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Abstract: Understanding intra-urban travel patterns is beneficial for urban planning and transporta-
tion management, among other fields. As an emerging travel mode, online car-hailing platforms
provide massive and high-precision trajectory data, thus offering new opportunities for gaining in-
sights into human mobility. This paper aims to explore temporal intra-urban travel patterns by fitting
the distributions of mobility metrics and leveraging the boxplot. The statistical characteristics of
daily and hourly travel distance are relatively stable, while those of travel time and speed have some
fluctuations. More specifically, most residents travel between 2 and 10 km, with travel times ranging
from 6.6 to 30 min, which is fairly consistent with our daily experience. Mainly attributed to travel
cost, individuals seldom use online car-hailing for too short or long trips. It is worth mentioning that
a weekly pattern can be found in all mobility metrics, in which the patterns of travel time and speed
are more obvious than that of travel distance. In addition, since October has more rainy days than
November, travel distances and travel times in October are higher than that in November, while the
opposite is true for travel speed. This paper can provide a beneficial reference for understanding
temporal human mobility patterns, and lays a solid foundation for future research.

Keywords: online car-hailing trajectory data; temporal travel patterns; travel distance; travel time;
travel speed

1. Introduction

In recent years, smart cities have been recognized as a promising research hotspot
around the world [1–3]. The analysis and utilization of big data are key factors to realize
smart cities. More specifically, exploring the spatio-temporal patterns of human mobility
based on multi-source big data plays an important role in analyzing the formation of
social-economic phenomena in smart cities. However, our acquired knowledge is still
very limited for smart cities. For instance, smart cities face some challenging problems,
including mobility pattern analysis, data management, data islands, etc. In this study, we
mainly focus on the first of these challenges.

Nowadays, the analysis and exploration of human mobility patterns have been a hot
research field related to transportation management and urban planning, benefiting from
the ubiquitous intelligent traffic detectors. With the advances in data-acquisition technol-
ogy from traditional surveys to cell phones, wireless network traces, and GPS-equipped
taxis, researchers are able to better understand human mobility patterns. However, these
currently available data are slightly inadequate in terms of data scale, spatio-temporal
coverage, temporal frequency, and positioning accuracy [4]. Consequently, it is difficult
to use these data to explore human mobility deeply and accurately. Therefore, alternative
data sources are needed.
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Recently, as location-sensing devices and apps have become more mature and preva-
lent, online car-hailing platforms (e.g., Uber, Lyft, and Didi Chuxing) have played an
increasingly important role in human daily mobility. As an emerging travel mode, they
generate a large amount of accurate location data, which contain rich and detailed informa-
tion about the travel patterns of individuals and traffic conditions, etc. More specifically,
online car-hailing data are characterized by large-scale, high-resolution and high-quality,
which compensates for the shortcomings of the data mentioned above. Therefore, this
brings about new opportunities and challenges to further understand human travel behav-
ior and intra-urban mobility. With these trajectory data, researchers have achieved fruitful
results in many aspects, such as human mobility [5–8], travel behavior prediction [9], traffic
emissions [10,11], and demand and supply patterns [12]. The related work is detailed in
the following section.

Previous studies have proposed a number of human mobility patterns, such as the
Lévy flight model, power-law, exponential, lognormal, Gamma, Weibull, Pareto and
Rayleigh. At first, the long tail distributions are mainly applied to describe travel time.
Specifically, Jiang et al., Rhee et al., and Zheng et al. observed that the statistical patterns of
human mobility from GPS traces are similar to the Lévy flight model [13–15]. More specif-
ically, a power law distribution (or with exponential cutoff) can be used to approximate
the displacement distribution of human trajectories collected from mobile phones [4,16],
GPS traces [8,17,18], and online location-based social networks [19]. However, Liang et al.
reported that daily travel time tends to be an exponential distribution rather than power
laws [20]. Similar results were also found in Kang et al., Jiang et al., and Yan et al. [21–24].
Cai et al. found that trip displacement of short trips could be best fitted with power-law
distribution, while long trips follow exponential decay [18]. Csáji et al. and Zhang et al.
found that the exponential distribution is not appropriate for travel distances, while the
lognormal distribution provide reasonable fits [5,25]. Tang et al. found that travel speed
distribution has obviously different patterns compared with travel distance and travel time,
and can be well fitted with lognormal distribution [8].

