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Abstract: Lossy compression of remote sensing data has found numerous applications. Several
requirements are usually imposed on methods and algorithms to be used. A large compression ratio
has to be provided, introduced distortions should not lead to sufficient reduction of classification
accuracy, compression has to be realized quickly enough, etc. An additional requirement could be to
provide privacy of compressed data. In this paper, we show that these requirements can be easily and
effectively realized by compression based on discrete atomic transform (DAT). Three-channel remote
sensing (RS) images that are part of multispectral data are used as examples. It is demonstrated that
the quality of images compressed by DAT can be varied and controlled by setting maximal absolute
deviation. This parameter also strictly relates to more traditional metrics as root mean square error
(RMSE) and peak signal-to-noise ratio (PSNR) that can be controlled. It is also shown that there are
several variants of DAT having different depths. Their performances are compared from different
viewpoints, and the recommendations of transform depth are given. Effects of lossy compression on
three-channel image classification using the maximum likelihood (ML) approach are studied. It is
shown that the total probability of correct classification remains almost the same for a wide range
of distortions introduced by lossy compression, although some variations of correct classification
probabilities take place for particular classes depending on peculiarities of feature distributions.
Experiments are carried out for multispectral Sentinel images of different complexities.

Keywords: remote sensing; lossy compression; discrete atomic transform; image quality control;
privacy protection; image classification

1. Introduction

In recent years, remote sensing (RS) has found various applications [1–4], including
in agriculture [5,6], forestry, catastrophe, ecological monitoring [5], land cover classifica-
tion [6,7], and so on. This can be explained by several reasons. First, a great amount of
useful information can be retrieved from acquired images, especially if they are high reso-
lution and multichannel, which represents a set of component images of the same territory
obtained in parallel or sequentially and co-registered [3,5,6] (using the term “multichannel”,
we mean that component images can be acquired for different polarizations, wavelengths,
or even by different sensors). Second, the situation with RS data value and volume becomes
even more complicated because many modern RS systems can carry out frequent data
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collection, e.g., once a week or more frequently. Sentinel-1 and Sentinel-2 recently put into
operation are examples of sensors producing such large volume multichannel RS data [7,8].
Other examples are hyperspectral data provided by different sensors [9–11].

Then, problems of big data arise [9,10] where efficient transmission, storage, and
dissemination of RS data are several of them, alongside others relating to co-registration, fil-
tering, and classification. In RS data transmission, storage, and dissemination, compression
are helpful [12–15]. Both lossless [12,13,16] and lossy [14,15,17] approaches are intensively
studied. Near-lossless methods have been designed and analyzed as well [18,19]. Lossless
techniques produce undistorted data after decompression, but the compression ratio (CR)
is often not large enough. Near-lossless methods allow obtaining larger values of CR, and
introduced distortions are controlled (restricted) in one or another manner [20]. However,
CR can be still not large enough. In turn, the lossy compression we focus on in this paper
is potentially able to produce CR equal to tens and larger than one hundred [17,21]. This
can be achieved by the expense of distortions where larger distortions are introduced for
larger CR values. A question is what is a reasonable trade-off between an attained CR and
introduced distortions [13,22–25] and how can it be reached?

An answer depends upon many factors:

(1) Priority of requirements to compression, restrictions that can be imposed;
(2) Criteria of compressed image quality, tasks to be solved using compressed images;
(3) Image properties and characteristics;
(4) Available computational resources, preference of mathematical tools that can be used

as compression basis.

Consider all these factors. Compression can be used for different purposes, including
reduction of data size before their downlink transferring from a sensor to a point of
data reception via a limited bandwidth communication line, to store acquired images for
their further use in national or local centers of RS data, and to transfer data to potential
customers [13,23].

First, providing a given CR with a minimal level of distortions can be of prime
importance. Then, the use of efficient spectral and spatial decorrelation transforms is
needed [17,23,24], combined with modern coding techniques applied to quantized trans-
form coefficients. Spectral decorrelation and 3D compression allow exploiting spectral
redundancy of multichannel data inherent for many types of images as, e.g., multi-
spectral and hyperspectral [25], to increase CR [24]. In this paper, we consider three-
channel images combined of visible range components of Sentinel-2 images [25]. The
main reason we consider separate compressions of component images with central wave-
lengths 492 nm (Blue), 560 nm (Green), and 665 nm (Red) of Sentinel-2 data (https:
//www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2, accessed on
27 October 2021) is that they have the equal resolution that differs from the resolution of
most other (except NIR-band) component images (in other words, we assume that Sentinel-
2 images can be compressed in several groups, taking into account different resolutions in
different component images, namely, 10 × 10, 20 × 20, and 60 × 60 m2). Besides, earlier,
discrete atomic compression (DAC) was designed for color images (i.e., for three-channel
image compression).

Second, it is possible that the main requirement is to provide the introduced losses be-
low a given level. “Below a given level” can be described quantitatively or qualitatively. In
the former case, one needs some criterion or criteria to measure the introduced distortions
(see brief analysis below). In the latter case, it can be stated that, e.g., lossy compression
should not lead to sufficient reduction of image classification accuracy (although even in
this case “sufficient” can be described quantitatively). Here, it is worth recalling that consid-
erable attention has been paid to the classification of lossy compressed images [17,26–33]. It
has been shown that lossy compression can sometimes improve classification accuracy or, at
least, the classification of compressed data provides approximately the same classification
accuracy as classification of uncompressed data [34–36]. Thus, if compression is lossy, the
procedures of providing appropriate quality of compressed data are needed [36].

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
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Third, it is often desired to carry out compression quickly enough. In this sense, it
is not reasonable to employ iterative procedures, especially if the number of iterations is
random and depends on many factors. It is worth applying transforms that can be easily
implemented and have fast algorithms, can be parallelized, and so on [12]. This explains
why most efficient methods are based on discrete cosine transform and wavelets [36–39].
Here, we consider lossy compression based on discrete atomic transform (DAT) [40,41]
where atomic functions are a specific kind of compactly supported smooth functions. As it
will be shown below, DAT has a set of properties that are useful in the lossy compression of
multichannel images.

Fourth, there can also be other important requirements. They can relate to the visual
quality of compressed images [26], the necessity to follow some standards, etc. One of
the specific requirements could be the security and privacy of compressed data [42,43].
There are many approaches to providing security and privacy of images in general and
RS data in particular [44–46]. Currently, we concentrate on the problem of unauthorized
viewing of image content. Usually, a processing procedure, which provides both com-
pression and content protection, can be constructed as follows: image is compressed and
afterward encrypted. This approach requires considerable additional computational re-
sources, especially if a great number of digital images is processed. Another way is to apply
a combination of some special image transform at the first step (for example, scramble
technique [46]) with further data compressing. In this case, the following questions arise:
(1) what compression efficiency is provided? (2) is it possible to reconstruct an image
correctly if a lossy compression algorithm is applied? It has been recently shown that
privacy of images compressed by DAT [47] can be provided practically without increasing
the size of compressed files (actually, protection is integrated into compression). This is one
of its obvious advantages that will be discussed in this paper in more detail.

As has been mentioned above, criteria of compressed image quality and tasks to be
solved using compressed images describe the efficiency of compression and applicability
of compressed data for further use. The maximal absolute deviation is often used in charac-
terizing near-lossless compression [19]. Root mean square error (RMSE), mean square error
(MSE) and peak signal-to-noise ratio (PSNR) are conventional metrics used in lossy image
compression [13,26]. Different visual quality metrics are applied as well [48–50]. Criteria
typical for image classification (a total (aggregate) probability of correct classification, prob-
abilities of correct classification for particular classes, confusion matrices) are worth using if
RS data classification is the final task of image processing [51]. There is a certain correlation
between all these criteria, but they are not strictly established yet [52]. Because of this,
it is worth carrying out studies for establishing such correlations. Note that correlations
between aforementioned probabilities and compressed image quality characterized by
maximal absolute deviation (MAD) or PSNR depend upon a classifier used [36,53,54]. In
this paper, we employ the maximum likelihood (ML) method [25,53,54]. This method
has shown itself to be efficient for classifying multichannel data [53–55], its efficiency is
comparable to the efficiency of neural network classifier [36].

We have stated above that image properties and characteristics influence CR and coder
performance. For simpler structure images, the introduced losses are usually smaller than
for complex structure images for the same CR where image complexity can be characterized
by, e.g., entropy (a larger entropy relates to more complex structure images). This means
that compression should be analyzed for images of different complexity and, desirably,
of natural scenes. Besides, noise present in images can influence image compression.
First, noisy images are compressed worse than the corresponding noise-free images [25].
Second, if images are noisy, this should be taken into account in compression performance
analysis and coder parameter setting [18,56]. Since component images in the visible range
of multispectral Sentinel-2 data have a high signal-to-noise ratio (that corresponds to noise
invisibility in case of image visual inspection), we further consider these images noise-free.
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We assume that available computational resources, preference of mathematical tools
to be used for compression are not of prime importance. Meanwhile, we can state that the
DAT-based compression analyzed below possesses high computational efficiency [57].

Aggregating all these, we concentrate on the following:

• DAT is used as the basis of compression and we are interested in the analysis of its
performance since it is rather fast, allows providing privacy of data, and has some
other advantages [40,41,47,57];

• It is worth investigating how compression characteristics of DAT can be varied
(adapted to practical tasks) and how the main criteria characterizing compression
performance are inter-related;

• We are interested in how the DAT-based compression influences classification accuracy
and, for this purpose, consider the classification of three-channel Sentinel-2 data using
the ML method.

