. All samples were divided into modeling samples (60%) and
independent test samples (40%); 70% of the modeling samples were randomly selected as
training samples and 30% as verification samples. Five repetitions were carried out, and
the optimal intermediate model was obtained by stepwise regression (α < 0.05). The binary
logistic regression model is conducted as follows:

P(Y = 1) =
e(β0+β1X1+···βnXn+ε)

1 + e(β0+β1X1+···βnXn+ε)
(1)
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where P(Y = 1) is the probability of S. salsa degradation; β0 is the fixed intercept; x1, . . . , xn
are independent variables, which represent the various drivers that influence the changes
in S. salsa; β1, . . . , βn are the coefficients of each independent variable; ε is the error.

The logistic transformation of P (Y = 1) is as follows:

ln
(

P
1 − P

)
= z = β0 + β1X1 + · · ·βnXn (2)

where the P(Y = 1)/[1-P(Y = 1)] values indicate the odds of changes in S. salsa, that is, the
ratio of the probability that Y = 0 to the ratio of the probability that Y = 1.

2.5. Selection on Influencing Factors

The natural factors mainly include both the climate and topography in coastal zones [48].
The selection of the independent variables was achieved from the results of previous studies
and from the results of field surveys, and these variables were temperature, precipitation,
elevation, and salinity stress. Seven variables were selected and are listed in Table 1. The
terrain on the seaward side was constantly silted up in the coastal zone, which resulted in
weak impacts from seawater tidal invasion on S. salsa. The DEM represented the elevation
after sediment deposition in the tidal flat. The distance to the coastline represented the
topographic features and salinity gradients [49–51]. The S. salsa distribution was located
farther away from the coastline, and the salinity and degree of inundation were higher. In
particular, the temperature and precipitation for S. salsa during the germination and growth
stages were focused on from March to May and April to July, which also indirectly affected
the salinity in the study area. The human activities were summarized as occupations,
essentially, the land use types were changed. These were not further analyzed in terms of
their details.

Table 1. List of the variables included in the logistic regression.

Category Variable Description Abbr. Type of Variable

Dependent (Y) 0-Disappear; 1-Appear Dichotomous

Topography Independent(X1) Distance to coastline DISC Continuous
Independent(X2) DEM Elevation Continuous

Climate

Independent(X3) Precipitationmean a year Premean Continuous
Independent(X4) Precipitationmean April to July 4–7 Premean Continuous
Independent(X5) Temperaturemean a year Temmean Continuous
Independent(X6) Temperaturemax a year Temmax Continuous
Independent(X7) Temperaturemean March to May 3–5 Temmean Continuous

3. Results
3.1. Area Changes of S. salsa from 1990 to 2020

The S. salsa areas continued to decrease from 1990 to 2020 in the study area (Figure 5).
The S. salsa areas decreased from 692.93 km2 in 1990 to 51.04 km2 in 2020. Although the
areas with S. salsa have fluctuated in the past 31 years, the overall area has decreased
by 92.63%. Figure 6 shows that the spatial distributions of S. salsa were organized into
three main parts over the past 31 years: the Liao River Delta (Liaoning Province), Yellow
River Delta (Shandong Province), and Hai River Estuary (Hebei Province, Tianjin). The
results showed that the overall trends of the S. salsa areas in the Bohai Bay region were
consistent with the trend of the S. salsa area in the Yellow River Delta (Figure 5). The Yellow
River Delta had the largest S. salsa area in the study area. The S. salsa areas decreased
rapidly by approximately 376 km2 from 1990 to 1996. The changes in the S. salsa areas were
relatively stable during 1997–2004. The decreasing trend has continued until 2020. The
Liao River Delta had the second largest area of S. salsa in the study area, and the S. salsa
area decreased by approximately 96.48 km2 from 1990 to 2000. The S. salsa area increased
by 14.78 km2 from 2007 to 2014, but the area significantly shrank to 8.78 km2 by 2019.
Fortunately, the S. salsa area significantly increased in 2020. For the Hai River estuary, the
maximum S. salsa area was 5.18 km2, and S. salsa has almost completely disappeared since
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1998. Reclamation activities started in the Hai River estuary in 1978, and the development
projects were characterized by few projects but large areas. The landscape patterns of the
Hai River Estuary were transformed by the human utilization of natural wetlands.
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River Delta in 2020, (e) Yellow River Delta in 2020, and (f) Hai River Estuary in 2020.

