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Abstract: The global precipitation measurement mission (GPM) has been in operation for seven
years and continues to provide a vast quantity of global precipitation data at finer temporospatial
resolutions with improved accuracy and coverage. GPM’s signature algorithm, the integrated
multisatellite retrievals for GPM (IMERG) is a next-generation of precipitation product expected
for wide variety of research and operational applications. This study evaluates the latest version
(V06B) of IMERG and its predecessor, the tropical rainfall measuring mission (TRMM) multisatellite
precipitation (TMPA) 3B42 (V7) using ground-based and gauge-corrected multiradar multisensor
system (MRMS) precipitation products over the conterminous United States (CONUS). The spatial
distributions of all products are analyzed. The error characteristics are further examined for 3B42 and
IMERG in winter and summer by an error decomposition approach, which partitions total bias into
hit bias, biases due to missed precipitation and false precipitation. The volumetric and categorical
statistical metrics are used to quantitatively evaluate the performance of the two satellite-based
products. All products show a similar precipitation climatology with some regional differences.
The two satellite-based products perform better in the eastern CONUS than in the mountainous
Western CONUS. The evaluation demonstrates the clear improvement in IMERG precipitation
product in comparison with its predecessor 3B42, especially in reducing missed precipitation in
winter and summer, and hit bias in winter, resulting in better performance in capturing lighter and
heavier precipitation.
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1. Introduction

Reliable precipitation data are critical for a wide variety of applications such as
water budget studies and prevention or mitigation of natural hazards caused by extreme
precipitation events. Precise precipitation measurements are always a challenge because of
its large spatiotemporal variability and inherent errors of various measuring instruments.
Traditional rain gauges provide direct rainwater measurements, and often serve as the
reference for validation of radar- and satellite-based precipitation products [1–5]. However,
gauges can only make what are essentially point-measurements at a specific site. The areal
distribution of rain gauge networks is usually sparse, irregular, incomplete, and therefore
insufficient for accurately describing the spatial variability of precipitation [1,3]. Ground-
based weather radars estimate precipitation from reflectivity measurements over relatively
large areas. The implementation and retrofitting of dual-polarization to many new weather
radars leads to a more accurate precipitation estimation [6,7]. However, the radar networks
are mostly deployed over continents only, not dense enough over most parts of the world
over land and provide little coverage over oceans. In addition, the radars suffer from
various sources of problems, such as beam blockage in mountainous regions [1,5]. In
contrast, remote sensors from Earth observation satellites have been utilized to address the
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problem of comprehensive precipitation coverage because of their wide and continuous
coverage of regional and global precipitation [1,8].

Since the launch of the tropical rainfall measuring mission (TRMM) satellite, satellite
remote sensing-based precipitation products have matured [8]. Among them, TRMM multi-
satellite precipitation analysis products (TMPA) [9], and its global successor, the integrated
multisatellite retrievals for global precipitation measurement (GPM; IMERG) [10], have
been widely used due to their relatively high accuracy and applicability [9–13]. However,
satellite-based products are not immune from various sources of systematic biases and
random errors [12–15]. The evaluation of satellite precipitation products is vital to identify
the strength, as well as weakness, improve the accuracy, and ultimately advance their use
for a variety of applications.

NASA GPM ground validation (GV) routinely conducts verification for various
satellite-based products. Petersen et al. [12] provided an overview of the structure and activ-
ities associated with the NASA GV efforts, and examples of IMERG verification. As a spin
up to full GPM GV efforts, Wang et al (2014) compared Version-7 TMPA 3B42 and nearly
one-month prelaunch “test-version” IMERG rain estimates with ground radar product and
found three products were generally in good agreement [16]. Gebregiorgis et al. [17] evalu-
ated the Version 3 (Day 1) Late Run IMERG product and highlighted the improvements of
IMERG upon the real-time TMPA product with reduced missed-rain and false-rain bias,
and increased hit rate. A number of these evaluations have found the overall improved
performance of GPM IMERG products over the TMPA 3B42 predecessor [13,18–21]. Im-
portantly, the IMERG performance has also been noted to vary significantly spatially and
seasonally [19–26]. For example, Chen and Li [22] found that the IMERG performance was
poor in winter, especially over North China. Murali Krishna et al. [23] showed that both
IMERG and 3B42 products underestimated the observed rainfall over the Indian subconti-
nent. More recently, Moazami and Najafi [25] demonstrated that IMERG performed better
over most parts of interior plains across Canada but overestimated the moderate to heavy
precipitation events. More comprehensive validation is still necessary to better understand
regional and seasonal uncertainties in satellite-based precipitation products.

The TMPA products ended on 31 December 2019 after its successor product IMERG is
retrospectively processed to the start of TRMM [27]. The time overlap for both products
provides an opportunity to investigate the performance of the new IMERG products
compared to the TMPA. Since the IMERG V06B were newly released recently, few studies
have used it to conduct the research for the transition in multisatellite products from TMPA
to IMERG, especially in the long-term and in different seasons.

This study describes one of the NASA GPM GV efforts. The final version of TRMM
3B42 (V7) and latest version of GPM IMERG (V06B) are evaluated using the ground-
based and gauge-corrected multiradar multisensor system (MRMS) precipitation products
filtered with radar quality index (RQI) over the conterminous United States (CONUS).
Due to its diverse physiographic and meteorological features, and relatively dense and
well-maintained gauge and weather radar networks, CONUS is one of the best regions in
the world for the satellite precipitation product validation.

