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Abstract: Drought, a climate-related disaster impacting a variety of sectors, poses challenges for
millions of people in South Asia. Accurate and complete drought information with a proper mon-
itoring system is very important in revealing the complex nature of drought and its associated
factors. In this regard, deep learning is a very promising approach for delineating the non-linear
characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep
learning approach with remote sensing data over South Asia from 2001–2016. We considered the
precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model
input parameters. The study evaluated agricultural drought using the soil moisture deficit index
(SMDI) as a response variable during three crop phenology stages. For a better comparison of deep
learning model performance, we adopted two machine learning models, distributed random forest
(DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the
other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the
drought pattern with high spatial variability across three penology stages. Additionally, the DFNN
model showed good stability with its cross-validated data in the training phase, and the estimated
SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during
the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively.
The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized
precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ
SPEI. The DFNN model provides comprehensive drought information by producing a consistent
spatial distribution of SMDI which establishes the applicability of the DFNN model for drought
monitoring.

Keywords: deep learning; agricultural drought; South Asia; remote sensing

1. Introduction

Drought is regarded as a common and consistently occurring weather related phe-
nomenon that has a severe impact on human society and ecosystem [1–3]. This least-
understood natural phenomenon is very challenging to detect, with the frequency and
intensity of events varying considerably due to frequent global climate change [4]. Though
a drought generally starts with a precipitation shortage, depending on its mechanism
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and nature of affecting the ecosystem, droughts are classified into four categories such
as meteorological, hydrological, agricultural, and socio-economic drought [5,6] are corre-
lated to each other. For example, meteorological drought over a more extended period
subsequently affects groundwater, which causes hydrological drought, which leads to soil
moisture shortage, termed as agricultural drought. Thus, an imbalance between water
supply and demand arises that is treated as socio-economic drought. Since each drought
category has different characteristics and measurement systems, it is essential to figure out
the evolution and potential impact of drought for better policy formulation [7,8]. In South
Asia, drought hits at regular intervals (once in every three years), causing severe water
crises and food insecurity that have a long-lasting impact on the growing economies in
that region [9–11]. In India, a very recent drought created a severe water shortage affect-
ing 33 million people, while in Pakistan agricultural growth is influenced negatively by
2.6% due to drought [10,12]. Drought severely impacts Bangladeshi agriculture, reducing
production by 40% on average and affecting 53% of the population. Sri Lanka has also
experienced drought impact, and more than 0.2 million people in the country have suffered
severely [13,14]. Therefore, drought monitoring with an accurate and near-real-time identi-
fication system has significant practical consequences for agricultural water management.

However, irrespective of the complexity and severity, drought is measured through the
traditional meteorological approach of the remote sensing monitoring approach. Meteoro-
logical methods are very popular, however, being mainly based on ground-based drought
indices developed from the ground measurement of variables; for example, precipitation
and temperature [15]. However, these indices, such as the standardized precipitation index
(SPI) and standardized precipitation evapotranspiration index (SPEI), are not appropriate
in illustrating detailed spatial distribution on a large scale [16]. Remote sensing-based
approaches have a wide range of applicability in providing continuous data in time and
space by covering a large geographic area that is more useful for monitoring drought than
the ground-based approach [17]. Several (more than 160) remote sensing drought indices
such as normalized difference vegetation index (NDVI), vegetation condition index (VCI),
vegetation health index (VHI), soil moisture condition index (SMCI) etc. are available,
each of which considers only a single factor. As such, the main challenge is that these
indices are not able to reflect drought information properly as drought conditions are
related to multiple factors. As a result, single drought indices fail to reveal complicated
drought information [6]. At present, the blending of multi-sensor indices has been used by
researchers considering multiple drought factors [18–20]. These comprehensive approaches
for monitoring drought include different data-driven models such as the time series model,
probabilistic model and traditional regression model, which all have the limitation of
dealing with non-linear properties of the remote sensing data set [21–23]. In this regard, a
deep neural network is more flexible and robust in the case of drought characterization
and forecasting skill, by extracting the non-linear relationship between different drought
factors compared with traditional models [24,25].