3.2. Landscape Pattern Changes of S. salsa

Figure 7 shows the S. salsa changes in the landscape pattern metrics in the Bohai Bay
region from 1990 to 2020. The PD values fluctuated slightly and increased by 0.88 times
from 1990 to 2015. However, the PD values increased from 0.62 in 2016 to 4.80 in 2020,
which is an increase of 4.18 times. The AI values of the results fluctuated slightly, which
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showed a declining trend for the patch aggregation level during the study period. Notably,
the lowest AI value was 91.07 in 2016, which indicated that the patch dispersion degree of
S. salsa was significant. The AI values increased slightly, which indicated that the S. salsa
patches exhibited an aggregation trend. The LSI is an indicator that reflects the complexity
of landscape patch shapes. Although the LSI values from 2010 to 2018 were slightly higher
than those in other years, the overall trend of the LSI values was relatively stable. The LPI
values fluctuated significantly in the past several years, which indicated that the S. salsa
patches were disturbed by interference. One of the reasons was restricted the disturbance
of human activities, and the distribution of S. salsa increased when the natural conditions
of its growth was suited in the year. However, the changes of natural factors per year was
very uncertain, which caused the change of LPI values greatly. However, overall trends
demonstrated that the landscape fragmentation of S. salsa had intensified. The landscape
pattern metrics showed that the landscape fragmentation of S. salsa exhibited periodic
fluctuations, but it continued to become fragmented during the study period.
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3.3. Spatial Distributions of S. salsa in the National Nature Reserves

The study area includes the Liao River Delta and Yellow River Delta National Nature
Reserves (NNR), which are the two core areas containing S. salsa distributions. Four phases
of typical changes in S. salsa were analyzed in both National Nature Reserves. In the
Liao River Delta NNR, S. salsa was mainly distributed on both sides of the tidal flat in
the Liao River Estuary (Figure 8a). Until 2000, S. salsa experienced a significant decline
west of the Liao River Delta NNR because the construction of the key water project in
the delta began in 1988 and the development of cultivated land was mostly completed in
2000 (Figure 8b). The S. salsa distributions on both sides of the Liao River Estuary almost
completely disappeared, with the smallest area in 2017, and the habitat suitable for S. salsa
was seriously threatened (Figure 8c). The protection and restoration projects of the “red
beach” in the Liao River Delta have been implemented since 2018. The S. salsa distribution
increased, which was related to the improvement of its habitat in the Liao River Delta NNR
(Figure 8d). In the Yellow River Delta NNR, S. salsa has lost 50 km2 of area in the past
31 years. Many reclamation areas have been added in the north, middle, and south parts of
the delta since 1994 (Figure 8e). Only the S. salsa regions in the NNR of the Yellow River
Delta and west side were not developed, and the remaining areas became reclamation
areas, which caused the S. salsa area to decrease until 2004 (Figure 8f). S. salsa remained
undeveloped only in the Yellow River Delta NNR, which decreased to 86.32 km2 in 2014.
The area actually continued to shrink from 2014 to 2020 (Figure 8g−h). The change rate
of S. salsa was higher outside NNR than inside (Figure 9). The number of years with an
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increasing trend of S. salsa inside NNR was more than that outside. Actually, the human
activities had been controlled effectively inside NNR, and the changes were mainly caused
by the influence of natural factors.
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3.4. Influencing Factors of S. salsa Changes

Natural and anthropogenic factors have impacts on the dynamic changes of the S. salsa
distributions in the study area. The results showed that the decreasing trend of S. salsa was
caused by anthropogenic activities; 348.80 km2 of this area was converted to other anthropic
land use categories, which accounted for 54.34% of the total change. While 293.09 km2

was degraded to bare land, which accounted for 45.66% of the total change (Figure 10).
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The occupation by human activities, which refers to the changes in land use type, was
identified as the main driving factor for the S. salsa changes in the study area. On the one
hand, this occupation contained cultivated land, aquaculture, and construction projects.
The development due to earlier activities directly and indirectly occupied the habitats of
S. salsa. On the other hand, water cycles were cut off by facilities between the sea and land
at the tidal ditch, and the hydrodynamic conditions favorable for the growth conditions
of S. salsa were changed. The natural influencing factors of the S. salsa changes due to
topography and climate will be analyzed in detail in the next section.
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The results show that the seven independent variables were correlated with each
other, and the PCA method was necessary to analyze the major influencing factors. The
eigenvalues for all linear components before and after rotation extraction are depicted
in Table 2. The cumulative variance of the principal components was 89.00%, the first
component explained 71.06%, and 20.60% was explained by the second component. The
most significant principal components for explaining the amounts of variance were the first
and second principal components.