Thus, the goal of this paper is to carry out a thorough analysis of DAT application for
compressing and further analysis of multichannel RS images using three-channel Sentinel-2
data. The main contributions of the paper are the following. First, we analyze and show
what versions of DAT are the most attractive (preferable) for the considered application.
Second, we analyze and propose ways to control distortions introduced by DAC. Third, we
study how DAC influences the classification accuracy of RS data and show what parameter
values have to be set to avoid sufficient degradation of classification characteristics.

The paper structure is the following. Section 2 considers DAT-based compression and
its variants, basics of privacy providing. In Section 3, dependencies between the main
parameters and criteria of DAT compression are investigated. Section 4 describes the used
classifier and its training for two test images. Section 5 provides the results of experiments
(classification) for the real-life three-channel image. A brief discussion is given in Section 6.
Finally, the conclusions follow.

2. DAT-Based Compression and Its Properties

Below, we describe the discrete atomic compression that is the DAT-based image
compression algorithm. Then, we consider the procedure of DAT, which is its core, and
quality control mechanism.

2.1. Discrete Atomic Compression

In the algorithm DAC, the following classic lossy image compression approach is
used: preprocessing→ discrete transform→ quantization→ encoding. The application
of DAC to full-color digital image processing is shown in Figure 1. In this case, the input
is RGB-matrix. At the first step, luma (Y) and chroma (Cr, Cb) components are obtained.
Further, each matrix Y, Cr, and Cb is processed separately. The procedure DAT is applied
to them and matrices Ω[Y], Ω[Cr], Ω[Cb] of DAT coefficients are computed. Next, elements
of these matrices are quantized (further, we consider this process in more detail). Finally,
quantized DAT-coefficients are encoded using a lossless compression algorithm. The range
of most of these values is small. Moreover, depending on quantization coefficients choice,
a significant part of them is equal to zero. A combination of the features described provides
effective compression by such algorithms, as Huffman codes, which are often used in
combination with run-length encoding, as well as arithmetic coding (AC) [55]. Consider
this in more detail.

In this research, we apply the algorithm AC to compress bit streams obtained from
quantized DAT-coefficients. Different ways to transform data into bitstream can be used.
For example, the special bit planes bypass is applied in JPEG2000 [37]. In the current
research, we use an approach that is based on Golomb coding [58]. Our proposition is to
apply the following bitstream assignment: 0 ↔ 0, 1 ↔ 10, −1 ↔ 110, 2 ↔ 1110, −2 ↔
11110, etc. In general, the code for 0 is 0, the code for positive k is the sequence of 2k−1 bits
equal to 1 and end-bit 0, the code for negative −k is the sequence of 2k bits equal to 1
and end-bit 0. For example, a binary stream of the sequence {0, 3, 4, −1, −2, 1, 0, 0, 2} is
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0111110111111101101111010001110. In addition, we use row-by-row scanning of the coded
blocks. The choice of such a scan is based primarily on performance reasons, namely, on the
principle of locality, which allows significant speeding up the data processing by effectively
using the features of the memory architecture [59]. Of course, there may be another way to
bypass the blocks, which might provide better compression efficiency.
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The process of reconstructing a compressed image is carried out in the reverse order
to that shown in Figure 1.

We note that the algorithm DAC can be used to compress grayscale digital images. In
this case, the preprocessing step is skipped, and DAT is applied directly to the matrix of
the image processed. After that, DAT-coefficients are quantized and encoded in the same
way as above.

In the next subsection, we consider the procedure DAT in more detail.

2.2. Discrete Atomic Transform

Discrete atomic transform is based on the following expansion:
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integer, N is non-zero constant and the system
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In this research, we use the function up32(x) and N = 2n+1.

From (1), it follows that f(x) = m(x) +
n
∑

k=1
`k(x), where m(x) = ∑

j
υjvn

(
x− 2n+1j

N

)
represents the main value of f(x), i.e., a small copy of the data D, and each function

`k(x) = ∑
j
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(
x− 2k+1j

N

)
describes orthogonal components corresponding to the wavelet

wk(x). The function f(x) is defined by the system of atomic wavelet coefficients Ω =
{
ωkj,υj

}
,

which is equivalent to the description of the discrete data D by Ω. A procedure of atomic
wavelet computation is called discrete atomic transform of the data D (Figure 2). In addition,
the number n is called its depth.
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We note that the depth of DAT can be varied. This means that a structure and, therefore,
result of DAT can be changed.

There are many ways to construct DAT of multidimensional data. Here, we concentrate
on the two-dimensional case, since image processing is considered.

Let D be a rectangular matrix.
The first way to construct discrete atomic transform of the matrix D is as follows: first,

array transform DAT of the depth n is applied to each row of the matrix D and then to each
column of the matrix of DAT-coefficients obtained at the previous step (see Figure 3). We
call this procedure DAT1 of the depth n.
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Consider another approach. First, array transform DAT of depth 1 is applied to
each row of D and then to each column of the resulting matrix (Figure 4). In this way,
a simple matrix transform, which is called DAT2, of depth 1 is built. The matrix of
DAT-coefficients Ω is a result. This matrix has a block structure: the block Ω0,0 contains
a small, aggregated copy of the source data D, all others contain DAT-coefficients of the
corresponding orthogonal layers.
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If we apply DAT2 of depth 1 to the block Ω00, i.e., left upper block, we obtain the
matrix transform, which is called DAT2 of depth 2. In the same way, the matrix transform
DAT2 of any valid depth n is constructed (Figure 5). Such a transform belongs to classic
wavelet transforms that are widely used in image compression [58,60].



Remote Sens. 2022, 14, 125 7 of 35

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 36 
 

 

 
Figure 4. Discrete atomic transform of a matrix: the procedure DAT2 of depth 1. 

If we apply DAT2 of depth 1 to the block 00Ω , i.e., left upper block, we obtain the 
matrix transform, which is called DAT2 of depth 2. In the same way, the matrix transform 
DAT2 of any valid depth n is constructed (Figure 5). Such a transform belongs to classic 
wavelet transforms that are widely used in image compression [58,60]. 

 
Figure 5. Discrete atomic transform of a matrix: the procedure DAT2 of depth n. 

It is clear that DAT1 and DAT2 are significantly different. The output matrices have 
different structures, and their elements have different meanings. For this reason, complete 
information about the matrix transform applied is required in order to reconstruct the 
original matrix D.  

Note that various mixtures of DAT1 and DAT2 can be applied. For example, first, 
DAT2 of the depth 1 can be applied, and then each block of the resulting matrix can be 
transformed by DAT1 (Figure 6). In addition, different combinations of DAT-procedure 
reuse can be applied to blocks of the matrix obtained at the previous step. 

Hence, there is a great variety of constructions of the two-dimensional DAT. We 
stress that any attempt to correctly reconstruct the source matrix D using the given matrix 
of DAT-coefficients Ω  requires huge computational resources if comprehensive infor-
mation about DAT-procedure applied is absent. Moreover, the source matrix can be di-
vided into blocks, each of which can be then transformed by DAT. Notice that this ap-
proach is used in such algorithms as JPEG [61] and WebP [62]. 

 
Figure 6. A mixture of DAT1 and DAT2. 

It is obvious that changes in the structure of DAT affect the DAC efficiency including 
complexity, memory savings, and metrics of quality loss. For this reason, the following 
question is of particular interest: what is the dependence of the DAC compression effi-
ciency on the structure of DAT applied? An answer to this question makes it possible to 

Figure 5. Discrete atomic transform of a matrix: the procedure DAT2 of depth n.

It is clear that DAT1 and DAT2 are significantly different. The output matrices have
different structures, and their elements have different meanings. For this reason, complete
information about the matrix transform applied is required in order to reconstruct the
original matrix D.

Note that various mixtures of DAT1 and DAT2 can be applied. For example, first,
DAT2 of the depth 1 can be applied, and then each block of the resulting matrix can be
transformed by DAT1 (Figure 6). In addition, different combinations of DAT-procedure
reuse can be applied to blocks of the matrix obtained at the previous step.
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Hence, there is a great variety of constructions of the two-dimensional DAT. We stress
that any attempt to correctly reconstruct the source matrix D using the given matrix of
DAT-coefficients Ω requires huge computational resources if comprehensive information
about DAT-procedure applied is absent. Moreover, the source matrix can be divided into
blocks, each of which can be then transformed by DAT. Notice that this approach is used in
such algorithms as JPEG [61] and WebP [62].

It is obvious that changes in the structure of DAT affect the DAC efficiency including
complexity, memory savings, and metrics of quality loss. For this reason, the following
question is of particular interest: what is the dependence of the DAC compression efficiency
on the structure of DAT applied? An answer to this question makes it possible to choose
such a structure of DAT that provides the best results with respect to different criteria.

In [47], DAT1 of the depth 5 and DAT2 of the depth 5 were considered, and it was
shown that they provided almost the same compression ratio with the same distortions
measured by RMSE (actually, only one compression mode of DAC, which provides the
average RMSE = 2.8913, was considered), i.e., a significant variation of DAT structure does
not reduce the efficiency of the DAC. It was proposed to apply this feature in order to
provide protection of digital images.