Furthermore, some existing studies found that there is no stable pattern for human
mobility. Zheng et al. found that a fusion function based on exponential power law
and a truncated Pareto distribution represents travel time distribution best [15]. Bazzani
et al. studied the GPS data of private cars in Florence, Italy and found that the single-trip
length follows an exponential behavior in the short distance scale but favors a power
law distribution for trips longer than 30 km [26]. Plötz et al. used Weibull, Gamma, and
lognormal distributions to fit individual daily driving distances, and found that Weibull
and lognormal most often perform better than Gamma, and the Weibull distribution fits
most data but not all [27]. Kou and Cai analyzed the distributions of travel distance and
travel time, and found that both of them follow a lognormal distribution in larger bike
sharing systems, while the distribution for smaller systems varies among Weibull, Gamma,
and lognormal [28].

To the best of our knowledge, the above studies proposed a number of spatio-temporal
human mobility patterns. Although these findings mentioned above can provide a good
foundation and a beneficial reference for understanding human mobility patterns, they are
mostly based on small-scale, low-precision and low-frequency data, which is insufficient to
analyze the human mobility deeply and accurately. Moreover, the mobility patterns may
be different based on various research data. However, based on massive trajectory data
collected from Didi Chuxing in Xi’an, China, will the mobility patterns be different from
those reported in the existing literature? If so, what are the new mobility patterns and how
will they vary? This remains to be further explored. Therefore, this study is indispensable
and can gain valuable insight into human mobility patterns, so as to address some of the
challenges in smart cities.

To address these questions, this paper adopts a two-month dataset collected from
about 18,000 online car-hails to analyze intra-urban travel patterns. Specifically, three
mobility metrics, namely travel distance, travel time, and travel speed, are modeled with
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different distributions at different time granularities (e.g., daily, hourly). Based on the
fitting distributions of mobility metrics, six key points, namely lower limit, first quartile
(Q1), median (Q2), third quartile (Q3), interior upper limit, and extreme upper limit, are
calculated and adopted to present the characteristics of daily and hourly mobility patterns.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
study area, the dataset of online car-hailing, and carries out a basic analysis. Section 3
describes the trip metrics, and presents the fitting results. Section 4 reports the analysis
and discussion of temporal travel patterns. Additionally, Section 5 provides conclusions
and recommendations for further research.

2. Data Collection and Basic Analysis
2.1. Study Area

The research area of this paper is the central urban area of Xi’an, the capital city of
Shanxi Province, China, as shown in Figure 1a. This city has a permanent population of
more than 10 million. In 2020, the city’s GDP exceeded 1 trillion yuan, with the fastest
growth rate among the top 30. Xi’an is the most important city in Northwest China, with
an urbanization rate 74.61%. The spatial location of Xi’an is shown in Figure 1. Xi’an has
developed into an influential international city. The prosperous socioeconomic status of
Xi’an makes it a good choice for analysis of human mobility patterns in China.
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As shown in Figure 1b, the central area of Xi’an, China includes the districts of
Xincheng, Beilin, Lianhu, Yanta, Weiyang, and Baqiao. These six districts are the most
prosperous and oldest districts in Xi’an, where online car-hailing trajectory data are mainly
distributed. Therefore, it is appropriate to choose Xi’an, China as the study area.

2.2. Data Description

The adopted trajectory data were generated by about 18,000 online car-hails in Xi’an,
China, from 1 October 2016 to 30 November 2016. Each trajectory is a sequence of GPS
sampling points with five fields, namely an anonymized vehicle ID (i.e., driver ID), an
anonymized order ID (i.e., trip ID), a timestamp, longitude and latitude. These GPS
sampling points are typically recorded every 2–4 s, which are at an unprecedented spatio-
temporal resolution, thus providing a rich source of data that can be analyzed and directly
mapped to human mobility patterns.

Let Trj
i = (pi,j

1 , pi,j
2 , · · · , pi,j

N) denote the trajectory of the jth trip of vehicle i, where

pi,j
n = (x, y, t)i,j

n is the nth point of the sequence (n = 1, 2, · · · , N). (x, y)i,j
n denotes the
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location and ti,j
n the timestamp, respectively. Given a trajectory, ti,j

1 < ti,j
2 < · · · < ti,j

N . For
a vehicle, the origin and destination (OD) locations are the first and last sampling points
of a trip. It makes sense to define pi,j

O = pi,j
1 and pi,j

D = pi,j
N . Hence, each OD trip can be

simplified to be a vector from pi,j
O to pi,j

D .
A road network consists of a set of nodes, directed links, and allowed movements.