Table 2. Total variance explained.

Component Initial Eigenvalues Extraction Sums of Squared
Loadings

Rotation Sums of Squared
Loadings

Total V* (%) C* (%) Total V* (%) C* (%) Total V* (%) C* (%)

1 4.974 71.064 71.064 4.974 71.064 71.064 4.951 70.730 70.730
2 1.256 17.937 89.000 1.256 17.937 89.000 1.279 18.271 89.000
3 0.727 10.383 99.383
4 0.034 0.481 99.864
5 0.009 0.122 99.986
6 0.001 0.012 99.998
7 0.000 0.002 100.000

V* = Variance C* = Cumulative.

The factor loading values after rotation are vital for explaining the PCA results. The
principal components were rotated to obtain a better understanding and explanation of the
data. Only those components with eigenvalues greater than 1 were recognized as principal
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components, and varimax rotation acted as the criterion. The eigenvalues after rotation are
shown in Table 2. After rotation, the variance of the first principal component decreased by
0.33%, from 71.06% to 70.73%. The variances of the other principal components increased by
0.33%. This result indicated that PC1 is more closely correlated with the variables than the
other components after rotation. As shown in Tables 2 and 3, PC1 explained approximately
71.73%, which had positive loadings (e.g., 0.999 with 4–7 Premean, 0.998 with Premean, 0.998
with Temmax, 0.994 with Temmean, and 0.984 with 3–5 Temmean). PC1 was related to the
reduction of S. salsa due to natural factors. The second factor explained approximately
18.27% of the total variance and had positive loadings with DEM (0.805) and DISC (−0.785).
The climate factors, including precipitation and temperature, were critical for the dynamic
changes in S. salsa.

Table 3. Original and rotated component matrices.

Original Component Matrix Rotated Component Matrix

PC1 PC2 PC1 PC2

4–7 Premean 0.999 0.998
Premean 0.998 0.997
Temmax 0.998 0.997
T35mean 0.994 0.991
Temmean 0.984 0.988

DEM −0.804 0.805
DISC 0.775 −0.785

The logistic regression results are summarized in Table 4 and were significant at the
1% level, which illustrate the joint significance of the variables. The explanation of the
prediction of the regression model was 0.746, which indicated that it accurately predicted
approximately 74.6%. Among the two types of variables, the characteristics of Premean,
4–7 Premean, Temmean 3–5 Temmean, Temmax, DEM, and distance to coastline had significant
impacts on the changes in S. salsa. The contribution rates of the driving factors (Wald) in
order were Tmean, 3–5 Tmean, 4–7 Premean, DISTC, Tmax, Premean, and DEM. The equation of
the model is defined as follows:

P =
e−0.674−23.675X1−0.095X2−0.008X3+82.048X4−0.013X5+3.191X6−0.072X10

1 + e−0.674−23.675X1−0.095X2−0.008X3+82.048X4−0.013X5+3.191X6−0.072X10

Table 4. Logistic regression results of the driving factors for the changes in S. salsa.

Variable Coefficient Std. Error Wald Sig. Exp(B)

DEM −0.095 ** 0.025 14.229 0.000 0. 910
Tmean −0.013 * 0.003 25.219 0.000 0.987
Tmax 3.191 ** 0.779 16.775 0.000 24.306

3–5 Tmean −0.072 ** 0.015 22.672 0.000 0.930
Premean −0.008 ** 0.002 16.760 0.000 0.992

4–7 Premean 82.048 ** 17.670 21.560 0.000 4.293e35
DISC 23.765 ** 5.395 19.404 0.000 2.094e10

B −0.674 0.322 4.377 0.036 0.510
Note: * and ** represent 5% and 1% significance, respectively.