Further, we compare DAT1 and DAT2. In opposite to [47], in the current research,
a greater number of DAT structures is considered. Moreover, analysis is carried out for
a wider range of quality loss levels. It will be shown that almost the same results can be
obtained using these principally different matrix transforms. In other words, a significant
variation of DAT structure does not significantly affect the processing results. For this
reason, it is natural to expect that other intermediate structures of DAT provide practically
the same compression results.

The following combination of features makes the algorithm DAC a promising tool for
image protection and compression:
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• a great variety of structures of the procedure DAT, which is a core of DAC;
• a possibility to reconstruct the source image correctly if and only if the correct inverse

transform is applied;
• almost the same compression efficiency provided by different structures of DAT.

It is obvious that if DAC is used in some software, a key containing information about
the structure of DAT applied should not be stored in the compressed file in order to provide
protection of image content. If this requirement is satisfied, then a high level of privacy
protection is guaranteed. If unauthorized persons obtain access to file and compression
technology, but do not have the key, then correct content reconstruction requires great
computational resources. Such a hack can be performed with more complication by
encrypting some elements of the file with a compressed image.

Consider some special data structure requirements. Different variants of the matrix
form DAT are based on one-dimensional DAT, i.e., DAT of an array. From functional
properties of atomic wavelets [57], which constitute a core of DAT, it follows that a length
of the source array A should be equal to length(A) = s·2n, where n is a depth of the DAT
and s is some integer. This restriction is called the length condition. If it is not satisfied, then
it is suggested to extend A such that equality holds. We propose to fill extra elements by
values, which are equal to the last element of A. In this case, the extended version of A has
up to 2n − 1 extra elements. When processing the matrix M, its rows and columns should
also satisfy the length condition, defined by the structure of DAT. In order to provide such
satisfaction, it is proposed to add extra columns, each of which coincides with the last
column of M, and after that to add extra rows using the same approach. This provides
a possibility to apply the DAT of any structure to a matrix of any size.

2.3. Quality Loss Control Mechanism

DAC is the lossy compression algorithm. Main distortions occur during the quanti-
zation of DAT-coefficients. It is clear that appropriate coefficients of quantization should
be used. In the standards of some algorithms (for instance, JPEG), the recommended
values are given. However, sometimes developers of software and devices apply their own
coefficients. We stress that loss of quality depends a lot on quantization coefficients. For
this reason, their choice should provide fulfillment of requirements for the quality in terms
of some given metrics.

In [60], a quality loss control mechanism for the algorithm DAC was introduced. It
provides the possibility to obtain the desired distortions measured by maximum absolute
deviation (MAD) often used in remote sensing [22,23]. Basically, this metric is defined by
the formula

MAD = max
i,j

∣∣Xij − Yij
∣∣,

where X =
(
Xij
)
, Y =

(
Yij
)

are the source and reconstructed images, respectively. For the
case of full-color digital images, the MAD-metric is built as follows:

MAD = max
i,j

{∣∣∣X[R]
ij − Y[R]

ij

∣∣∣, ∣∣∣X[G]
ij − Y[G]

ij

∣∣∣, ∣∣∣X[B]
ij − Y[B]

ij

∣∣∣},

where
(

X[R]
ij , X[G]

ij , X[B]
ij

)
,
(

Y[R]
ij , Y[G]

ij , Y[B]
ij

)
are RGB-components of pixels Xij and Yij.

High sensitivity even to minor distortions is a key feature of MAD. Note that if
MAD is small, then quality loss, which is obtained during processing (e.g., due to lossy
compression), is insignificant. If MAD is large, then it means that at least one pixel is
changed considerably. Although, if only several pixels have significant changes of color
intensity, visual quality might remain high, especially when processing high-resolution
images. Hence, MAD-metric should be used as a metric of distortions in the case of
low-quality loss or near lossless compression.

Consider the quality loss control mechanism, which was proposed in [60], in more
detail. It is based on an estimate concerning the expansion (1).
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We start with the transform DAT1 and the case of grayscale image processing. Let D
be a source matrix. Using DAT1, we obtain the matrix Ω that consists of blocks

{
Ωi,j
}n

i,j=0

(see Figure 3). Denote by
{
δi,j
}n

i,j=0 a set of positive real numbers. Consider the following
quantization procedure:

Ψ0,0 = Round
(

Ω0,0

δ0,0

)
, Ψ0,j = Round

(
22j−1Ω0,j

δ0,j

)
for j = 1, . . . , n, (2)

Ψi,0 = Round

(
22i−1Ωi,0

δi,0

)
for i = 1, . . . , n and Ψi,j = Round

(
22(i+j−1)Ωi,j

δi,j

)
for i, j = 1, . . . , n. (3)

It is presented in matrix form. We assume that all operations are applied to each
element of blocks. Using (2), (3), the matrix Ψ =

(
Ψi,j
)n

i,j=0 is computed. In DAC, blocks of
this matrix are encoded using binary AC.

Dequantization is constructed as follows:

Ω̃0,0 = δ0,0Ψ0,0, Ω̃0,j =
δ0,j

22j−1 Ψ0,j for j = 1, . . . , n, (4)

Ω̃i,0 =
δi,0

22i−1 Ψi,0 for i = 1, . . . , n and Ω̃i,j =
δi,j

22(i+j−1)
Ψi,j for i, j = 1, . . . , n. (5)

This procedure provides computation of the matrix Ω̃ =
{

Ω̃i,j

}n

i,j=0
that is further

used in order to obtain D̃, which is a matrix of the decompressed image.
It follows that if (2)–(5) are applied, then

MAD ≤
n

∑
i,j=0

δi,j. (6)

The right part of this inequality is an upper bound of MAD. We denote it by UBMAD.
In other words, the proposed quantization and dequantization procedures provides that
loss of quality measured by MAD is not greater than UBMAD, which is defined by param-
eters of quantization

{
δi,j
}n

i,j=0. As it can be seen, DAT-coefficients corresponding to the
same wavelet layer are quantized using the same quantization coefficient.

When processing full-color digital image, we propose to apply the same approach.

Consider three sets of positive real numbers
{
δ
[Y]
i,j

}n

i,j=0
,
{
δ
[Cr]
i,j

}n

i,j=0
and

{
δ
[Cb]
i,j

}n

i,j=0
. Each

of these sets is used in (2)–(5) for quantizing and dequantizing of matrices Ω[Y], Ω[Cr], Ω[Cb]

of DAT-coefficients corresponding to Y, Cr, and Cb respectively. In this case,

MAD ≤ max

{
n

∑
i,j=0

δ
[Y]
i,j ,

n

∑
i,j=0

δ
[Cr]
i,j ,

n

∑
i,j=0

δ
[Cb]
i,j

}
. (7)

where the right part is a maximum of three values, each of which is a sum of real numbers
introduced above. This maximum is denoted by UBMAD.

Further, consider the transform DAT2, which is used for grayscale image compressing.
A result of the application of DAT2 to the matrix D of the image processed is the matrix Ω
that consists of blocks {Ω0,0, Ωk,0, Ωk,1, Ωk,2}n

k=1 (see Figure 5). Let {δ0,0, δk,0, δk,1, δk,2}n
k=1

be a set of positive numbers. As before, these values are used in quantizing blocks of the
matrix Ω. This procedure is:

Ψ0,0 = Round
(

Ω0,0

δ0,0

)
, Ψk,0 = Round

(
22k−1Ωk,0

δk,0

)
, (8)
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Ψk,1 = Round

(
22(2k−1)Ωk,1

δk,1

)
and Ψk,2 = Round

(
22k−1Ωk,2

δk,2

)
for k = 1, . . . , n. (9)

Dequantization is built as follows:

Ω̃0,0 = δ0,0Ψ0,0, Ω̃k,0 =
δk,0

22k−1 Ψk,0, (10)

Ω̃k,1 =
δk,1

22(2k−1)
Ψk,1 and Ω̃k,2 =

δk,2

22k−1 Ψk,2 for k = 1, . . . , n. (11)

Computation of the matrix Ω̃, which is used in order to obtain the decompressed image, is
provided by (10), (11). Quality loss measured by MAD satisfies the following inequality:

MAD ≤ δ0,0 +
n

∑
k=1

(δk,0 + δk,1 + δk,2). (12)

By UBMAD, we denote the right part of this expression.
In the case of full-color image compression using DAC with DAT2, the same can be used.

Three sets
{
δ
[Y]
0,0,δ[Y]k,0,δ[Y]k,1,δ[Y]k,2

}n

k=1
,
{
δ
[Cr]
0,0 ,δ[Cr]

k,0 ,δ[Cr]
k,1 ,δ[Cr]

k,2

}n

k=1
and

{
δ
[Cb]
0,0 ,δ[Cb]

k,0 ,δ[Cb]
k,1 ,δ[Cb]

k,2

}n

k=1
are applied as parameters of quantization. In order to obtain formulas for quantizing
and dequantizing the matrices Ω[Y], Ω[Cr], Ω[Cb], one should put these values to (8)–(11).
In this case, the following inequality holds:

MAD ≤ max
{
δ
[Y]
0,0 +

n
∑

k=1

(
δ
[Y]
k,0 + δ

[Y]
k,1 + δ

[Y]
k,2

)
, δ[Cr]

0,0 +
n
∑

k=1

(
δ
[Cr]
k,0 + δ

[Cr]
k,1 + δ

[Cr]
k,2

)
,

δ
[Cb]
0,0 +

n
∑

k=1

(
δ
[Cb]
k,0 + δ

[Cb]
k,1 + δ

[Cb]
k,2

)}
.