Each node is a geographical location representing a network intersection, which can be
either signalized or non-signalized. A link is defined as the road section from its tail node
to head node. The relative position denotes the ratio of a sampling point relative to the link
tail node, which ranges [0, 1]. For example, the values 0, 0.5, and 1 of the relative position
represent the beginning, middle and end of a link, respectively.

2.3. Data Precessing

In the existing studies, travel displacement and travel time are important mobility
metrics, which can be obtained directly based on the trip’s OD. As another important
mobility metric, travel distance can only be calculated after map matching (MM) and the
path inference algorithm [29]. Moreover, data cleaning is an essential task, because not
all trips are suitable for this study. Considering travel costs, few passengers travel by
online car-hailing when travel time and distance are very short or long [3,9]. In addition,
the average travel speed should be within a reasonable range. Too low speed (e.g., less
than 5 km/h) is beyond the traveler’s psychological tolerance range, while too high speed
(e.g., more than 80 km/h) is not in line with the design requirements of urban roads.
Therefore, the following conditions led to the exclusion of trip records from the study data:
(1) travel distance between origin and destination less than 300 m; (2) travel time less than
1 min or longer than 2 h; (3) average travel speed below 5 km/h or in excess of 80 km/h [6].

In terms of the trips over the course of two months, 6,203,848 trips were obtained from
6,584,397 original trips after data cleaning, which means that about 6% of the trips were
filtered out, as shown in Figure 2a. Daily valid orders fluctuate between 68,967 (the blue
star, 17 October 2016) and 123,642 (the green star, 5 November 2016), with an average
of 102,457. The average order availability is 94.22%, which fluctuates between 93.21%
and 94.85%. More commonly, the study period is discretized into 1464 (24 h*61 days) 1 h
intervals for further analysis of residents’ hourly trips. The hourly trip quantity ranges
from 192 to 8636, as shown in Figure 2b. Overall, the number of trips during the day is
much higher than those at night, which is in line with human mobility. After all, human
mobility during the day is more active and important. In addition, the number of trips
during the period 00:00–7:00 may be less than 2000, but is sufficient for distribution fitting.
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3. Trip Metrics and the Fitting Results
3.1. Trip Metrics

Online car-hailing trajectory data are a very important way of investigating individual
mobility in urban areas. In this section, three metrics, including travel time, travel distance,
and travel speed, are used to explore travel patterns.

Travel distance here refers to the length of the actual path traveled by the OD trip in
road networks. Therefore, it is necessary to calculate this more precise metric instead of
travel displacement. A path is composed of a series of successive links, and its length is the
sum of length of links included in the OD trip. It is worth noting that some vehicles may
not travel through the links where the origin and destination (OD) are located. Based on
the map matching and path inference results, the travel distance dj

i (TD) of the jth trip of
vehicle i is calculated as:

dj
i = (1− ri,j

O ) · di,j
O + ∑M−1

k=2 di,j
k + ri,j

D · d
i,j
D (1)

where M is the number of links included in the trip. ri,j
O and ri,j

D denote the ratio of the

trip OD relative to the link tail node. di,j
O and di,j

D are the link length where the trip OD
are located.

Travel time is another important metric and is closely tied to travel distance. Travel
time means time elapsed from the origin to destination, and is influenced by real-time traffic
conditions, the weather conditions, driver’s driving habits, etc. As an important indicator
to analyze human mobility, travel time reflects the accessibility and traffic conditions. For a
trajectory of the trip j of vehicle i, travel time tj

i (TT) is defined as:

tj
i = ti,j

N − ti,j
1 = ti,j

D − ti,j
O (2)

To understand the relationship between the metrics described above, travel speed is
another important feature. Travel speed vj

i (TS) is defined as:

vj
i = dj

i/tj
i (3)

3.2. Fitting Distribution Selection

The fitting function selection seeks to identify the most appropriate distribution, which
is supported by the actual trip data. Table 1 shows some common probability distribution
functions (PDF) in the existing studies, including exponential, (truncated) power-law,
lognormal, Gamma, Weibull, Burr, and Rayleigh distributions [4,5,7,8,17,22,28,30,31]. The
parameters are optimized by the maximum likelihood estimation (MLE), and detailed
inference can refer to Clauset et al. [32]. Moreover, the formulas for expectation and variance
are also given in the table, which are crucial for the analysis of distribution characteristics.