The paper is structured as follows. Section 2 describes the study domain, and satellite-
based and ground-based products. Section 3 presents the methodology and statistical
metrics. In Section 4, comparisons are presented through four subsections. The discussion
and conclusions are provided in Section 5.

2. Data
2.1. Study Domain

Figure 1a shows the study domain with land and ocean mask. We limited the study
domain to land only because of a lack of rain gauges and radar coverages over the ocean,
dwindlement of radar data utility with range along the coastal oceans (Figure 2), and the
significant errors in satellite retrievals due to beam filling effects of part land and part water.
A land/ocean mask (Figure 1a) at 0.25◦ resolution is constructed from the GPM Microwave
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Imager footprint surface type data over the latitude/longitude box region enclosed by
(125–65◦W, 25–50◦N). Here we define “land” as lands, lakes, rivers and other inland waters.
All others are defined as “Ocean” and excluded in the analysis.
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Figure 2. Maps of mean RQIs from three winters (DJF) and five summers (JJA) during the 55-month period (June 2014 to
December 2015, June 2016 to July 2017, and March 2018 to December 2019).

Climatologically, precipitation features in CONUS vary with latitude and topography.
Generally, it is wetter in the southeast and along the West Coast, but drier in the north and
west. Based on Köppen–Geither climate classification, CONUS is typically classified into five
main climate regions: A—tropical climates, B—dry climates, C—moist subtropical mid-latitude
climates, D—moist continental mid-latitude climates, and H—highlands (Figure 1b).

2.2. TRMM 3B42

TMPA is a 3-hourly precipitation product with a spatial resolution of 0.25◦ in latitude
and longitude, covering from 50◦S to 50◦N [9]. The product record started from 1 January
1998 when TRMM data became available, and for continuity, continued into the GPM era
even after TRMM terminated, and ended on 31 December 2019 when IMERG product was
regarded as its substitute [27].

TRMM 3B42 combines measurements from different platforms onboard multiple
satellites. The passive microwave precipitation estimates are intercalibrated to the TRMM
combined instrument (TCI) product, and finally adjusted with rain gauge data on a monthly
basis. The intercalibration was changed from TCI to a climatological calibration starting
with the data from October 2014 because of the end of the TRMM satellite mission. This

https://www.weather.gov/jetstream/climates
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created at least a slight inhomogeneity, primarily over the oceans [27]. The inhomogeneity
over land should be minimized by the gauge adjustment [28].

2.3. GPM IMERG

As a global successor to TMPA, the newly released version 06B IMERG is a multi-
satellite precipitation product at fine spatial (0.1◦) and temporal (0.5-h) resolution with
global coverage. The National Aeronautics and Space Administration (NASA) precipita-
tion processing system (PPS) generates IMERG by combining passive microwave (PMW)
and infrared (IR) observations from the GPM constellation satellites and calibrated with
gauge analysis of the Global Precipitation Climatology Centre (GPCC) [29]. IMERG is a
unified U.S. national algorithm [10], which combines the strengths of several products
including: (1) NASA TMPA for intersatellite calibration and gauge adjustment [9], (2) the
National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center
(CPC) morphing technique with Kalman filter (CMORPH-KF) for time interpolation of
PMW-based estimates [30], and (3) the University of California (Irvine) precipitation estima-
tion from remotely sensed information using artificial neural networks–cloud classification
system (PERSIANN-CCS) for retrieval of microwave calibrated IR estimates [31]. One key
difference between 3B42 and IMERG is that CMORPH-KF is applied in IMERG to minimize
the use of low quality IR estimates.

Three types of IMERG products are provided for different user requirements and
applications: near-real time “Early” run (IMERG-E), “Late” run (IMERG-L), and post-
real time “Final” run (IMERG-F) with approximate latency of 4 h, 12 h, and 4 months,
respectively. The monthly gauge adjustment is used in IMERG-F to reduce bias. IMERG-F
is a research quality product and generally considered to be more accurate than IMERG-E
and L. Here the latest version (V06B) IMERG-F is evaluated. The details of the algorithm
are described by Huffman et al. [10], and the latest changes to the morphing algorithm
in V06B are further provided by Tan et al. [32]. IMERG data files can be accessed from
https://gpm.nasa.gov/data/directory (accessed on 29 April 2021).