(13)

Further, the right part of (13) is denoted by UBMAD.
This implies that (2)–(5) in combination with (6), (7) and (8)–(11) in combination with

(12), (13) provide control of quality loss measured by MAD-metric when compressing
digital images by DAC with DAT1 and DAT2, respectively.

It is obvious that (6), (7), (12), and (13) are upper bounds. Application of the proposed
methods of quantization and dequantization does not provide obtaining MAD, which is
equal to the desired value. Nevertheless, the following property is guaranteed: quality
loss measured by this metric does not exceed the given value. This feature is important if
a minor loss of quality is required.

The choice of parameters
{
δi,j
}

or
{
δ
[Y]
i,j , δ[Cr]

i,j , δ[Cb]
i,j

}
, when processing respectively

grayscale or full-color images, defines quality loss settings of DAC. Many lossy compression
algorithms, including DAC, have the following feature: if one fixes some setting of quality
and processes two images of different content complexity, results of non-equal distortions
are usually obtained. Hence, the following question is of particular interest: what is
a variation of compression efficiency indicators? In the next section, we study this question.
Besides, as has been mentioned above, the metric MAD might be a non-adequate measure
of distortions if its value is large. In this case, other quality loss indicators, in particular,
RMSE and PSNR can be used:

RMSE =

√
1

3mn

m,n
∑

i,j=1

((
X[R]

ij − Y[R]
ij

)2
+
(

X[G]
ij − Y[B]

ij

)2
+
(

X[B]
ij − Y[b]

ij

)2
)

,

PSNR = 20 log10
255

RMSE ,

where Xij =
(

X[R]
ij , X[G]

ij , X[B]
ij

)
, Yij =

(
Y[R]

ij , Y[G]
ij , Y[B]

ij

)
are pixels of RGB-images X and Y,

which are respectively the source and the reconstructed images of the size m× n.



Remote Sens. 2022, 14, 125 11 of 35

Further, we investigate the correlation of these metrics and MAD, as well as their de-
pendence on UBMAD. For this purpose, a set of 100 test images is used. Each of them is pro-
cessed using the algorithm DAC with different quality loss settings and structures of DAT.

3. Discrete Atomic Compression of Test Data

In the current research, we used 100 digital images (see Figure 7) of the European Space
Agency (ESA). They were downloaded from ESA official site: https://www.esa.int/ESA_
Multimedia/Images, accessed on 27 October 2021. In addition, these test data are available
at the link to Google-drive folder (here, RGB-images in BMP-format, short information
about them, and tables with results of their processing can be found): https://drive.google.
com/drive/folders/1PSld3GqFQJYfrNs_b4uaxieY4m3AlwW2?usp=sharing, accessed on
27 October 2021. One of the principal features of the test data applied is the presence of
a great number of small details and sharp changes of color (Figure 8a).
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In other words, mostly images with complex content are used. However, some of them
contain domains of relatively constant color in combination with smooth color changes
(Figure 8b).

For testing purposes, it can be used in situ datasets too. These data can be collected
during different land surveys, for example along the roads (Figure 9), and can be especially

https://www.esa.int/ESA_Multimedia/Images
https://www.esa.int/ESA_Multimedia/Images
https://drive.google.com/drive/folders/1PSld3GqFQJYfrNs_b4uaxieY4m3AlwW2?usp=sharing
https://drive.google.com/drive/folders/1PSld3GqFQJYfrNs_b4uaxieY4m3AlwW2?usp=sharing
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useful for crop classification. During data preprocessing, it could be prepared small
polygons, which can be some representation of different homogeneous land cover classes.
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Each of the test images is processed by the algorithms DAC with DAT1 of the depth
5 and DAT2 with the depth n = 1, 2, 3, 4, and 5. Different quality loss settings, which are
defined by the values

{
δ
[Y]
i,j , δ[Cr]

i,j , δ[Cb]
i,j

}
, are used. The following steps are applied:

(1) fix the structure of DAT and its depth in the case of DAT2;

(2) fix parameters
{
δ
[Y]
i,j , δ[Cr]

i,j , δ[Cb]
i,j

}
and compute UBMAD;

(3) for each test image perform the following:

– compress the current image;
– compute compression ratio (CR): CR = size of source file

size of cimpressed file ;

– decompress image;
– compute quality loss measured by MAD, RMSE, and PSNR;
– store results in Table.

In this paper, Tables with the results obtained are not given due to their huge size
(these data are presented in files Efficiency_indicators.pdf, ESA_data_DAT_1.xlsx, and
ESA_data_DAT_2.xlsx, which are available at the link to Google-drive folder https://drive.
google.com/drive/folders/1PSld3GqFQJYfrNs_b4uaxieY4m3AlwW2?usp=sharing, ac-
cessed on 27 October 2021). Further, we present their analysis.

First, we study the correlation of quality loss metrics RMSE, PSNR, and MAD. Since
PSNR is a function of RMSE, it is sufficient to investigate the dependence of RMSE on MAD. In
Figure 10, scatter plots of RMSE vs. MAD are shown. In addition, we have computed Pearson’s
correlation coefficient R and Spearman’s rank-order correlation coefficient ρ [63]. Moreover,
using the least-square method [63], linear regression equations have been constructed. Their

https://drive.google.com/drive/folders/1PSld3GqFQJYfrNs_b4uaxieY4m3AlwW2?usp=sharing
https://drive.google.com/drive/folders/1PSld3GqFQJYfrNs_b4uaxieY4m3AlwW2?usp=sharing
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graphs are also given in Figure 10. In Table 1, values of R, ρ, as well as coefficients a, b of the
linear equation y = ax+ b, where y = RMSE and x = MAD, are presented.
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Table 1. Indicators of correlation of MAD and RMSE for different structures of DAT.

Structure of DAT
Pearson’s

Correlation
Coefficient

Spearman’s Rank
Correlation
Coefficients

Parameters of Linear Regression
Value of Test Statistic

¯
F

a b

DAT1 of the depth 5 0.936 0.940 0.110 0.264 2802.34

DAT2 of the depth 1 0.988 0.985 0.145 0.173 23,608.65

DAT2 of the depth 2 0.963 0.967 0.120 0.285 7624.15

DAT2 of the depth 3 0.965 0.954 0.118 0.272 8181.95

DAT2 of the depth 4 0.960 0.967 0.116 0.270 7172.21

DAT2 of the depth 5 0.948 0.952 0.118 0.222 5292.41

Furthermore, using the ANOVA F-test [64], we have checked whether there is a linear
regression relationship between RMSE and MAD. For this purpose, the following test
statistic has been computed:

F =

n
∑

i=1
(ŷi − y)2

1
n−2

n
∑

i=1
(yi − ŷi)

2
,

where n = 100 is the number of analyzed values, {y1, . . . , yn} is a set of RMSE-values and

y = 1
n

n
∑

i=1
yi; ŷi = axi + b, where a, b are coefficients of linear regression, {x1, . . . , xn} are

values of MAD. Here, we note that the point (xi, yi) is a pair of quality loss values measured
by MAD and RMSE for an i-th test image. In Table 1, values of F are given. This statistic is
compared with F1,n−2 from F-table [64]. Currently, F1,n−2 = 3.865. If F > F1,n−2, then there
is a linear regression between y and x, i.e., RMSE and MAD. It follows from Table 1 that, for
each structure of DAT, there is the linear regression between quality loss indicators MAD
and RMSE. This is also evidenced by the fact that values of both Pearson’s correlation and
Spearman’s rank correlation coefficients are close to 1.

Second, we investigate a dependence of MAD, RMSE, PSNR and CR on UBMAD.
For this purpose, we compute mean (E), minimum, maximum values and deviation (σ) of
these compression efficiency indicators for each value of UBMAD applied. In addition, we
calculate percentage of values obtained that belongs to segments [E− kσ, E + kσ] for k = 1,
2 and 3. In other words, we estimate the scatter of experimental data with respect to the
mean. In Tables 2 and 3, the results of computation are given for the case of DAT1 of the
depth 5 and DAT2 of the depth 2 (the results concerning other cases are presented in the file
Efficiency_indicators.pdf that can be found at the link given above). As it can be seen, the
difference between minimum and maximum is great. For instance, when processing test
images “Southern Bavaria” (Figure 8a) and “Jewels of the Maldives” (Figure 8b) by DAC
with DAT1 and UBMAD = 155, we obtain, respectively, PSNR = 32.854 dB, CR = 2.146 and
PSNR = 42.615 dB, CR = 44.525, which are, respectively, minimum and maximum values of
the correspondent indicators. Nevertheless, percent of values, which belong to segments
[E− σ, E + σ] and [E− 2σ, E + 2σ], is great. Besides, we see that σ is small if UBMAD is
small. Although, σ grows as UBMAD increases.
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Table 2. DAT1 of the depth 5: indicators of compression efficiency.