Table 1. Functions and parameters of some common probability distributions.

Distribution PDF Mean (E(x)) Variance (Var(x))

Exponential f (x; λ) = λ · e−λ·x 1/λ 1/λ2

Power-law f (x; λ, α) = λ · x−α — —
Truncated power-law f (x; λ, α, β) = λ · x−α · e−β·x — —

Lognormal f (x; µ, σ) = 1
x·σ
√

2π
· e(

−(ln x−µ)2

2·σ2 ) eµ+σ2/2 (eσ2 − 1) · e2µ+σ2

Gamma f (x; α, β) = xα−1·e−
x
β

βα ·Γ(α)
α · β α · β2

Weibull f (x; λ, k) = k
λ · (

x
λ )

k−1 · e−( x
λ )

k
λ · Γ(1 + 1

k )
λ2 · [Γ(1 + 2

k )− Γ(1 + 1
k )

2
]

Burr f (x; α, c, k) = c·k
α · (

x
α )

c−1 · (1 + ( x
α )

c)
−(k+1) α·k·Γ(k− 1

c )·Γ(1+
1
c )

Γ(1+k)

α2·k·Γ(k− 2
c )·Γ(1+

2
c )

Γ(1+k) − (E(x))2

Rayleigh f (x; α) = x
α2 · e−

x2

2·α2

√
π
2 · α

4−π
2 · α2
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However, not all of the above distributions apply to the data in this study. In our
previous study [33], daily and hourly data have significant positive skewness. The Bayesian
information criterion (BIC) was employed to select the best-fit distributions, which is a
function of its maximized log-likelihood (Li), the number of estimated parameters (Ki) for
each candidate model i, and sample size (N).

BICi = −2 · ln Li + Ki · ln N (4)

The BIC is on a relative scale. The BIC difference ∆i = BICi − BICmin(BICmin =
min

i∈{1,2,··· ,n}
{BICi}) allows for an immediate ranking of the n candidate models [34]. The

larger the BIC difference for a model, the less probable it is that it is the best model. More
specifically, the Akaike weight wi represents the normalization of the relative likelihood
(i.e., e−∆i/2) of the models.

wi =
e−∆i/2

n
∑

j=1
e−∆j/2

(5)

3.3. The Best-Fit Distribution

It is unrealistic to show the fitting results of three trip metrics in 61 days. Due to space
limitations, only the fitting results of one day with the fewest trips (i.e., 17 October 2016,
see Figure 2a) are shown here. Figure 3 shows the frequency distribution histograms and
the fitting distributions of travel distance, travel time, and travel speed, respectively. It
can be seen that the fitting distributions are quite consistent with the observed frequency
histograms. Based on the shape of these fitting distributions, it can be found that these
data show a significant right skew. In addition, the mean values of three trip metrics are
bigger than the median value (50th percentiles), which also confirms the positive skew
distribution. More specifically, travel distance ranges from 0.3 to 22 km with a mean of
3.84 km, as shown in Figure 3a. Travel distance data are mainly concentrated in the left
half, and 95% of the data cover less than 8.38 km. Compared with travel distance, travel
time distribution has a narrower spread and longer tail, as shown in Figure 3b. The degree
of aggregation for travel time distribution further increased, possibly due to the existence
of extreme values. The maximum travel time is 117.55 min, but more than 99% of travel
time data comprise journeys of less than 40 min, only accounting for one third of Figure 3b.
In comparison, travel speed distribution appears to have the least skewness, and is closer
to normal distribution. The probability of travel speed being below 34 km/h is as high as
95%, and 5% trips have a travel speed of less than 10 km/h. Based on the good fitting of
the least trip data, it can be inferred that a better fit will be obtained for more trip data.
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Most notably, a single distribution cannot fit all the daily and hourly data well,
which means that the distribution types of mobility metrics vary along with day of week
and time of day. Initially, the Gamma distribution performs best among all alternative
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distributions for travel distance, and can uniformly fit all daily data. Then, the Gamma or
Burr distribution can only achieve a good fit in part of the daily travel time or speed data.
For the hourly data, the hourly best-fit distributions vary among alternative distributions.
The Gamma distribution most often performs better than the other four distributions
for both travel distance and travel time, while the Burr distribution performs best for
travel speed.