Precipitation, temperature, elevation, and distance to the coastline were considered
to be the major influencing factors for the S. salsa changes. The results showed that the
temperatures in March may have a key impact on the seed germination of S. salsa, but the
annual average temperature had slight effects. The inter-annual variations in precipitation
have fluctuated greatly over the past 31 years. The reductions in rainfall have had an
impact on the estuarine water inflows, and the water conditions for S. salsa growth were
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not satisfied in the tidal flats. Drought, especially during the key sprouting periods (e.g.,
April to June in each year), led to low seedling emergence rates of S. salsa. The terrain
(DEM) was an important factor that influenced the changes in S. salsa distributions. Large
amounts of sediment deposition elevated the topography to a level suitable for S. salsa
growth in the tidal flats, which promoted the growth of most saline vegetation. The distance
to the coastline indicated the salinity, degree of inundation, and tidal influence. These
factors were beyond the tolerance range of S. salsa growth, and S. salsa had no suitable
habitat. S. salsa seeds have a certain degree of tolerance to tides, which are conducive to
their germination in the soil of wetland habitats with complex hydrological conditions.

4. Discussion
4.1. Annual Monitoring Using Landsat Data and the GEE Platform

The feasibility and reliability of the S. salsa maps at a 30-m spatial resolution were
demonstrated by using Landsat TM/ETM + /OLI imagery and the GEE platform. The
overall accuracy and kappa coefficients of the annual S. salsa maps were above 85.50%
and 0.85 (OA > 85.50%, Kappa > 0.85), respectively. In addition, the classification results
obtained from the GEE platform and combined with many field sampling sites as to
improve and verify the accuracy of the S. salsa maps. In this study, the images mentioned
above were selected for the period from August to early November of each year, and
the S. salsa plants showed a significant purplish red color, which had specific spectral
characteristics. All available images were significantly improved in the period used and
effectively distinguished S. salsa from other vegetation types. However, the growth stages
of S. salsa changed quickly every year, and the number of good-quality observations was
limited. To reduce the uncertainties, the number of sampling sites were produced as much
as possible to evaluate the S. salsa maps by combining field surveys, photos, and previous
studies. The results of other studies and results in this study were compared, and it showed
that the results were consistent on the overall change trend of S. salsa. For the Liao River
Delta, the results for the S. salsa areas in Guan’s research were 7.4 km2, 15.34 km2, 18.69 km2,
and 8.41 km2 in 2007, 2009, 2012, and 2016, respectively [52], and the results in our study
were 11.29 km2, 16.68 km2, 20.61 km2, and 9.46 km2, respectively. For the Yellow River
Delta, the S. salsa areas in Liu’s research were 664.29 km2, 277.41 km2, and 196.93 km2

in 1994, 2004, and 2014, respectively [35], and the results in our study were 362.26 km2,
232.88 km2, and 86.32 km2. The differences were mainly caused by the observations of
tide coastline locations, which were visually interpreted from a single no-cloud image for
each period to define the S. salsa regions [4]. Furthermore, the results of S. salsa in this
study were extracted for each year during 1990 to 2020, and the consistency was higher in
continuous time series. The classification method had differences. The results of this paper
used decision tree algorithm, and the algorithm has been widely used and proved to be
systematic and complete so that more fragmented patches were extracted in this study [27].

4.2. Limitations and Future Studies

Occupation by human activities was identified as one of the major factors that affected
the S. salsa distributions in coastal zones [28,53]. The essential effect of these occupations
was only that the land use type was changed by human activities, which blocked the
material and energy exchange between the sea and land and led to shrinkage of the suitable
habitats for S. salsa. Thus, only the natural influencing factors were discussed in detail in
this study. Precipitation and temperature were discussed as the main driving factors of
climate change. Precipitation was one of the main sources for the water conditions necessary
for S. salsa growth. In addition, the increased temperatures affected the evaporation of
water and salinity levels in the tidal flats. Soil water is considered to be another driving
factor for plant vegetation succession, and the soil water levels at different depths serve as a
major source for sustaining the growth of plants and population stability [9,54]. Meanwhile,
most of the sediment deposition led to terrain changes in the tidal-flat areas, and S. salsa
was subjected to inappropriate salinity levels, which resulted in restrictions on S. salsa
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growth. The process of micro-topography influences is actually complex and will be further
analyzed in future works. The dynamic changes in S. salsa distributions and the factors that
affect their changes in this study were studied at the regional scale. Laboratory tests were
not conducted, and it is impossible to further study the effects on seed germination and the
physiological mechanism of S. salsa growth under different conditions. Further analyses of
laboratory tests will be carried out in future studies. The distance to the coastline and the
sea indirectly reflected the changes in the salinity gradient [55], among which the salinity
gradually increased with increasing distance to the coastline. Therefore, the distance to the
coastline was selected to represent the change in salinity. Furthermore, a number of RS
products with higher spatial and temporal resolutions have been applied in recent years,
such as Sentinel-2 and World 3, and annual S. salsa maps with higher accuracies in short
time series will be generated by improving the algorithms.