Indicator
UBMAD

36 63 95 155

MAD

min 8 14 20 30

max 12 20 30 49

mean (E) 9.030 16.890 24.840 38.710

deviation (σ) 0.688 1.154 2.135 4.103

percentage of values in [E− σ, E + σ] 67 81 66 65

percentage of values in [E− 2σ, E + 2σ] 97 98 96 94

percentage of values in [E− 3σ, E + 3σ] 99 100 100 100

RMSE

min 0.972 1.405 1.644 1.887

max 1.210 2.524 3.849 5.806

mean (E) 1.138 2.204 3.098 4.451

deviation (σ) 0.056 0.272 0.500 0.856

percentage of values in [E− σ, E + σ] 77 69 68 68

percentage of values in [E− 2σ, E + 2σ] 93 96 95 96

percentage of values in [E− 3σ, E + 3σ] 100 100 100 100

PSNR, dB

min 46.473 40.090 36.424 32.854

max 48.378 45.180 43.815 42.615

mean (E) 47.017 41.340 38.433 35.343

deviation (σ) 0.444 1.155 1.517 1.856

percentage of values in [E− σ, E + σ] 78 78 70 73

percentage of values in [E− 2σ, E + 2σ] 93 96 94 95

percentage of values in [E− 3σ, E + 3σ] 99 99 99 99

CR

min 1.236 1.595 1.817 2.146

max 4.734 14.326 24.138 44.525

mean (E) 2.269 3.769 4.940 7.376

deviation (σ) 0.633 1.740 2.833 5.297

percentage of values in [E− σ, E + σ] 75 85 90 92

percentage of values in [E− 2σ, E + 2σ] 95 95 96 97

percentage of values in [E− 3σ, E + 3σ] 98 99 98 98

Hence, in the algorithm DAC, there is a mechanism for control of quality loss measured
by MAD, RMSE and PSNR. It does not provide obtaining some values of these indicators,
but it guarantees with high level of certainty that each of them is within fixed limits.

Next, in Figure 11, dependences of the mean value of CR on the mean value of PSNR
for each structure of DAT are shown. We see that curves are close to each other except for
the one corresponding to DAT2 of the depth 1. This means that it is not recommended to
use DAT2 of the depth 1 and that a structure of DAT can be changed without significant
changes of compression efficiency, which is important in the context of privacy protection
requirements (see Section 2.2).
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Table 3. DAT2 of the depth 2: indicators of compression efficiency.

Indicator
UBMAD

7 14 20 25 46 64

MAD

min 5 9 13 15 27 34

max 6 12 17 21 36 52

mean (E) 5.030 10.180 14.480 17.860 31.300 42.360

deviation (σ) 0.171 0.575 0.771 1.005 1.851 2.952

percentage of values in [E− σ, E + σ] 97 70 85 67 74 68

percentage of values in [E− 2σ, E + 2σ] 97 91 99 96 97 97

percentage of values in [E− 3σ, E + 3σ] 97 98 99 99 100 99

RMSE

min 0.704 1.146 1.367 1.405 2.135 3.276

max 0.817 1.543 2.503 3.093 5.194 6.915

mean (E) 0.774 1.452 2.172 2.569 4.043 5.287

deviation (σ) 0.031 0.091 0.278 0.396 0.724 0.873

percentage of values in [E− σ, E + σ] 63 85 69 68 67 66

percentage of values in [E− 2σ, E + 2σ] 96 93 96 96 97 98

percentage of values in [E− 3σ, E + 3σ] 100 99 100 100 100 100

PSNR, dB

min 49.884 44.360 40.158 38.322 33.819 31.334

max 51.179 46.943 45.414 45.172 41.541 37.827

mean (E) 50.356 44.909 41.471 40.046 36.146 33.788

deviation (σ) 0.348 0.571 1.196 1.454 1.668 1.483

percentage of values in [E− σ, E + σ] 64 87 77 72 70 68

percentage of values in [E− 2σ, E + 2σ] 96 93 95 95 95 97

percentage of values in [E− 3σ, E + 3σ] 100 98 99 99 99 100

CR

min 1.210 1.425 1.645 1.754 2.127 2.375

max 4.174 7.829 13.806 16.46 27.301 38.611

mean (E) 2.138 2.909 3.838 4.343 6.484 8.286

deviation (σ) 0.533 0.983 1.624 1.941 3.328 4.659

percentage of values in [E− σ, E + σ] 74 77 80 81 78 79

percentage of values in [E− 2σ, E + 2σ] 96 96 96 96 96 96

percentage of values in [E− 3σ, E + 3σ] 98 98 99 99 99 99
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Finally, we verify the results presented above by processing other test data. In
Figure 12, the test images SS3 and SS4 are shown. Tables 4 and 5 contain results of their
compressing. We stress that we have used the same quality loss settings as when processing
the previous test data set. Figure 13 shows the dependence of CR on PSNR. It follows
that there is no significant difference between results obtained for different structures of
DAT. Furthermore, we see that indicators MAD, RMSE, PSNR, and CR belong to segments
obtained when processing ESA images.
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Figure 12. Test images SS3 (a) and SS4 (b): real life Sentinel-2 images for country-side (a) and city
(b) areas in Kharkiv region, Ukraine.

Table 4. Results of compressing SS3 and SS4 using DAC with DAT1 of the depth 5.

Indicator Image
UBMAD

36 63 95 155

MAD
SS3 10 14 18 29

SS4 8 14 20 41

RMSE
SS3 1.213 2.317 3.025 4.306

SS4 1.222 2.498 3.604 5.198

PSNR, dB
SS3 46.451 40.832 38.518 35.449

SS4 46.389 40.178 36.994 33.815

CR
SS3 2.347 3.906 5.134 8.103

SS4 1.898 2.827 3.529 4.863
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Table 5. Results of compressing SS3 and SS4 using DAC with DAT2 of the depth 2.

Indicator Image
UBMAD

7 14 20 25 46 64

MAD
SS3 5 9 12 15 27 34

SS4 4 9 13 16 29 36

RMSE
SS3 0.814 1.536 2.270 2.617 3.869 4.949

SS4 0.817 1.552 2.460 2.964 4.663 5.919

PSNR, dB
SS3 49.920 44.405 41.009 39.774 36.379 34.240

SS4 49.889 44.311 40.312 38.694 34.757 32.687

CR
SS3 2.242 3.060 4.164 4.840 7.806 10.398

SS4 1.836 2.363 2.987 3.343 4.830 6.047
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4. Considered Approach to Multichannel Image Classification
4.1. Maximum Likelihood Classifier

The process of pixel-by-pixel classification of raster images consists of the distribution
of all pixels into classes in accordance with the value of each of them in one or more zones of
the spectrum. Formally, the task is reduced to the creation of an optimal classifier that maps
a set of observations of class attributes into a set of classes (represented by unique names or
numbers) d(x) : X → A . The optimality criterion is usually understood as the requirement
that when elements x from the observation space X are presented in the classification
process, correct decisions are made as often as possible. Variability of spectral features,
imperfect characteristics of imaging systems, noise, and interference during registration are
sources of stochasticity in decision-making. Since observations X are realizations of random
variables, the transformation d(x) is a random function, the class number also turns out to be
a random variable. Thus, the design of pattern recognition methods is inevitably associated
with the study of random mappings and is based on information-statistical methods for
the formation of feature space, nonparametric estimation of probability densities, and the
adoption of statistical hypotheses.

Statistical recognition methods, in contrast to heuristic ones, allow making mathe-
matically sound decisions taking into account the available a priori information about

the form of distribution f (
→
x ;
→
θ |ak) for all sets of patterns A = {ak} and the probability

of appearance of patterns for each class P(ak). In this case, the values of the attributes of
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the classes are considered as realizations of random variables, and their joint probability
distribution densities are used to describe the etalons of the classes.

All statistical decision rules are based on the formation of the likelihood ratio L

f (
→
x
∗
;
→
θ |au)

f (
→
x
∗
;
→
θ |av)

and its comparison to a certain threshold, the value of which is determined by the selected
criterion. The choice of criterion determines the way of dividing the space of features X into
closed non-intersecting decision-making areas Gk, k = 1, 2, . . . , K, each of which contains
such values of features

→
x ∈ X that are most characteristic (probable) for one of the classes.

Then, each pixel of the image s with spatial coordinates (i, j) is assigned to the class in the
area of which its vector of values

→
x
∗
(i, j) falls.

Complete and detailed knowledge of a priori information is consistent with the
Bayesian approach to classification. The Bayesian classifier provides minimal error rates
and is used to compare the performance of other classification algorithms. In the absence
of information about the prior probabilities of classes and losses associated with making
erroneous decisions, the maximum likelihood criterion is used. Following this criterion, the
vector of values of a current pixel

→
x
∗
(i, j) is alternately substituted into the probabilistic

models of class etalons. The decision is made in favor of the class for which the likelihood
function is maximal:

f (
→
x
∗
;
→
θ |av) = max

1≤k≤K
{ f (
→
x
∗
;
→
θ |ak)} ⇒ s ∈ av.

The results f (
→
x
∗
(i, j)|ak), k = 1 . . . K are compared to each other and the maximum

value of the likelihood function is selected; its number is the number of the class to which

the current pixel s(i, j) belongs. Since, in statistical recognition, the densities f (
→
x ;
→
θ |ak)

are in general not known, their estimates obtained at the stage of training the classifier are
substituted into the decision rule.

Supervised classification procedures (supervised learning) are characterized by the
presence of training samples. When classifying remote sensing data, training samples are
collections of pixels that represent a recognizable pattern or potential class. Usually, these
are some well-defined homogeneous areas in the image, identified based on the true data
on the Earth’s surface.