Although uncertain distribution types exist in daily and hourly data, a dominant
distribution exists in each mobility metric. For example, the Gamma distribution can fit
more than 90% of the hourly travel distance data, and the Burr distribution can achieve a
good fit for 85% of the hourly travel speed data. Further analysis shows that it is feasible to
fit all hourly data with the dominant distribution, respectively. The best-fit distribution of
travel distance and travel time is Gamma distribution, while that of travel speed is Burr
distribution. Detailed analysis and discussion can refer to Shi et al. [33]. Based on this,
travel patterns are further explored.

4. Temporal Analysis and Discussion of Travel Patterns

In this section, based on the above fitting results of trip metrics, we firstly analyze
the distributions of daily trip metrics. Secondly, the distributions of hourly trip metrics,
including travel distance, travel time and travel speed, are discussed in detail, respectively.

4.1. Analysis of Daily Trip Metrics

To understand the temporal travel patterns of daily trip metrics, the boxplot (also
referred to as the box-whisker plot) is adopted to present the characteristics of daily
distributions. The boxplot provides a simple way to summarize a dataset with five points
(here extended to six points), including the lower limit, first quartile (Q1), median (Q2),
third quartile (Q3), interior upper limit, and extreme upper limit. The trip data outside
the interior upper limit are all outliers, where the outliers between the interior upper limit
and extreme upper limit are mild outliers (as shown in the red dots in Figure 4), and those
outside the extreme upper limit are extreme outliers (as shown in the blue plus signs in
Figure 4). Figure 4 shows the distribution shape, skewness, tail weight, and the outliers.
The more the median deviates from the center position of the upper and lower quartiles,
the stronger the distribution’s skewness. The outliers are concentrated on the larger side,
which means the distribution is right-skewed. The percentages of these outliers are shown
in Table 2.

In Figure 4a, the statistic characteristics of daily travel distance are similar with a small
fluctuation. The daily distance metrics have an interquartile range (IQR) of 2.09–5.10 km,
with a median of 3.36 km for travel distance (Figure 4 and Table 2). Overall, 97.84%
(1–2.15%–0.01%) of travel distance data are for trips less than 9.61 km in length. However,
some extreme outliers greater than 14.13 km appear in distance data, only accounting
for 0.01%. In the travel distance data, 2.15% are mild outliers, varying between 9.61 and
14.13 km. Moreover, most residents travel by online car-hailing within 10 km, while for
trips over 9.61 km, only 2.16% of people travel by online car-hailing, probably because of
the high travel cost.

In Figure 4b, it can be seen that the statistics of daily travel times fluctuate to a certain ex-
tent, and the travel time data, except for the National Day holiday, seem to indicate a weekly
routine. From the second week to the seventh week (10 October 2016–27 November 2016),
statistics for travel times on Friday and Saturday appear to be higher than other days of the
week, which requires further analysis. Overall, 50% of travel time data fluctuate between
6.59 and 16.52 min, with a median of 10.81 min. Mild outliers between 31.41 and 46.30 min
only account for 2.74% of the data, while the percentage of extreme outliers higher than
46.30 min is 0.49%. Meanwhile, 96.77% (1–2.74%–0.49%) of travel time data are for trips
less than 31.41 min long, which indicates that most residents tend to use online car-hailing
for short-term trips. Only 3.23% (2.74% + 0.49%) of residents prefer online car-hailing for
long trips, indicating that only a minority do not consider the economic cost, or encounter
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congested road conditions. In addition, 99% of the travel time data are distributed within
48 min (40% of the travel time interval), while extreme outliers occupy more than 60%
of the travel time interval. These phenomena show the value of boxplots in identifying
extreme data.
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Table 2. Mean statistics of the boxplots for three trip metrics.