4.3. Potential Applications for S. salsa Conservation

S. salsa is a dominant species in coastal wetlands and constitutes a natural ecological
barrier in coastal zones [16]. Restoring S. salsa can effectively balance the ecological
environment and curb coastal soil desertification so that the biodiversity, and the sustainable
development of the coastal economy are promoted [56]. In this study, the algorithms, time
series Landsat imagery, and GEE platform could maximize the use of the available images
and have advantages in generating annual maps of other vegetation types to monitor the
dynamic changes in a specified species. In addition, our approach provided a tool for
accurate and objective assessments of the changes in S. salsa at appropriate spatial-temporal
scales, which potentially supported conservation policies and management in long-term
series. It is crucial to understand and protect coastal wetlands [57].

In the detailed analysis, the change of S. salsa distribution has been shrinking [16]. The
occupation activities (e.g., reclamation, aquaculture, and agriculture) and natural changes
had effects on S. salsa distribution [58]. An amount of 54.34% of the total change are related
to the human interference and the impact of policies. The construction projects in the
study area should be appropriately controlled. Actually, the NNR areas played a crucial
role in maintaining the change trend of S. salsa, indicating that trends can be determined
according to the national or regional policy. With the adjustment of the regulations on the
management of NNR areas, human destructive activities are prohibited or restricted. Liao
River Delta and Yellow River Delta NNR have been established since 1986 and 1992 [34],
respectively. The establishment periods of the NNR basically coincided with the temporal
scale we studied. Although the change of S. salsa has fluctuated, it will contribute to
the recovery of S. salsa with the gradual improvement of the NNR management system.
Besides, the notice on strengthening the protection and management of wetlands that was
issued by the General Office of the State Council, as a policy for wetland conservation, has
been promulgated since 2004 (http://www.gov.cn/), and accessed on 1 December 2021.

The protection and restoration of S. salsa is a complex project that must be managed
scientifically and systematically from different perspectives, such as water and salinity
regulation, soil nutrition, and ecological balance [9]. The regions where S. salsa had
previously appeared were determined in our study and were the potential suitable habitats
for S. salsa growth as restoration areas in the future. According to the results of natural
influencing factors, precipitation, temperature, elevation, and distance to the coastline had
an impact on the distribution of S. salsa. Therefore, we put forward measures for these
aspects in ecological restoration processes [59]. Water Diversion Projects can be built to
satisfy freshwater demand and reduce salinity in soil. Fresh water resources can be saved
by adjusting terrain, as such a grid device in the tidal-flat area was built to preserve water,
and this water was irrigated to reduce salinity, which was the potential measures for S.
salsa restoration. The measures mentioned above all had references for coastal wetland
vegetation restoration.

http://www.gov.cn/
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5. Conclusions

S. salsa has significant ecological, ornamental, and socioeconomic values for wetland
vegetation in coastal zones. Monitoring the dynamic changes in S. salsa distributions at the
regional scale is meaningful for coastal wetland conservation. The present study generated
annual S. salsa maps in the Bohai Bay region at 30-m resolution over the last 31 years
by using a decision tree algorithm and time series Landsat data on the GEE platform,
which provided a guideline for evaluating the changes in a specific species at a regional
scale. The spatial-temporal dynamic changes in S. salsa were explored, and the key natural
influencing factors for the changes in S. salsa were analyzed by the PCA method and
logistic regression model. The results showed that the spatial distributions of S. salsa were
organized into three main parts: the Liao River Delta, Yellow River Delta, and Hai River
Estuary. The overall S. salsa area decreased by 92.63%. The landscape fragment of S. salsa
has showed an increasing trend in the past 31 years. The occupation by human activities
that led to degradation accounted for 54.90%, and the remainder of the degradation resulted
from natural influencing factors. Precipitation, temperature, elevation, and distance to the
coastline were recognized as the major factors affecting S. salsa changes. S. salsa, as an
annual herb, has changed rapidly, and the dynamic was monitored difficultly. This study
has demonstrated the potential of the described method for monitoring the dynamic annual
changes in S. salsa in a long-term series. Our annual maps and driver factor analysis are
likely to provide vital information for S. salsa conservation and restoration.
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