In the case of nonparametric estimation of the PDF based on the training sample
(N points of the c-dimensional space), it is necessary to restore the form of the a priori
unknown surface fc(

→
x ) in the (c + 1)-dimensional space of features. Difficulties in con-

structing adequate multivariate statistical models are due to the fact that the methodology
of data processing in the presence of correlations is based on the assumption that the
distributions under consideration are normal. At the same time, the distributions of real
multichannel data often have a non-Gaussian form and are determined over a finite inter-
val of admissible values. To approximate such distributions, one can use the multivariate
SB–Johnson distribution

fp(
→
x ) = (2π)−p/2|R|−1/2 ∏

p
κ=1

ηκλκ

(xκ−εκ)(λκ+εκ−xκ)
×,

×exp
[
− 1

2 ∑
p
κ,υ=1 R−1

κυ

(
γκ + ηκ ln

(
xκ−εκ

λκ+εκ−xκ

))(
γυ + ηυln

(
xυ−ευ

λυ+ευ−xυ

))]
,

where ε is the displacement parameter, λ is the scale parameter, η and γ are the parameters
of the distribution shape; R is a correlation matrix.

The disadvantage of the Johnson distribution is the lack of a direct connection between

the estimates of sample moments with the distribution parameters
→
θ = {ε, λ, η, γ}. Meth-
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ods for estimating these parameters for each component of the feature vector are iterative
and are reduced to solving an optimization problem of the form

F(
→
θ ) =

∫
[H(xκ)− f (xκ ;

→
θ )]2dxκ → min,

where H(xκ) is the empirical distribution (histogram) of the kth component.
Based on the results of constructing one-dimensional statistical models of the compo-

nents of the feature vector for each class, it is possible to obtain a matrix of parameters of
a multivariate distribution

Θk = {εκk, λκk, ηκk, γκk}p×4.

The elements of the sample correlation matrix R are found as

R̂κυ =
1

NM ∑N
i=1 ∑M

j=1 zκ(i, j)zυ(i, j),

where z is a normal random variable with zero mathematical expectation and unit variance,
obtained by transforming the original sample x:

z = γ + ηln
(

x− ε

λ + ε− x

)
.

The obtained multidimensional models of class references are used to assign each
analyzed pixel to a particular class based on the values of the likelihood functions.

4.2. ML Classifier Training

To study the effect of the compression procedure on the classification results, we
have taken two multichannel images of 512 × 512 pixels obtained from the Sentinel-2
satellite (Figure 12). It has been assumed that each image contains four classes of objects:
1—Urban, 2—Water, 3—Vegetation, and 4—Bare soil. Based on factual data on the territory
represented in these images (Kharkiv and its environs, Ukraine), relatively homogeneous
fragments of images representing separate classes have been identified. Each of the se-
lected fragments was marked with a conditional color corresponding to a certain class:
Urban—yellow, Water—blue, Vegetation—green, and Bare soil—black. The sets of reference
marked pixels have been divided into two non-overlapping subsets: training and control
(verification) samples.

The marked areas (sets of reference pixels) have been divided into two subsets, which
were used for training and assessing the quality of the classifier (Figures 14 and 15). At the
same time, it has been assumed that these subsets can partially overlap. The volumes of
the training samples have been of the order of (4 . . . 20) × 103 pixels, the volumes of the
verification samples have been several times larger ((7 . . . 50) × 103 pixels).

Figure 16 shows the empirical distributions of spectral features G, B for four classes
of objects on the test image in Figure 12a, and graphs of the densities of Johnson’s SB-
distribution, which approximate them. As one can see, there is a sufficient overlapping of
features in the feature space.
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Figure 15. Three-channel fragments used for classifier training (a) and ground truth map (b) for the
test image in Figure 12b.

After obtaining the reference class descriptions, a pixel-by-pixel classification has been
carried out according to the criterion of maximum likelihood. To assess the reliability of
the classification, control samples have been used. The percentage of correctly recognized
patterns of the kth class Qk was in this case an empirical estimate of the probability of
correct recognition of the kth class Pkk. The estimate of the overall probability of correct
recognition (quality criterion) for unknown (i.e., equiprobable) a priori class probabilities
was determined as

Ptotal =
1
K ∑K

k=1 Qk.
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Figure 16. Histograms of the brightness features B and G for classes on the test image in Figure 12a:
B|Urban (a), B|Water (b), G|Vegetation (c), and G|Bare soil (d).

5. Analysis of Classification Characteristics

Classification accuracy depends on many factors including a used classifier and its
parameters, methodology of its training, image properties, and compression parameters.
The classifier type, its parameters, and methodology of its training are fixed. Two images
of different complexity will be analyzed in this Section. The main emphasis here is on the
impact of compression parameters.

Let us start by considering the simpler structure image (Figure 12a). Let us analyze
more in detail confusion matrices for compression with DAT of depth = 1 for different
MAD values. The obtained results are presented in Table 6.

Analysis of data in Table 6 shows the following. First, classes are recognized with
sufficiently different probabilities. The class Water is usually recognized in the best way al-
though this is not the case for MAD = 16. Variations of the probability of correct recognition
for the class Water (P22) are due to two obstacles.

First, this class has sufficient overlapping of features distributions with other classes
and probability density functions for this class are “narrow” (see Figure 17). Second,
distortions due to lossy compression, in particular, mean shifting for large homogeneous
areas, can lead to misclassifications. This effect is illustrated by two classification maps in
Figure 18. For MAD = 16, there are many misclassifications (the pixels that belong to the
class Water are related to the class Urban and shown by yellow color). The class Urban
is recognized with approximately the same probability of correct recognition P11. The
probability of correct recognition P33 for the class Vegetation does not change a lot. Finally,
the probability of correct recognition P44 for the class Bare Soil changes a little for small
MAD values and sufficiently reduces for the largest MAD = 35.
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Table 6. Probabilities of correct classifications for particular classes depending on image quality.

Class
Urban Water Vegetation Bare Soil

Original (Uncompressed) Image

Urban 0.912 1.71 × 10−4 5.05 × 10−3 0.083

Water 4.39 × 10−3 0.995 7.67 × 10−4 0

Vegetation 0.02 0.056 0.889 0.035

Bare soil 0.294 0 1.57 × 10−4 0.706

Compressed image, MAD = 4

Urban 0.916 1.71 × 10−4 5.39 × 10−3 0.079

Water 0.018 0.972 0.011 0

Vegetation 0.02 0.051 0.902 0.026

Bare soil 0.31 0 7.85 × 10−5 0.690

Compressed image, MAD = 7

Urban 0.921 1.28 × 10−4 5.05 × 10−3 0.074

Water 0.023 0.956 0.021 1.47 × 10−5

Vegetation 0.022 0.048 0.907 0.023

Bare soil 0.32 0 7.85 × 10−5 0.680

Compressed image, MAD = 10

Urban 0.918 8.56 × 10−5 5.48 × 10−3 0.077

Water 0.027 0.954 0.019 2.95 × 10−5

Vegetation 0.022 0.046 0.91 0.022

Bare soil 0.338 0 2.36 × 10−4 0.661

Compressed image, MAD = 16

Urban 0.918 1.71 × 10−4 6.04 × 10−3 0.076

Water 0.155 0.814 0.031 0

Vegetation 0.026 0.045 0.905 0.024

Bare soil 0.335 0 7.85 × 10−5 0.664

Compressed image, MAD = 22

Urban 0.926 1.71 × 10−4 4.67 × 10−3 0.069

Water 0.035 0.945 0.020 0

Vegetation 0.025 0.039 0.925 0.011

Bare soil 0.295 0 0 0.705

Compressed image, MAD = 35

Urban 0.915 2.14 × 10−4 6.76 × 10−3 0.078

Water 0.05 0.935 0.014 1.47 × 10−5

Vegetation 0.038 0.041 0.89 0.031

Bare soil 0.385 0 0 0.615
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Figure 17. Approximated distributions of features (R (a), G (b), and B (c) values) for four classes;
red color curves—Urban, blue color curves—Water, green color curves—Vegetation, and black color
curves—Bare Soil.
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MAD = 16 (b).

Second, since there are overlappings in the feature space, there are misclassifications.
In particular, the pixels belonging to the class Bare Soil are often recognized as Urban and
vice versa. This is not surprising and always happens in RS data classification for classes
“close” to each other.

Third, the total probability of correct classification Ptotal depends on MAD. Being equal
to 0.876 for original images, it occurs to be equal to 0.87 for MAD = 4, 0.866 for MAD = 7,
0.861 for MAD = 10, 0.825 for MAD = 16, 0.875 for MAD = 22, and 0.839 for MAD = 35.
Thus, there is some tendency of reduction of Ptotal with “local variations”.

Let us now consider the results for other depths of DAT. The obtained probabilities
are presented in Tables 7–10.
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Table 7. Probabilities for classes and total probabilities of correct classification for depth 2 and
different MAD.

Classes
Depth_2

MAD_5 MAD_9 MAD_12 MAD_15 MAD_27 MAD_34

Urban 0.917 0.919 0.919 0.919 0.916 0.917

Water 0.967 0.951 0.960 0.965 0.965 0.970

Vegetation 0.902 0.908 0.910 0.910 0.908 0.906

Bare soil 0.690 0.670 0.666 0.680 0.691 0.679

Ptotal 0.869 0.862 0.864 0.869 0.870 0.868

Table 8. Probabilities for classes and total probabilities of correct classification for depth 3 and
different MAD.