Distribution TD (km) TT (min) TS (km/h)

Lower limit (max{Minimum, Q1− 1.5 · IQR}) 0.30 1.00 5.00
Lower quartile (Q1) 2.09 6.59 14.94

Median (Q2) 3.36 10.81 19.06
Upper quartile (Q3) 5.10 16.52 23.97

Interior upper limit (Q3 + 1.5 · IQR) 9.61 31.41 37.50
Extreme upper limit (min{Maximum, Q3 + 3 · IQR}) 14.13 46.30 51.04

Mild outliers (Q3 + 1.5 · IQR, Q3 + 3 · IQR] 2.15% 2.74% 2.59%
Extreme outliers (Q3 + 3 · IQR,+∞) 0.01% 0.49% 0.19%
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Moreover, a weekly routine of travel time distributions can also be found in travel
speed distribution, as shown in Figure 4c. Statistics for travel speeds on Friday and Satur-
day seem to be lower than for other days of the week. Overall, 50% of travel speed data
fluctuate between 14.94 and 23.97 km/h, with a median of 19.06 km/h. Vertically, 97.22%
(1–2.59%–0.19%) of travel speed data are for trips with speeds below 37.50 km/h, account-
ing for half of the area in Figure 4c. However, outliers (less than 3%) occupy the remaining
half of the area, while the extreme outliers (0.19%) greater than 51.04 km/h account for
more than 50%. In addition, it should be noted that travel speed on 22 November 2016 is
significantly lower than other days, which may be due to the impact of abnormal weather.
Based on the historical weather data, the only snowfall in the two months occurred on
22 November 2016.

Based on the above statistical analysis, we were able to gain a general understanding
of the residents’ daily travel pattern, but the characteristics of hourly trip data need to be
further analyzed in detail. Meanwhile, due to the extremely low resistance of mean and
variance and susceptible to outliers, they may be not suitable for analyzing the daily and
hourly trip data. The distribution characteristics of each hourly trip metric are analyzed in
the following sections.

4.2. Analysis of Hourly Travel Distance Distribution

The distribution of hourly travel distance statistics is shown in Figure 5a, from which
the hourly and daily travel patterns can be found. Looking vertically from bottom to
top, four statistical values (i.e., the first quartile, the median, the third quartile, and the
interior upper limit) are displayed, and the statistics are represented by different colors.
Meanwhile, it can also be found that the difference between statistical values gradually
increases, from which we can roughly understand the shape and tail weight of hourly
distance distribution. For all the hourly statistics, the medians deviate from the center of
the upper and lower quartiles (Q1 and Q3) and are closer to the lower quartiles, indicating
that the distribution has a strong skewness. Moreover, the large difference between Q3 and
interior upper limit indicates that the long tail is distributed to the right, and it is more
likely to have large outliers.

Horizontally, by observing the hourly and daily distributions in Figure 5a,b, residents
seem to travel with a certain regularity. First, hourly travel distances on different days
have similar trends. For example, hourly travel distances from 0:00 to 7:00 are significantly
higher than those in the remaining periods. This may be because public transportation is
suspended at night, and residents have to choose online car-hailing. As another example,
travel distances for the period 18:00–20:00 are smaller than those of other time periods,
which suggests that people are more likely to take online car-hailing for short trips after
work. Second, travel distances during the National Day holiday are higher than that on
non-holidays, as shown in Figure 5b. People usually travel much further on holidays than
weekdays, which implies that people prefer to go for an outing or other social activities
rather than work on weekends. Third, during the non-holidays, there appears to be a
weekly pattern in the daily distance distribution. For example, in the morning (7:00–11:00),
travel distances on weekends are higher than those on weekdays. The same pattern also
exists in the afternoon (13:00–18:00).

Moreover, travel distances in October are higher than those in November, which may
be caused by National Day holiday and rainfall. In general, residents often change their
travel mode on rainy days, such as switching short trips by bike or on foot to taxis or online
car-hailing. From the perspective of each hour, travel distances in the working period
(10:00–12:00, 14:00–18:00) are significantly higher than that of other periods between 8:00
and 20:00.
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Figure 5c shows the average hourly travel distance statistics for all 61 days. Based on
the hourly statistics, the obvious positive skewness and long tail can be found. Half of the
residents travel between 2.15 and 5.14 km, with a median of 3.43 km. In addition, 22.69%
of residents travel further, but not more than 9.61 km. However, only 2.24% of residents
travel further, reaching 13.80 km, which are accepted as mild outliers. Those who travel
further, regardless of travel costs, account for just 0.08%. Thus, mild outliers and extreme
outliers can be distinguished well, which may reflect the travel patterns of the minority.