In this study, we used the soil moisture deficit index (SMDI) to characterize agricultural
drought over South Asia. SMDI is mainly related to soil water, which affects vegetation
growth and is regarded as an index of agricultural drought. For agricultural drought,
considering the seasonal variability and its cumulative impact on vegetation, we selected
the SMDI drought index. The SMDI has the ability to reflect the short-term dry conditions
and it is also spatially comparable irrespective of weather and climatic zone [26,27]. A deep
forwarded neural network (DFNN) was used for the deep learning method and the SMDI
drought index was considered as a model response variable to monitor drought over
South Asia. The deep learning method allows different learning algorithms consisting
of multiple layers to learn discriminative features from the data with multiple levels of
abstraction [28]. Deep learning models have recently received much attention from the
scientific community as computing power has increased with newly developed GPUs
(Graphics Processing Units). Many studies [15,16,29] have used data mining techniques to
build drought monitoring and forecasting models using machine learning models such
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as support vector regression (SVR), random forest (RF), boosted regression tree (BRT),
bias-corrected random forest (BRF), gradient boosting machine (GBM), and classification
and regression tree (CART). For example, Zhang et al. [30] used the XGBoost model for
meteorological drought prediction. The results suggested that XGBoost had high predictive
skill compared to the lag distributed non-linear model (DLNM). In another study, Chiang
and Tsai [31] found SVM (Support Vector Machine) superior in predicting hydrological
drought compared to the traditional model. In some cases, however, the performance of
deep learning in drought studies exceeds other machine learning models [28]. However,
very limited studies found in the literature used deep neural nets for drought monitoring
and forecasting. Lee et al. [32] used a deep learning model for soil moisture estimation
from satellite remote sensing data to monitor drought. The model showed high stability
during cross-validation and high correlation with in-situ observation. Zhang et al. [33]
reported that soil moisture estimated by the deep learning model from remote sensing data
was able to capture the complex relationships of in-situ soil moisture. Although Agana
and Homaifar [34] used a deep belief network (DBN) for long-term drought prediction,
they only considered the lagged value of a standardized streamflow index (SSI) as input
parameters for SSI-12 and SSI-24 prediction. Though the drought monitoring model
constructed by Shen et al. [25] using a deep learning approach, however, in this study
we proposed an agricultural drought predicting system using a deep learning model
taking into account precipitation, soil, and vegetation as explanatory variables to monitor
drought in South Asia. Moreover, the variability of agricultural drought patterns was
investigated in relation to the crop phenology stage, which was not reported before in
the South Asia region. Two machine learning models such as distributed random forest
(DRF) and gradient boosting machine (GBM) were used to compare performance with the
deep learning model. As a result, the main goal of this study is to develop an integrated
drought-monitoring system considering precipitation, soil, and vegetation factors using
a deep learning approach. Therefore, the present study aims to: (i) use a deep learning
model for monitoring agricultural drought from 2001–2016; (ii) characterize spatiotemporal
variation of agricultural drought during three crop phenology stages; and (iii) examine the
performance of deep learning for predicting the SMDI.

2. Materials and Methods
2.1. Study Area

The study area is the southern region of Asia, covering about 5.2 million Km2 ge-
ographically positioned at 5◦–40◦N and 60◦–100◦E [35]. The region encompasses eight
countries (India, Nepal, Bhutan, Bangladesh, Pakistan, Afghanistan, Sri Lanka, and the
Maldives) with about 1.836 billion population [36]. The area is defined by the Indian
Ocean and topographically dominated by the Indian Plate. South Asia is covered by a
heterogeneous land surface area (Figure 1). The diverse climatic conditions that prevail in
South Asia vary from region to region. For example, a hot summer exists in the southern
parts, though heavy rainfall occurs during the monsoon period. The indo-geographic plain
of the northern side is also hot in summer and cool in winter, while snowfall occurs in
Himalayans regions in the mountainous north. In general, continental climate is observed
in north India and Pakistan. India in the south and Sri Lanka in the southwest have an
equatorial climate. Bangladesh’s climate is largely characterized by a cool winter and hot,
humid summer, while Afghanistan is dominated by dry areas [14]. Seasonal rainfall is
primarily driven by monsoon wind, which accounts for 80% of the annual precipitation in
most parts of South Asia. Recently, climate change has increased land surface temperatures,
and erratic rainfall makes South Asia more prone to drought [37].
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Figure 1. Land-use land cover map of South Asia based on ESA CCI-LC (European space agency
climate change initiative-land cover) product.