2.4. Ground MRMS

To evaluate the quality of IMERG and 3B42 products, the “Level 3” MRMS is selected
as a ground-based reference. Level 3 denotes a gridded product in the GPM project. The
NOAA’s National Severe Storms Laboratory (NSSL) integrates information from about
180 ground-based operational radars and generates a 3D radar mosaic across the CONUS
and Southern Canada (130–60◦W, 20–55◦N) [33]. The Level 3 MRMS products used in this
study were at half-hourly and 0.01◦ resolutions, generated through significant MRMS data
postprocessing, which involves gauge-based bias adjustments, resampling, and quality
controls, specifically for support of GPM GV [34]. A radar quality index (RQI) is also
produced along with precipitation estimates in the MRMS suite. RQI ranging from 0
(worst) to 100 (best) indicates sampling and estimation uncertainty, depending on the
height of the lowest radar elevation angle relative to the bright band and percentage of
beam blockage by topography [35]. Figure 2 shows mean RQI maps averaged from half-
hourly data for three winters and five summers, respectively, during the 55-month period
(June 2014 to December 2015, June 2016 to July 2017, and March 2018 to December 2019).
Data from January to May 2016 and August 2017 to February 2018 were excluded, which
will be discussed in Section 4.1. Figure 2 clearly indicates that the MRMS data quality in
summer (JJA) was better than in winter (DJF). In addition, the gaps of radar coverages
did exist in western CONUS even in summer. Further, compared to eastern CONUS, the
MRMS quality was evidently lower in the Intermountain West because of severe blockages
caused by the complex terrain. RQIs in coastal oceanic areas were generally very low
due to large distances between neighboring radars and sharp topographic transition. The
coastal oceanic areas were masked out from the study (Figure 1).

https://gpm.nasa.gov/data/directory
https://gpm.nasa.gov/data/directory
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2.5. Montly GPCC

The Global Precipitation Climatology Centre (GPCC) provides gridded precipitation
analyses derived from quality-controlled gauges worldwide via the Global Telecommuni-
cation System of the World Meteorological Organization [29]. One of the GPCC products is
the full data monthly analysis version 2020, which is developed from up to 54,000 gauges
using the new GPCC precipitation climatology version 2020 as the analysis background.
The GPCC monthly gauge analysis is one of the contributing data sources for TMPA [9]
and IMERG [10]. The full data monthly analysis version 2020 at 0.25◦ spatial resolution is
used in this study to confirm the consistency of satellite-based precipitation products and
check the MRMS reliability at the monthly scale.

3. Methodology and Evaluation Metrics

Due to the difference in spatial and temporal resolutions among the above-described
products, the validation is conducted using an approach that matches and temporally
resamples MRMS, 3B42, and IMERG data to a common spatiotemporal resolution of 0.25◦

and 3 h. Note that, for each day, the 3-h cutoff times for 3B42 files are 0130, 0430, ...,
2230UTC. The first 3 h of a day have a starting time of 2230UTC on the day before, and the
last 3 h have the ending time of 2230UTC on the data day. Accordingly, we accumulated
30-min data for MRMS and IMERG to the same 3-h interval as 3B42.

Probability density function (PDF) for precipitation occurrence and volume, scatter
density plots, time series of daily and instantaneous 3-hourly precipitation maps are
routinely produced (https://wallops-prf.gsfc.nasa.gov/NMQ/IMERG_3B42_MRMS_30
m/index.php (accessed on 29 April 2021)). The statistical metrics such as relative bias
(bias), Pearson correlation coefficient (Corr), and normalized mean absolute error (NMAE),
normalized root-mean-square error (NRMSE) are utilized to quantify the performance of
satellite products.

Relative bias shows an overestimation (positive) or underestimation (negative) of total
precipitation. Corr ranging from −1 to 1, is an indicator of an a priori assumed linear
relationship between two products. NRMSE is normalized root-mean-square-error (RMSE),
denoting the relative mean error magnitude. By using NRMSE, the issue that RMSE values
increase with the precipitation intensities can be mitigated. The equations of these metrics
are not listed in this manuscript. Readers are referred to statistics books, e.g., [36] and
peer-reviewed papers, e.g., [15].

In order to further examine precipitation detection capability of satellite-based prod-
ucts (IMERG and 3B42) against ground-based reference product (MRMS), a contingency
table is constructed for each product. The contingency table, also called two-way frequency
table, consists of occurrences of hit (h), miss (m), false alarm (f), and correct negative (c).
For the satellite product to be evaluated, “hit” means that precipitation is correctly detected
when it occurs, and “miss” means that precipitation is not detected when it occurs. “False
alarm” means that precipitation is mistakenly detected, and “correct negative” means that
zero-precipitation is correctly flagged as such.

From the hits, misses, false alarms, and correct negatives, three widely applied cat-
egorical statistical skill metrices: probability of detection (POD), false alarm ratio (FAR),
and Heidke skill score (HSS) can be calculated. POD is the fraction of actual precipitation
occurrences that are correctly detected; a perfect score is 1 and the worst is 0. The FAR
measures the fraction of falsely detected precipitation occurrences, ranging from 0 (the
perfect) to 1 (all detected precipitation rates are fake). HSS, a generalized skill score ranging
from −∞ to 1, quantifies whether the estimate is equal to (0), worse (negative value), or
better (positive value) than random chance relative to the reference; the perfect value is 1.