To sum up, hourly travel distance can reflect human travel patterns more clearly and
accurately. We note that more than 97% of trips are within 10 km in all the studied datasets,
and 75% of trips are about 5 km long. This is fairly consistent with our daily experience.
Mainly attributed to travel cost, individuals seldom use online car-hailing for long distance
trips. People usually prefer the subway and other public transportation systems for longer-
distance travel. However, long-distance trips using online car-hailing do happen for many
reasons, such as rushing to catch flights or trains, or returning from airports or train stations
after an exhausting trip, especially when carrying large or heavy luggage.

4.3. Analysis of Hourly Travel Time Distribution

Travel time is another fundamental variable that explores travel patterns. In Figure 6,
we can find a few typical travel patterns. First of all, hourly travel times are mainly
distributed in the left side of the distribution and are concentrated in a very narrow time
interval. The hourly travel times have an IQR of 5.05 min–11.70 min, with a median of
7.91 min for the period 21:00–7:00 and an IQR of 7.14–17.58 min with a median of 11.58 min
for the period 7:00–21:00. Nevertheless, for trips within 10 min, individuals are most likely
to choose online car-hailing. Overall, 22.68% of travel times fall within the interior limit
with an interval length of 10 min at night and 15 min during the day, which is 50% higher
than the corresponding IQR. The outliers of travel time data account for 2.32%, indicating
a few residents use online car-hailing for long trips.

Secondly, the morning and evening peaks can be clearly found in daily travel times and
the median distribution of hourly travel times. Moreover, the evening peak is significantly
higher than the morning peak, as shown in Figure 6a,b. There is also an occasional peak
during the period 10:00–12:00, followed by a two-hour trough. In addition, travel time
during the day is significantly higher than that at night, which is consistent with our
daily experience.

Thirdly, the National Day holiday presents some different travel patterns. Travel times
gradually increase from 9:00 and continue until 22:00, during which there are no obvious
peaks and troughs. On the one hand, this suggests that people can travel more freely, rather
than during rush hours on weekdays. On the other hand, people can more leisurely choose
when to start or end the activities, because there is no concern about work or study.

Finally, an obvious weekly pattern can be found in Figure 6a,b. Most weekday trips
start at 7:00, while people usually travel at around 10:00 on weekends. Moreover, similarly
to holidays, travel times in the morning and evening rush hours are much lower than
those on weekdays, or there are even no rush hours. Furthermore, several excessively high
evening peaks in October show the potential impact of rainfall on travel.

4.4. Analysis of Hourly Travel Speed Distribution

This study also takes into consideration the relationship between travel distance and
travel time, which implies the level of urban traffic conditions more deeply. Comparing
Figures 6 and 7, we can find that hourly travel time is inversely proportional to travel
speed, but travel speed can more directly reflect urban traffic conditions. The median of
hourly travel speed is very close to the midpoint of the IQR in Figure 7a. Furthermore, the
median and mean almost coincide, as shown by the solid blue line and the black dotted
line in Figure 7c. This indicates a decrease in the skewness of hourly speed distribution.
Meanwhile, after converting travel time to travel speed, the average skewness and kur-
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tosis decrease from 1.4952 and 8.9546 to 0.6945 and 4.3186, respectively, which further
demonstrates that hourly speed distribution is similar to normal distribution.
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In addition, the daily evening rush hour during non-holidays starts at 17:00 and lasts
until 19:00, as shown in Figure 7a,b. Then, the traffic condition eases and travel speed
gradually increases until it reaches its highest value before dawn. This is in line with the
law of human activities. As the night spreads, individuals will finish their activities and go
home to rest, so the traffic condition is improved. When the morning comes, travel speed
gradually decreases with human activity recovery, and then increases slightly at noon. In
the afternoon, the traffic conditions are relatively stable and deteriorate at 17:00. Based
on the above analysis, 6:00 can replace 24:00 as the new boundary for future analysis of
human mobility patterns. With the prosperous development of society and the economy,
human activities are more abundant and frequent. These activities usually last until night
to early morning, especially on weekends and holidays.