2.2. Data

In this study, data sets from remote sensing and ground observation (weather stations)
were used to calculate the drought indices for deep learning model input parameters. The
specification of these data sets is presented in Table 1.

Table 1. The detailed specification of remote sensing data sets used in this study.

Data Sources Data Type Variables Temporal
Resolution

Spatial
Resolution Coverage

MODIS MOD13A1
MOD11A2 Surface reflectance 16 days

(composite) 500 m Global

MERIS and
SPOT-Vegetation ESA CCI-LC Land cover classification No time series 300 m Global

GLDAS-NOAA GLDAS_
NOAH025_M_2.1

Soil moisture,
evapotranspiration, and

potential
evapotranspiration

Monthly 0.25◦ × 0.25◦ Global

CHIRPS from
climate hazard

center
CHIRPS-2.0 Precipitation Monthly 0.25◦ × 0.25◦ 60N to 60S

AVHRR-GIMMS GIMMS-NDVI NDVI 15 days
(composite) 1/12◦ × 1/12◦ Global

2.2.1. MODIS Data

MODIS (Moderate Resolution Imaging Spectroradiometer) is a multispectral medium/
high resolution sensor consisting of terra and aqua satellites with a wide range of appli-
cations in the field of earth and environmental science [38]. MODIS provides valuable
information by detecting electromagnetic energy in a wide spectral range to study the
earth’s ecological, meteorological and hydrological condition [39]. In this present study,
we used MODIS vegetation indices product (MOD13A1) with a spatial resolution of 500m
and land surface temperature (LST) product (MOD11A2) with a 1km spatial resolution
for VCI and TCI (temperature condition index) drought indices calculation. MOD13A1
products can be used for global vegetation change detection and monitoring vegetation bio-
physical interaction with photosynthetic activity [40]. MOD11A2 product consists of day
and night time LST calculated within an 8 day period by combining surface atmospheric
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interaction and energy fluxes considering both ground and atmosphere [41]. A number
of 10 tiles (h22v05-h26v05, h23v06-h26v06m, h24v07-h26v07, and h25v08-h26v08) were
downloaded from the LAADS (Atmosphere Archive and Distribution System) website (
https://ladsweb.modaps.eosdis.nasa.gov/) (accessed on 27 September 2020) overing the
study area from 2001–2016.

2.2.2. GLDAS-NOAH Soil Moisture, Evapotranspiration (ET), Potential
Evapotranspiration (PET) Data

GLDAS (Global Land Data Assimilation System), a global high-resolution terrestrial
modelling system, consists of Noah, CLM (community land model), VIC (variable in-
filtration capacity) and land surface model (LSM), and provides land and water energy
fluxes and also different soil properties based on satellite and ground observation for
ecosystem modelling [42–44]. We used the GLDAS NOAH (GLDAS_NOAH025_M_2.1)
soil moisture, ET, and PET product for this study with a spatial resolution of 00.25◦

× 0.25◦, downloaded from the Land Data Assimilation System (LDAS) website (https:
//ldas.gsfc.nasa.gov/gldas) (accessed on 27 September 2020). Monthly soil moisture prod-
ucts of the topsoil layer at 10 cm depth were used for the SMDI (Soil Moisture Deficit
Index) drought index calculations for this study. The EDI (Evaporative Drought Index)
was calculated using ET and PET products to evaluate surface dryness.

2.2.3. CHIRPS Data

CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) is a rela-
tively high-resolution quasi-global long term (1981-present) satellite precipitation product
developed by the Climate Hazards Center for monitoring drought and conducting pre-
cipitation trend analysis [45]. CHIRPS is a satellite-estimates product blended with gauge
observation from GHCN (Global Historical Climate Network) and GSOD (Global Sum-
mary of the Data set) data sources [46]. The CHIRPS data was downloaded from the
Climate Hazards Center’s website (https://www.chc.ucsb.edu/data/chirps) (accessed
on 27 September 2020) for the 2001–2016 period. Monthly precipitation data, which is
available at 0.05◦ spatial resolution, was used for PCI (Precipitation Condition Index), PAI
(Precipitation Anomaly Index), and SPI (Standardized Precipitation Index) calculation
as satisfactory performance was found with this data set in many studies [45,47], due to
consistency and sufficient length which make the data more reliable for climate variability
analysis [48,49].