POD =
h

h + m
(1)

FAR =
f

h + f
(2)

https://wallops-prf.gsfc.nasa.gov/NMQ/IMERG_3B42_MRMS_30m/index.php
https://wallops-prf.gsfc.nasa.gov/NMQ/IMERG_3B42_MRMS_30m/index.php
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HSS =
2(hc− fm)

(h + m)(m + c) + (h + f)(f + c)
(3)

The categorical statistical skill metrics provide categorical measures of performance
based on precipitation occurrences, but do not provide any information as to what fraction
of the precipitation volume is detected. Therefore, a volumetric error decomposition
approach developed by Tian et al. [37] and Habib et al. [38] is adapted to completely
decompose the total error (E) of precipitation volume into three independent components:
(1) hit bias (H)—precipitation is detected, but the precipitation volume is biased either
positively or negatively; (2) bias due to missed precipitation (−M)—precipitation is not
detected, which obviously leads to a negative bias; and (3) bias due to false precipitation
detection (F)—precipitation is mistakenly detected while there is no precipitation, which
apparently causes a positive bias. These three components are related by Equation (4)

E = H−M + F (4)

It is possible that H, −M, or F is larger than E simply because they could cancel one
another, which results in a smaller E. Therefore, this approach can reveal much more
information on error characteristics by looking at individual components, instead of merely
the total error.

In the calculation of the above categorical metrics, and in the error decomposition
approach, the precipitation and no-precipitation threshold are assumed to be 0.1 mm h−1.
This threshold has been applied in many previous studies (e.g., [13]). If the precipita-
tion rate is below 0.1 mm h−1, it is considered not precipitating. The selection of this
threshold is rather subjective, but the results were relatively robust, which is demonstrated
when other thresholds (0.0, 0.2, 0.5, and 1.0 mm h−1) were also selected for the test. The
trace precipitation below the threshold of 0.1 mm h−1 was not very important in mete-
orological and hydrological applications. It only accounted for 1.5%, 0.3%, and 3.1% of
total precipitation for MRMS, 3B42, and IMERG, respectively, which will be discussed in
Section 4.4. The threshold of 0.1 mm h−1 was below the minimum detectable precipita-
tion rates of remote sensors on ground radars and satellites. It is common to consider a
threshold to eliminate spurious light precipitation caused by different instruments and
retrieval algorithms [12,15].

4. Results and Analysis
4.1. Time Series of Spatially Averaged Monthly Precipitation

Figure 3 is the time series of monthly precipitation spatially averaged over the study
domain for GPCC, MRMS, 3B42, and IMERG, respectively, from June 2014 to December
2019. MRMS data are missing from January to May 2016. Precipitation from MRMS during
July to November 2017 was evidently abnormally lower than all other products. Daily
and 3-hourly precipitation maps (https://wallops-prf.gsfc.nasa.gov/NMQ/IMERG_3B42_
MRMS_30m/index.php (accessed on 29 April 2021)) revealed that MRMS failed to capture
major rain events due to some unknown issues during this period. After the period, there
were large amounts of missing data in MRMS from December 2017 to February 2018.
Hence, we only used the data in the common time span of 55 months from June 2014 to
December 2015, June 2016 to July 2017, and March 2018 to December 2019 in this study.
The data from January to May 2016 and from August 2017 to February 2018 were excluded.
From the commonly available 55-month datasets for all products, there were three winters
(December 2014 to February 2015, December 2016 to February 2017, and December 2018
to February 2019) and five summers (June to August in 2014, 2015, 2016, 2018, and 2019),
which will be studied in a winter/summer contrast.

Figure 3 illustrates that the satellite-based monthly precipitation from TRMM 3B42
and GPM IMERG had a pattern similar to the observations from ground-based MRMS
and GPCC products. All products were able to reasonably reproduce the precipitation
seasonal variation. IMERG and 3B42 appeared to overestimate the winter precipitation.

https://wallops-prf.gsfc.nasa.gov/NMQ/IMERG_3B42_MRMS_30m/index.php
https://wallops-prf.gsfc.nasa.gov/NMQ/IMERG_3B42_MRMS_30m/index.php
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The overestimation is likely because IR precipitation estimation in satellite products was
indirectly inferred from cloud top temperature, which limited the accuracy for the cold
precipitation detection and quantification [17]. Product characteristics will be further
analyzed in the next section.
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IMERG, respectively, from June 2014 to December 2019.

Figure 4 is the time series of ratios and correlations for IMERG (3B42) relative to MRMS,
calculated from 3-hourly precipitation at 0.25◦ resolution for each month. GPCC is not
available for the comparison because it is a monthly product. Only pixels associated with
the perfect MRMS RQI value (100) and precipitation at least 0.1 mm h−1 for both IMERG
(3B42) and MRMS were used in the calculation. This qualitatively filtering procedure can
effectively remove noise from MRMS data [39]. Figure 4 clearly demonstrates that IMERG
constantly outperformed 3B42 in terms of ratio and correlation. Relative to MRMS, both
products overestimated precipitation in winter whereas underestimated precipitation in
summer. The correlation between IMERG (3B42) and MRMS was higher in winter than
in summer.

Figure 4 is just one of the plots for the time series of monthly ratios and correlations
from all combinations of RQIs (≥0, 25, 50, 75, and 100) and precipitation thresholds (≥0.0,
0.1, 0.2, and 0.5 mm/h) for 3B42 and IMERG. The complete distribution of the ratios
and correlations can be displayed on boxplots with emphasis on the directions of bias
(i.e., positive or negative) and outliers. In Figures 5 and 6, one boxplot corresponded to the
55 months from each of the 80 time series plots. For example, the data in the boxplot (last
column in Figure 6f) for the correlation between IMERG and MRMS with RQI of 100 and
precipitation threshold of 0.1 mm h−1 was from the solid line in Figure 4b.