Moreover, the weekly routine in hourly travel times also exists in the hourly travel
speeds, as shown in Figure 7b. In the morning, travel patterns on holidays and weekends
are markedly different from those on weekdays. Most personal trips are postponed from
7:00 to 10:00. As can be seen from Figure 7b, travel speed in October is lower than that
in November, which may be caused by National Day holiday and rainfall. According to
statistics, there are 14 days and 10 nights in October with rain, while there are only 3 days
and 4 nights in November with rain or snow. In addition, Figure 7b shows the impact
of snowfall on traffic conditions in more detail. Travel speed on 22 November 2016 is
significantly lower than other days.

Figure 7c shows the average hourly travel speed statistics for all 61 days. The hourly
travel speeds have an IQR of 15.88–23.88 km/h, with a median of 19.63 km/h for the period
7:00–24:00, while these statistics for the period 00:00–7:00 are about 60% higher, namely
26.05 km/h, 36.52 km/h and 31.13 km/h, respectively. In addition, 22.73% of travel speeds
fall between the upper quartile and the interior upper limit, with a mean interval length
of 12.93 km/h, which is 50% greater than that of the corresponding IQR (8.62 km/h). The
mild outliers of travel speed data account for 2.17%, indicating that a few lucky residents
travel at high speeds. Moreover, the extreme outliers (0.10%) mean fewer residents travel
at higher speeds.

5. Conclusions

In this paper, we use the trajectory data collected from Didi Chuxing in Xi’an, China
to explore the temporal characterizations of intra-urban human travel patterns. Specifically,
by analyzing distributions of three mobility metrics (i.e., travel distance, travel time, and
travel speed), this study reveals that the trajectory data of online car-hailing can provide
useful insights into residents’ mobility patterns. The main contributions of this paper are
summarized as follows.

Firstly, the mobility patterns are different from statistical characteristics found in
existing studies. Uncertain distribution types exist in the daily and hourly data, while
the dominant distribution exists in each mobility metric. To be specific, the daily and
hourly travel distance and travel time have a similar distribution, and can be approximated
by Gamma distribution. However, travel speed distribution is quite different and more
complicated, which tends to be Burr distribution.

Secondly, the statistical characteristics of the daily travel distance are similar, with a
small fluctuation. The daily travel distance has an interquartile range (IQR) of 2.09–5.10 km,
with a median of 3.36 km. About 98% of the travel distance data are for trips less than
10 km. In addition, for daily travel time and speed, the statistics fluctuate to a certain extent,
and seem to be a weekly routine. More specifically, 50% of the travel time data fluctuate
between 6.59 and 16.52 min, with a median value of 10.81 min, and about 97% of residents
travel less than 30 min. Moreover, 50% of travel speed data represent speeds lower than
19 km/h, and only 25% of residents travel faster than 24 km/h.

Thirdly, a weekly pattern is more obvious in hourly mobility metrics, especially travel
time and travel speed. Meanwhile, the diurnal statistics of hourly travel distance and travel
speed are significantly smaller than those of other periods, while the opposite is true for
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travel time. In addition, the National Day holiday presents some different travel patterns.
Travel times gradually increase from 9:00 and continue until 22:00, during which there
are no obvious peaks and troughs. These results provide empirical evidence supporting
the common regularity of intra-urban human mobility. Finally, rainfall and snowfall have
a potential impact on residents’ travel patterns. Since October has more rainy days than
November, travel distance and travel time distributions in October are higher than those in
November, while the opposite is true for travel speed. In general, residents often change
their travel mode on rainy days, such as switching short trips by bike or on foot to taxis or
online car-hailing. Furthermore, several excessively high evening peaks in hourly travel
time distributions also indicate the impact of rainfall on traffic conditions. In addition, the
travel speed on 22 November 2016 is significantly lower than other days, indicating the
impact of snowfall on traffic conditions.

Nevertheless, there are also several limitations in the current work, deserving further
study. First, the adopted data are slightly outdated. With the acquisition of the fresh
data (August 2020) in Shenzhen, China, we can update the data in the following research.
Second, this study only analyzes temporal mobility patterns, ignoring spatial human
mobility patterns. Additional research is needed to identify the spatio-temporal mobility
patterns. Third, potential travel purpose analysis (i.e., going to work, going to dinner,
recreational activities, hospital visits, shopping) is needed, which may help to express more
interesting findings. Last but not least, human mobility patterns with respect to weather
conditions, holidays, weekdays and weekends need further research.
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