Classes
Depth_3

MAD_5 MAD_12 MAD_13 MAD_15 MAD_26 MAD_32

Urban 0.918 0.921 0.919 0.921 0.915 0.918

Water 0.963 0.954 0.955 0.958 0.964 0.936

Vegetation 0.905 0.908 0.909 0.905 0.895 0.895

Bare soil 0.689 0.659 0.663 0.650 0.667 0.649

Ptotal 0.869 0.861 0.862 0.859 0.860 0.850

Table 9. Probabilities for classes and total probabilities of correct classification for depth 4 and
different MAD.

Classes
Depth_4

MAD_5 MAD_11 MAD_14 MAD_20 MAD_29 MAD_42

Urban 0.917 0.919 0.919 0.918 0.918 0.917

Water 0.962 0.953 0.954 0.968 0.957 0.931

Vegetation 0.904 0.907 0.906 0.904 0.893 0.902

Bare soil 0.688 0.659 0.657 0.663 0.663 0.648

Ptotal 0.868 0.860 0.859 0.863 0.858 0.850

Table 10. Probabilities for classes and total probabilities of correct classification for depth 5 and
different MAD.

Classes
Depth_5

MAD_6 MAD_11 MAD_13 MAD_21 MAD_27 MAD_35

Urban 0.917 0.919 0.921 0.919 0.919 0.916

Water 0.964 0.954 0.954 0.966 0.966 0.975

Vegetation 0.904 0.906 0.906 0.902 0.895 0.896

Bare soil 0.681 0.651 0.650 0.674 0.666 0.665

Ptotal 0.866 0.857 0.858 0.865 0.862 0.863

As one can see, probabilities for particular classes slightly vary depending on the
depth of DAT and MAD but not by much. They remain more stable than in the case of DAT
with depth 1. Concerning the total probability of correct classification, its small degradation
with MAD increasing is observed for depths 3 and 4, but reduction can be considered
acceptable, if it does not exceed 0.02.



Remote Sens. 2022, 14, 125 26 of 35

Let us now consider the second real-life test image that has a complex structure
(Figure 12b). Its classification maps for the original image and three values of MAD are pre-
sented in Figure 19. The comparison shows that there are no essential differences between
the classification maps. Another observation is that there are quite many misclassifications
from the Vegetation class to Water (authors from Kharkiv live or work in this region). The
confusion matrix (Table 11) confirms this. Here, it is seen that the class Water is recognized
worse than in the previous case. The class Urban is also recognized worse while the classes
Vegetation and Bare Soil are recognized better than in the previous case. Ptotal equals 0.811.
For comparison, Table 12 gives an example of a confusion matrix for the compressed image.
As one can see, there is no essential difference, at least in probabilities P11, P22, P33, and
P44. Ptotal = 0.787, i.e., noticeable reduction of Ptotal takes place, and it is worth analyzing
probabilities for different MAD values and depths of DAT.
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Table 11. Confusion matrix for original image in Figure 12b.

Class
Probability of Decision

Urban Water Vegetation Bare Soil

Urban 0.645 2.9 × 10−2 9.6 × 10−2 0.230

Water 4.3 × 10−2 0.860 8.7 × 10−2 9.7 × 10−3

Vegetation 4.87 × 10−3 0.052 0.943 1.8 × 10−4

Bare soil 0.160 7.54 × 10−3 3.8 × 10−2 0.795

Table 12. Confusion matrix for the image compressed with DAT of depth 1 with MAD = 11.

Class
Probability of Decision

Urban Water Vegetation Bare Soil

Urban 0.647 0.0249 0.0975 0.2307

Water 0.0534 0.8236 0.1132 9.84 × 10−3

Vegetation 8.71 × 10−3 0.0911 0.90 2.32 × 10−4

Bare soil 0.1729 6.47 × 10−3 0.0425 0.7781

Thus, let us consider data for different depths of DAT and different values of MAD.
They are presented in Tables 13–17. As it follows from data analysis in these Tables, there is
a tendency of reduction of Ptotal if MAD increases. This is especially obvious for a depth
equal to 1. For MAD = 34, the considerable reduction of P22 and P44 takes place.

Table 13. Probabilities for classes and total probabilities of correct classification for depth 1 and
different MAD.

Classes
Depth_1

MAD_4 MAD_7 MAD_11 MAD_16 MAD_25 MAD_34

Urban 0.6469 0.6483 0.6469 0.6488 0.6565 0.6733

Water 0.8424 0.8316 0.8236 0.8201 0.8428 0.6991

Vegetation 0.9058 0.8938 0.9 0.8994 0.8797 0.865

Bare soil 0.7964 0.7849 0.7781 0.7652 0.7526 0.6035

Ptotal 0.798 0.790 0.787 0.783 0.783 0.710

Table 14. Probabilities for classes and total probabilities of correct classification for depth 2 and
different MAD.

Classes
Depth_2

MAD_4 MAD_9 MAD_13 MAD_16 MAD_29 MAD_36

Urban 0.6476 0.6471 0.6479 0.6479 0.6536 0.6603

Water 0.8409 0.8287 0.8247 0.8232 0.8282 0.829

Vegetation 0.9027 0.8952 0.9012 0.8999 0.8951 0.9016

Bare soil 0.7915 0.7827 0.7729 0.7763 0.7844 0.7799

Ptotal 0.796 0.788 0.787 0.787 0.790 0.793



Remote Sens. 2022, 14, 125 28 of 35

Table 15. Probabilities for classes and total probabilities of correct classification for depth 3 and
different MAD.

Classes
Depth_3

MAD_5 MAD_10 MAD_14 MAD_15 MAD_30 MAD_40

Urban 0.6482 0.6459 0.6462 0.647 0.654 0.6528

Water 0.835 0.8246 0.823 0.8237 0.8139 0.8036

Vegetation 0.8997 0.8992 0.9002 0.8996 0.888 0.9109

Bare soil 0.794 0.7809 0.7781 0.7657 0.7651 0.7819

Ptotal 0.794 0.788 0.787 0.784 0.780 0.787

Table 16. Probabilities for classes and total probabilities of correct classification for depth 4 and
different MAD.

Classes
Depth_4

MAD_6 MAD_12 MAD_15 MAD_21 MAD_30 MAD_44

Urban 0.6482 0.6481 0.6501 0.6496 0.6545 0.6707

Water 0.8358 0.8247 0.8204 0.8154 0.8189 0.7712

Vegetation 0.8912 0.8969 0.8975 0.8949 0.886 0.8866

Bare soil 0.7923 0.7759 0.7646 0.7661 0.7775 0.7498

Ptotal 0.792 0.786 0.783 0.782 0.784 0.770

Table 17. Probabilities for classes and total probabilities of correct classification for depth 5 and
different MAD.

Classes
Depth_5

MAD_7 MAD_11 MAD_15 MAD_22 MAD_32 MAD_35

Urban 0.6496 0.6489 0.6505 0.6521 0.6528 0.6668

Water 0.8431 0.83 0.8255 0.8121 0.7986 0.8079

Vegetation 0.9021 0.9017 0.8995 0.8903 0.8854 0.8949

Bare soil 0.7912 0.77 0.7618 0.7704 0.7694 0.7598

Ptotal 0.797 0.788 0.784 0.781 0.777 0.782

The smallest reduction takes place for depth = 2. For other depths, the results for
depths 3, 4, and 5 are, in general, better than for depth = 1, but worse than for depth = 2. For
depth = 2, it is possible to state that classification results are acceptable for all considered
MAD values (even MAD = 36) because Ptotal for compressed images is less than Ptotal for
the original image by no more than 0.03.

Certainly, these two examples are not enough to obtain full imagination of classifi-
cation accuracy of compressed images and give some final recommendations. Besides,
classification results usually depend on a classifier applied. To partly move around these
shortcomings of previous analysis, we have carried out additional experiments for other
Sentinel-2 images of different complexity, the Landsat image, and a neural network classi-
fier. The obtained data are briefly presented below (a more detailed data can be found at
the following link to the Google drive folder: https://drive.google.com/drive/folders/14
m7TLLM7o836yGzJo9NKlaUc9sLsL5VK?usp=sharing, accessed on 27 October 2021).

The experiments have been performed for 512 × 512 pixel fragments of Sentinel-2 and
Landsat images (Figure 20). Table 18 presents the total probabilities of correct classification
for the image in Figure 20, a compressed with depth 2. The three-layer neural network (NN)
classifier has been trained using the same fragments as for the ML classifier. The verification

https://drive.google.com/drive/folders/14m7TLLM7o836yGzJo9NKlaUc9sLsL5VK?usp=sharing
https://drive.google.com/drive/folders/14m7TLLM7o836yGzJo9NKlaUc9sLsL5VK?usp=sharing
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fragments are also the same to provide the correctness of comparisons. Classifiers have been
trained for non-compressed data. The analysis shows that the probabilities are practically
at the same level for all MAD values except the last one where a small reduction of Ptotal is
observed. The classification accuracy for the NN classifier is slightly better but not sufficiently.
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Figure 20. Processed fragments of Sentinel-2 (a,b) and Landsat (c) three-channel images.

Table 18. Total probabilities of correct classification for depth 2 and different MAD for the image in
Figure 20a using ML and NN classifiers.