From Figure 5b–d, the large positive bias in 3B42 was evident, with the interquartile
range and mean all are well above 1. Large outliers contribute to considerable overestima-
tion of precipitation rates.

All boxplots, except for Figures 5a and 6a, share a common featured that the ratio
decreased towards 1 with increasing RQI. It is worth noting that the ratio for 3B42 relative
to MRMS with a threshold of 0.0 mm h−1 (Figure 5a) was lower than all other ratios with
larger precipitation thresholds (Figures 5b–d and 6b–d). This implies that 3B42 missed a
considerable amount of total rain volume due to light precipitation. This will be shown in
probability distribution of 3-hourly precipitation rates (Figure 11). On the other end, 3B42
overestimated precipitation with intensities greater than 0.1 mm h−1 (Figure 5b–d). This
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issue was largely mitigated in Figure 6b–d for IMERG.
The correlation coefficient was relatively stable with respect to the change of RQI.

This is expected because the correlation quantified the covariability between two products.
The best correlation was for the cases with a threshold of 0.0 mm h−1 (Figures 5e and 6e)
because of large concurrences of zero-precipitation rates included.

4.2. Spatial Distribution of Mean Monthly Precipitation and Error Decomposition Analysis

The spatial distributions of mean monthly precipitation averaged from 55 months,
three winters, and five summers for ground (GPCC and MRMS ) and satellite (3B42
and IMERG) derived products are shown in Figure 7. For the 55-month average, all
products display a high degree of consistency in spatial distribution patterns with copious
precipitation in the southeast and Pacific northwest, with relatively less precipitation in
the large area of western CONUS. However, differences were still visually discernable
among the four products. There were missing data over the Great Lakes in GPCC because
of the lack of floating rain gauges. A gradual precipitation gradient descent from south
and southeast to north and northwest in IMERG, 3B42 and GPCC was spatially smoother
than that in MRMS. That is the smoothing effect in GPCC gauge interpolation [29] reflected
in 3B42 and IMERG through the gauge adjustment. IMERG best reproduces the spatial
variation of GPCC, which appears to be benefited from the IMERG’s monthly calibration
against GPCC gauges. IMERG has the best pattern correlation (0.963) with GPCC, followed
by 3B42 (0.947) and MRMS (0.81).
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Figure 5. (a–h) Boxplots of ratios and correlations for 3B42 relative MRMS with respect to different RQI and precipitation
thresholds. The RQI thresholds are 0, 25, 50, 75, and 100 listed at the bottom of each panel. The precipitation thresholds
are 0.0 mm h−1 (a,e), 0.1 mm h−1 (b,f), 0.2 mm h−1 (c,g), and 0.5 mm h−1 (d,h). The black box is the interquartile range
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whisker is truncated and listed at the upper border of each boxplot if the maximum is out of the plot area.
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In winter, precipitation along the northwest coastal area is considerably underesti-
mated by 3B42, mainly because of the difficulty in detecting warm, coastal rainfall.

This is also reported by Tang et al. [40]. The underestimation is well corrected
in IMERG.

Both IMERG and 3B42 show different levels of overestimation near the Great Lakes
area, especially in summer, due to the lack of gauge calibration. The spatial characteristics
of the error components for 3B42 and IMERG in winter and summer seasons can be further
analyzed using the error decomposition approach [37,38].

As described in Section 3, we decomposed the total bias into hit, missed-precipitation,
and false-precipitation biases for each product during each month at each 0.25◦ grid in the
study domain (Figure 1), and then accumulated monthly total biases and bias components
as percentages of total MRMS precipitation into seasonal scales, particularly for winter and
summer seasons. In this analysis, 3-winter-average and 5-summer-average are presented
(Figure 8). The spatial characteristics of the error components for the 55-month average
is not shown here as it basically represents the summation of winter and summer in
Figure 8a–d, the spatial distributions of the total bias and three error components with
RQI filtering. Both 3B42 and IMERG shared considerable similarity in their spatial bias
patterns, but with different levels of biases. One obvious feature in the total bias is that
the superior performance of satellite products in the central and southern Plains. This
may be resultant of the gauge calibration in 3B42 and IMERG algorithms. Both IMERG
and 3B42 appear to underestimate the orographically-forced precipitation over the large
areas of mountainous western CONUS in summer and winter, whereas they overestimate
the precipitation along the Rockies, Sierra Nevada, Mexican border and Great Lakes areas
where MRMS quality is questionable (Figure 2). The overestimation is mostly dominated
by the enhanced false precipitation detection in these areas. The positive hit bias also
contributed to the overestimation over some of these areas. However, after the RQI filter
(RQI = 100) was applied, these biases were largely removed (Figure 8b,d).

For winter season, the missed-precipitation bias had the largest amplitude (Figure 9a)
among all three components, especially for 3B42 at higher latitudes and mountainous
areas (Figure 8a,b). Missed precipitation might be mostly due to the inability of multi-
satellite PMW sensors for snowfall measurements or rainfall observations over icy land
surface [40,41]. Substantial improvements can be seen in the IMERG product where the
magnitude of missed precipitation error was dramatically decreased. This can be the result
of the use of morphing and PERSIANN-CSS in IMERG. Compared to 3B42, the hit and
missed-precipitation biases in IMERG were greatly reduced, whereas the false-precipitation
bias was slightly reduced, which was more clearly summarized in Figure 9. The missed-
precipitation bias had the largest amplitude among all three components. These three
components cancelled one another, which resulted in a smaller total bias. IMERG displays
obvious improvement to 3B42 in missed-precipitation and hit bias reduction in winter.
However, the hit bias in IMERG was over-reduced in summer, resulting in a large area of
negative hit bias (Figure 8c,d).

For the summer season (Figure 8c,d), both products were noticeably similar with a
slight underestimation in most of CONUS except for along the Mexican border and the
Great Lakes region. The missed-precipitation bias is largely reduced compared to its winter
counterpart. The total bias pattern appears similar to that of the hit bias (Figure 8c,d). The
overall false precipitation and missed-precipitation biases were not as pronounced as in
winter (Figures 8 and 9). This can likely be traced to the more effective gauge correction in
3B42 and IMERG algorithms, which benefits from the fact that the gauge measurement is
more reliable for summer rainwater than for winter solid precipitation.

Note that the selection of RQI = 100 is a very conservative approach, which only
retains the MRMS data with the best quality; as a result, it significantly limits the data
availability especially in the Intermountain West where the quality of radar measurements
is lower than other CONUS areas because of radar beam blockage by terrain. Hence, MRMS
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is not a good GV reference over mountainous regions as it might not correctly represent
the weather systems in the regions [42].

We also selected other RQI thresholds for comparisons (Figure 9). Figure 9 shows
the averaged error components, and the total errors, as percentages of the total MRMS
precipitation for all 3-hourly precipitation over 0.25◦ grids with different RQI filtering for
winter and summer, respectively.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 8. (a–d) The spatial distributions of error components for 3B42 and IMERG as percentages of total MRMS 
precipitation: total (E), hit (H), missed-precipitation (M), and false-precipitation (F) biases for three winters and five 
summers with RQI ≥ 0 and RQI = 100. The components are related by E = H − M + F. 

Figure 8. (a–d) The spatial distributions of error components for 3B42 and IMERG as percentages of total MRMS precipita-
tion: total (E), hit (H), missed-precipitation (M), and false-precipitation (F) biases for three winters and five summers with
RQI ≥ 0 and RQI = 100. The components are related by E = H −M + F.



Remote Sens. 2021, 13, 1745 13 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 9. Averaged error components for IMERG and 3B42 relative to MRMS at 3-h and 0.25° resolution for (a) winter and 
(b) summer with RQI thresholds from 0 to 100. 

4.3. Statistical Metrics and Categorical Skill Score 
Figure 10 shows statistical metrics for IMERG and 3B42 performances relative to 

MRMS with RQI filtering (zero or 100%) for winter and summer, respectively. IMERG 
clearly outperformed 3B42 in both winter and summer in terms of all metrics except for a 
slightly worse false rate, FAR, and relative bias in summer. The morphing algorithm 
improved the precipitation detection with better hit and miss rates, and increased POD 
and HSS scores in Figure 10a–d, but at the price of slightly increased false rate and FAR. 
The increased FAR might be an issue associated with PMW retrieval, which sometimes 
may erroneously treat the dynamic surface characteristics over land as precipitation 
signals [43]. 

Looking at Figure 10a, a striking feature is that the relative bias in the winter season 
is drastically reduced from 74.7% for 3B42 to 19.1% for IMERG without RQI filtering, and 
the bias was reduced from 54.1% to 12.8% when RQI=100 was applied. Another salient 
distinction between TRMM 3B42 and GPM IMERG was that there was a large increase in 
POD, and a marginal increase in FAR; as a result, a perceived increase in HSS. As 
discussed in Su et al. [14], the improved POD was mainly attributed to the enhanced 
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(b) summer with RQI thresholds from 0 to 100.

For winter, missed precipitation is the major source of error, accounting for about 50%
of the total precipitation for 3B42 and 20–30% for IMERG, much larger than the total bias.
The huge missed-precipitation was countered by the sum of positive hit bias and positive
false bias, resulting in a very small total bias.

For summer, both missed and false precipitation biases were smaller compared to
those in winter. Compared to winter, the positive hit bias in summer was greatly reduced
for 3B42, but it turned out to be negative for IMERG.

One easily noticeable feature in Figure 9a was that the missed- and false-precipitation
biases for both IMERG and 3B42 obviously decreased with the increasing RQI in winter
season. In summer, this feature was not very salient. RQI filtered less area in summer than
in winter because RQI was better in the warm season than in the cold season (Figure 2) due
to the presence of stronger low-level temperature gradients during winter periods.
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4.3. Statistical Metrics and Categorical Skill Score

Figure 10 shows statistical metrics for IMERG and 3B42 performances relative to
MRMS with RQI filtering (zero or 100%) for winter and summer, respectively. IMERG
clearly outperformed 3B42 in both winter and summer in terms of all metrics except for
a slightly worse false rate, FAR, and relative bias in summer. The morphing algorithm
improved the precipitation detection with better hit and miss rates, and increased POD and
HSS scores in Figure 10a–d, but at the price of slightly increased false rate and FAR. The
increased FAR might be an issue associated with PMW retrieval, which sometimes may
erroneously treat the dynamic surface characteristics over land as precipitation signals [43].
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Looking at Figure 10a, a striking feature is that the relative bias in the winter season is
drastically reduced from 74.7% for 3B42 to 19.1% for IMERG without RQI filtering, and
the bias was reduced from 54.1% to 12.8% when RQI=100 was applied. Another salient
distinction between TRMM 3B42 and GPM IMERG was that there was a large increase in
POD, and a marginal increase in FAR; as a result, a perceived increase in HSS. As discussed
in Su et al. [14], the improved POD was mainly attributed to the enhanced sensitivity of
sensors used in producing the precipitation products and increased sampling frequency of
the GPM mission.