Classifier
Depth_2

MAD_5 MAD_9 MAD_12 MAD_15 MAD_27 MAD_34

ML 0.869 0.862 0.864 0.869 0.870 0.862

NN 0.878 0.873 0.875 0.880 0.877 0.871

Table 19 gives the results (Ptotal) for the image in Figure 20b. As one can see, the more
complicated structure image is classified worse than a simpler one (compare the data in
Tables 18 and 19). Again, the NN classifier performs a little bit better than the ML one. Finally,
there is a general tendency to reduction of Ptotal if the MAD of introduced losses increases.
Meanwhile, if MAD is less than 30, the reduction of classification accuracy is acceptable.

Table 19. Total probabilities of correct classification for depth 2 and different MAD for the image in
Figure 20b using ML and NN classifiers.

Classifier
Depth_2

MAD_5 MAD_9 MAD_13 MAD_17 MAD_30 MAD_39

ML 0.842 0.836 0.827 0.829 0.821 0.814

NN 0.862 0.850 0.849 0.846 0.846 0.837

Finally, Table 20 presents a part of the results obtained for the Landsat image in
Figure 20c using the ML classifier. The probabilities for particular five classes and the total
probability of correct classification are given. As one can see, the classification results are
quite stable if introduced distortions are not too large (MAD < 20, PSNR > 38 dB), then
a fast reduction of classification accuracy takes place if MAD increases (PSNR decreases).

In addition, in Figure 21, the results of compressing the images given in Figure 20 are
presented. Figure 21a shows almost the same behavior of dependence of PSNR on MAD
for all three images. This means that the dependence of PSNR on MAD depends on image
content only slightly. In contrast, compression efficiency measured by CR significantly
depends on the image content. For instance, the test image shown in Figure 20b has a lot of
small objects and sharp changes of color intensity. As one can see, CR for this image is the
smallest for any value of PSNR considered (Figure 21b).
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Table 20. Total probabilities of correct classification for depth 2 and different MAD for the image in
Figure 20c using the ML classifier.

Classes Original MAD_4 MAD_7 MAD_11 MAD_18 MAD_24 MAD_37

Soil 0.747 0.740 0.741 0.744 0.736 0.695 0.651

Grass 0.812 0.810 0.811 0.810 0.796 0.798 0.343

Water 0.967 0.967 0.970 0.970 0.968 0.967 0.974

Urban 0.989 0.989 0.989 0.989 0.986 0.985 0.982

Bushes 0.812 0.805 0.806 0.807 0.797 0.718 0.701

Ptotal 0.865 0.862 0.863 0.864 0.857 0.833 0.730
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6. Discussion

Below, we discuss the obtained results and present some recommendations concerning
their further applications.

First, computation complexity is of particular interest, especially, when processing
a huge amount of digital images. In [54], it has been shown that computation of DAT-
coefficients is linear in the size of data processed, i.e., time complexity of DAT is O(N),
where N is the number of pixels. However, one specific feature of digital devices and/or
computational systems should be taken into account when applying DAC. In terms of time
expenses, data transferring from one memory part to another (needed in the calculation
of DAT) can take more time than performing arithmetic operations [56]. Note that when
applying DAT of the depth greater than 1, such a transferring is used and the time needed
for it increases if depth becomes larger. For this reason, the use of DAT of the low depth
can be recommended if high performance is required.

Second, it follows from the results obtained in the previous sections that DAT2 of
the depth 2 can be recommended from the viewpoint of the same performance compared
to DAT versions with the larger depth. Since this recommendation is consistent with the
observation for computational complexity, the use of DAT2 with depth = 2 can be treated
as a reasonable practical choice.

In practice, one might need to provide lossy compression of RS data with providing the
desired quality characterized, e.g., by the desired PSNR. In this sense, although inequalities
(7) and (12) are upper estimates, there is a possibility to obtain compressed data with loss of
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quality measured by PSNR, MAD, or RMSE which are close to the desired values. Consider
this, e.g., for PSNR. Let a structure of DAT be fixed. For instance, let DAT1 of the depth 5 or
DAT2 of the depth 2 be chosen. If PSNR = p is desired, then settings of DAC can be found
as follows:

– compute RMSE = r = 255·10−p/20;
– find MAD = (r− b)/a, where a and b are parameters of linear regression y = ax + b,

x = MAD, y = RMSE (here, the values presented in Table 1 can be used);
– find UBMAD, using interpolation methods and data from Table 2 or Table 3 depending

on the structure of DAT.

The value of UBMAD computed defines the settings of DAC. These settings provide
distortions measured by PSNR that, with high probability, belong to an appropriately
narrow neighborhood of p.

The UBMAD can be also found directly, using the dependence of the mean value of
PSNR on UBMAD (see data in Tables 2 and 3). However, the error of providing a desired
PSNR might be greater due to non-linear dependence between these two parameters if
linear interpolation is applied.

In addition, as is mentioned in Section 2.1, any matrix M can be processed by DAT of
arbitrary structure. Although, in this case, if its rows or columns do not satisfy the length
condition mentioned, then application of the extension procedure is required. This leads to
an increase in the number of DAT coefficients. Nevertheless, since atomic wavelets have
zero mean value [57], most extra DAT coefficients are equal to zero. Such data are well
compressed by the proposed coding. When processing images of a high resolution, a wide
variety of the DAT variants can be applied without a significant increase of additional data.
Moreover, if the DAC is considered as a data protection coder, then some increase in the
compressed file size is insignificant.

Besides, it is shown that there is no significant difference in the mean value of CR
provided by DAT1 and DAT2 (except the case of the depth 1) for any distortions measured
by PSNR (see Figure 11). This means that significant variation of the structure of DAT
does not affect significant changes in compression efficiency. Such a result provides the
possibility to achieve both compression and protection.

Finally, the algorithm DAC was compared with JPEG in [40,41,47]. It has been shown
that, on average, DAC provides a higher compression ratio than JPEG for the same quality
measured by PSNR. We note that previously Huffman codes and run-length encoding were
used to compress quantized DAT-coefficients. In the current research, binary arithmetic
coding is applied instead. In [65], it has been shown that such an approach provides better
compression of quantized DAT-coefficients than a combination of Huffman codes with run-
length encoding. Hence, the following statement is valid: on average, the algorithm DAC
with binary arithmetic coding of quantized DAT-coefficients compresses three-channel
better than JPEG with the same distortions measured by PSNR.

Furthermore, the proposed quality loss control mechanism provides distortions mea-
sured by MAD that are not greater than UBMAD, which defines quality loss settings. It
is only this value that can be varied to obtain different quality losses. In Section 3, using
statistical methods, it is shown that there is linear dependence of RMSE on MAD, and
coefficients of linear regression are provided. Hence, a mechanism for controlling the loss
of quality measured by RMSE and PSNR is obtained. This result is of particular importance
since the metric MAD is adequate only if it is small; other metrics, especially RMSE and
PSNR should be used otherwise. Further, inequality MAD ≤ UBMAD is an upper bound.
If the value of UBMAD is fixed, then actual MAD can be significantly smaller than UBMAD.
This feature is shown in Tables 2 and 3. Nevertheless, in these tables, the dependence of the
mean value of MAD (also, RMSE, PSNR, and CR) and its deviation on UBMAD is provided.
Moreover, it is shown that a high percentage of values obtained experimentally belongs to
segments [E − 2σ, E + 2σ], where E is the mean value and σ is deviation. In other words,
the limits of efficiency indicators are obtained for each structure of DAT and each value of
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UBMAD. This provides a possibility to obtain the desired results in terms of MAD, RMSE,
PSNR, and CR.

Finally, we have carried out verification of the proposed approach for some other
three-channel images acquired by Sentinel-2 and then compressed by DAT2 with depth
equal to 2. The obtained results and recommendations are similar to those presented for
the two images used in our research above.

In the future for additional assessment of quality and accuracy of the proposed meth-
ods, it will be useful to deal with more sensitive classification tasks such as different crop
type classification and other applied problems.

7. Conclusions

In this paper, we have analyzed the task of lossy compression of three-channel images
using discrete atomic transform. Two real-life images of different complexity have been
considered. The quality of compressed images has been characterized in different ways:
using MAD and RMSE (or PSNR) and applying probabilities of correct recognition, both
total and for particular classes (ML classifiers have been used).

The following has been demonstrated:

- There are many versions of DAC where compression using DAT2 with depth equal to
2 can be recommended for practical use because of the following reasons: (a) it has
quite low computational complexity; (b) rate/distortion characteristics are better than
for DAC with DAT of depth 1 and practically the same as for DAT with larger depth
values; (c) privacy protection is provided; taken all together, these properties explain
our recommendation.

- Lossy compression based on DAT is controlled by UBMAD but we have got approx-
imations that allow recalculating UPMAD to MAD, RMSE, and PSNR and, thus,
providing the desired quality of compressed images quite accurately and without
iterations; this is a useful property especially if compression should be performed
quickly, e.g., onboard of satellite or airborne carrier with compressing large volumes
of RS data;

- classification results (obtained for ML classifier) for lossy compressed data depend
on image complexity; for the image of low complexity, lossy compression has a low
negative impact on classification accuracy if MAD is less than 35 (PSNR is larger
than about 34 dB); for the image of high complexity, lossy compression for the same
conditions might lead to a reduction of total probability of correct classification by
about 3% that seems to be acceptable for practice.

- DAT-based compression performs better than JPEG, and one of its main advantages is
the possibility of easily providing data privacy.

In the future, we plan to analyze more images and consider other classifiers; besides, we
plan to extend the DAT-based compression to RS data with more than three numbers of channels
and other applied tasks such as crop type classification monitoring of forests cuts, etc.
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