Considered over a continental scale, Figure 10c,d indicate that IMERG precipitation
estimates were lower relative to MRMS during summer. A similar result is also found
by comparing IMERG with radar-based Stage IV product [44]. This suggests that IMERG
may underestimate precipitation from convective systems. In summer, strong convective
precipitation events occur more frequently. Due to their short duration, localization, and
spatial complexity, these events are generally more difficult to be captured by satellite
remote sensors.

The hit bias in Figure 9 and relative bias in Figure 10 had the same direction (positive
or negative) but different amplitudes. This behavior occurs because the relative bias
represents a difference between satellite and MRMS precipitation as the percentage of
MRMS precipitation, conditioned on the presence of a satellite and MRMS precipitation
rate of at least 0.1 mm h−1, whereas the hit bias is the difference as the percentage of MRMS
precipitation greater than 0.1 mm h−1.

To further measure the agreement between satellite-based and ground-based products,
the Kling–Gupta efficiency (KGE) [45,46], a recently more widely used criterion for the
predictive skill assessment of hydrological models, was also introduced as another statistic
in this study. By taking into account correlation, bias, and variability in a more balanced
way, KGE provides an additional interesting insight into the performance of satellite-based
products. KGE ranges from −∞ (worst) to 1 (best). Table 1 lists the KGE values calculated
from 3-hourly precipitation rates at 0.25◦ resolution for 3B42 and IMERG using MRMS as a
reference during the periods of the three winters, five summers and 55 months, respectively.
Table 1 further demonstrates the obvious performance improvement from 3B42 to IMERG
in winter.

Table 1. KGE calculated from 3-hourly precipitation rates at 0.25◦ resolution for 3B42 and IMERG
using MRMS as a reference during three-winter, five-summer, and all 55-month periods, respectively.

Winter Summer 55 Months

3B42 IMERG 3B42 IMERG 3B42 IMERG

RQI ≥ 0 −0.193 0.372 0.359 0.362 0.286 0.465
RQI = 100 0.026 0.466 0.338 0.335 0.330 0.449

A threshold of 0.1 mm h−1 was used in the calculation of these statistical metrics. If
other thresholds were used, the numerical values for these statistics would be different.
However, as indicated in Figures 5 and 6, the general conclusion should be robust.

4.4. Probability Distribution Analysis

To further investigate the distribution of precipitation intensities, probability distribu-
tion functions are constructed as shown in Figure 11 for 3-hourly precipitation occurrences
and volumes at 0.25◦ resolution without RQI filtering over the study domain during the
55-month period. The insets were for the data in the range between 0 and 0.1 mm h−1,
representing either no precipitation or drizzle. In this range, 3B42 accounted for 96.1%
of total data points but only 0.3% of precipitation volume, whereas the numbers were
93.0% and 3.1% for IMERG, 93.5% and 1.5% for MRMS. This also indicates the improved
capability of IMERG in detecting no precipitation or drizzle occurrences compared to
3B42, which could be attributed to the GPM DPR with its higher sensitivity relative to
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TRMM PR [47,48]. For precipitation under 0.1 mm h−1, IMERG very well reproduced the
precipitation occurrences but overestimated the volumes.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 22 
 

 

relative to TRMM PR [47,48]. For precipitation under 0.1 mm h−1, IMERG very well 
reproduced the precipitation occurrences but overestimated the volumes. 

The distribution for the precipitation above 0.1 mm h−1 was separately constructed 
for each product. 3B42 product shows an obvious overestimation in occurrences for the 
precipitation with the intensity between 1 and 30 mm h−1, and underestimation for 
precipitation less than 1 mm h−1. IMERG shows an improved agreement with MRMS both 
in occurrence and volume distributions.  

Similar features can be also seen in the joint distributions of 3-hourly precipitation 
rates at 0.25° resolution for 3B42 vs. MRMS, and IMERG vs. MRMS, respectively, 
conditional on both precipitation rates at least 0.1 mm h−1 (Figure 12). More importantly, 
the random error for IMERG was very low compared to 3B42, as seen by the tight scatter 
in the density plot. The distribution was more concentrated along 1:1 line for IMERG, 
consistent with NMSE and NMAE results in Figure 10. Figure 12 demonstrates that both 
higher and lower precipitation rates in IMERG were better represented than in 3B42, 
though IMERG slightly overestimated the higher precipitation rates and underestimated 
the lower precipitation rates. The improvement can be mainly attributed to the improved 
morphing scheme and enhanced sensitivity of sensors used in IMERG. 

 
Figure 11. Probability distributions of 3-hourly precipitation (a) occurrences and (b) volumes for MRMS, 3B42, and IMERG 
at 0.25° resolution without RQI filtering over the study domain. The insets are percentages of occurrences and volumes 
for precipitation less than 0.1 mm h−1, including zeros. 

Figure 11. Probability distributions of 3-hourly precipitation (a) occurrences and (b) volumes for
MRMS, 3B42, and IMERG at 0.25◦ resolution without RQI filtering over the study domain. The insets
are percentages of occurrences and volumes for precipitation less than 0.1 mm h−1, including zeros.

The distribution for the precipitation above 0.1 mm h−1 was separately constructed
for each product. 3B42 product shows an obvious overestimation in occurrences for
the precipitation with the intensity between 1 and 30 mm h−1, and underestimation for
precipitation less than 1 mm h−1. IMERG shows an improved agreement with MRMS both
in occurrence and volume distributions.

Similar features can be also seen in the joint distributions of 3-hourly precipitation rates
at 0.25◦ resolution for 3B42 vs. MRMS, and IMERG vs. MRMS, respectively, conditional
on both precipitation rates at least 0.1 mm h−1 (Figure 12). More importantly, the random
error for IMERG was very low compared to 3B42, as seen by the tight scatter in the density
plot. The distribution was more concentrated along 1:1 line for IMERG, consistent with
NMSE and NMAE results in Figure 10. Figure 12 demonstrates that both higher and lower
precipitation rates in IMERG were better represented than in 3B42, though IMERG slightly
overestimated the higher precipitation rates and underestimated the lower precipitation
rates. The improvement can be mainly attributed to the improved morphing scheme and
enhanced sensitivity of sensors used in IMERG.Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 22 
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5. Discussion

From the launch of the TRMM satellite in November 1997 to the currently active GPM
mission, satellite-based remotely sensed precipitation measurement has been advanced
steadily. Built upon the success of TRMM, GPM was developed to provide not only
measurement continuity, but also an improvement on the TRMM instruments, algorithms,
and precipitation products. GPM IMERG, as a successor of TRMM 3B42, is a unified
satellite algorithm developed to provide multisatellite precipitation products over the
globe. All IMERG products were retrospectively processed back to the start of TRMM era
(January 1998), and continued for the entire life of the GPM mission, currently expected to
last to the mid-2030′s or beyond. The evaluation of a new version of IMERG is particularly
important for the algorithm development and application.

It should be noted that the evaluation of GPM IMERG and TRMM 3B42 precipitation
products in this study was carried out over the land area only (Figure 1). The results drawn
from this land area would be different for oceanic sites because of challenging problem
for the PMW retrievals over complex land surfaces. A validation study over the ocean
(e.g., Kwajalein Atoll) is underway.

In addition, any ground-based products themselves are certainly not perfect, such as
MRMS, especially in winter and over mountainous regions, although they have been often
used as references in the satellite-based product validation. The validation results are likely
unreliable if questionable products are used as references [49]. Satellite-based products
in western CONUS appear to exhibit reduced performance in comparison to the eastern
CONUS where RQI is high. This does not necessarily mean that the satellite products are
the only problem, as there are also problems in the MRMS product as indicated in Figure 2.
It is our conclusion that the MRMS product herein might not be suitable as a GV reference
over the mountainous west CONUS regions. On the contrary, one may reasonably argue
that the satellite products can be utilized to fill the gaps or even substitute the ground
product where the ground observations are sparse, rare, poor, or completely missing, as
considering that the satellite products perform well over many areas with adequate radar
or gauge coverage.

6. Conclusions

This study evaluated two satellite-based precipitation products TRMM 3B42 V7 and
GPM IMERG V06B using MRMS as the reference over CONUS for the 55-month period.
GPCC was also used in the comparison with MRMS and satellite products. The spatial
distributions of precipitation climatology from four products were analyzed. The error
characteristics were further examined for 3B42 and IMERG in winter and summer by an
error decomposition approach, which partitioned total bias into hit bias, biases due to
missed precipitation, and those due to false precipitation. The continuous and categorical
statistical metrics were used to quantitatively evaluate the performance of the two satellite-
based products. The main findings are summarized as follows:

(1) All products display a high degree of consistency in spatial distribution patterns
though some differences are visually discernable.

(2) The IMERG shows substantial improvements in terms of nearly all statistical metrics,
compared to its predecessor 3B42.

(3) For winter, the improvement in IMERG was primarily from significantly reduced
missed-precipitation bias, and from largely reduced positive hit bias. For summer,
the improvement was mainly from notably reduced missed-precipitation bias and
marginally reduced false-precipitation bias but at the expense of worse hit bias.

(4) The precipitation intensity distribution shows a significant improvement of IMERG al-
gorithm in comparison with 3B42, which obviously overestimated heavy precipitation
but underestimated light precipitation.

(5) Missed-precipitation bias over mountainous regions, especially over frozen surfaces
in winter, is still a challenging problem in satellite-based precipitation retrieval algo-
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rithms. The bias correction is of particular importance in mountainous regions such
as Serra Nevada Mountains in California and Rocky Mountains in Colorado.

(6) All the statistical metrics and the error decomposition approach work together were ef-
fective in evaluation of the performances for the satellite-based precipitation products.
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