2.2.4. GIMMS-NDVI Data

In this study, the NDVI data set was derived from reflectance observed by the AVHRR
(Advanced Very High Resolution Radiometer) as a part of the Global Inventory Modeling
and Mapping Studies (GIMMS) project obtained from https://ecocast.arc.nasa.gov/data/
pub/gimms/3g.v1/ (accessed on 27 September 2020) with a data period of 2001 to 2015.
This data set has 1/12◦ × 1/12◦ spatial resolution and consists of the maximum NDVI
value for each 15-day interval. This data set was used to generate phenology metrics for
South Asia.

2.2.5. Meteorological Station Data

We used ground observation data, such as precipitation and temperature, from all
780 available weather stations over the study area during 2001–2016, collected from the
department of meteorology for each country. In this study, we calculated SPEI following
the Hargreaves [50] method from monthly precipitation and temperature data using the
SPEI package in R software. First, daily precipitation and temperature were collected, then
aggregated to monthly intervals for SPEI calculation. The scales of three, six, and twelve
months (SPEI-3, SPEI-6, and SPEI-12) were taken into account for the SPEI calculation used
to compare the results estimates from the DFNN model.

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ldas.gsfc.nasa.gov/gldas
https://ldas.gsfc.nasa.gov/gldas
https://www.chc.ucsb.edu/data/chirps
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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2.3. Model Input Parameter

Drought is a relatively complex event, unlike other natural disasters, due to its slow
development over a prolonged period. Drought characteristics rely on a given area’s
climate characteristics and are substantially different across a given region; for example, a
region with an extended dry period may lead to drought. Considering its evolution process,
however, drought largely depends on precipitation, ultimately affecting soil moisture. As a
result, drought affects the vegetation on the ground. Deficit precipitation for a long time
creates a shortage of surface and sub-surface water supply [51–53]. Given these complex
mechanisms, drought monitoring methods need to improve, which depends largely on
monitoring precipitation, soil and vegetation factors [54,55]. As a result, we adopted
precipitation, soil, and vegetation factors as input parameters for our deep learning model
to monitor drought in the study area. Thus, the twelve variables used for model input
parameters are presented in Table 2 with detailed descriptions.

Table 2. Description of the input variables.

Type of
Variable Factors Drought

Index Formula References

Predictor
variables

Precipitation

PCI
PCI = P −Pmin

Pmax−Pmin
× 100

(where P is the precipitation in a month, and Pmax and Pmin are maximum and
minimum precipitation in a month)

[30]

PAI
Pai =

Pi−p
p × 100

(where Pi is the precipitation in a month, and P is the average annual
precipitation in a month)

[25]

SPI-3
SPI-6

SPI-12

k − c0+c1k+c2k2

1+d1k+d2k2+d3k3

(k represents precipitation probability function; c0 c1, c2, c3, d1, d2, and d3 are
constant)

[56,57]

SPEI-3
SPEI-6

SPEI-12

w − c0+c1w+c2w2

1+d1w+d2w2+d3w3

(w is defined as climatic water balance calculated based on the difference
between precipitation and reference evapotranspiration; and c0

c1, c2, c3, d1, d2 , and d3 are constant)

[58,59]

Soil EDI

EDI = 1 − ET
PET

(EDI is evaporative drought index, ET represents evapotranspiration, PET
denotes potential evapotranspiration in the corresponding month in the research

year)

[60]

Vegetation

VCI

VCI =
(NDVIj−NDVImin)

NDVImax−NDVImin
× 100(

where NDVIj is the NDVI value of a certain month, NDVImin and NDVImax are
the minimum and maximum values of NDVI in the corresponding month in the

research year)

[61]

VHI VHI = αVCI + (1 − α)TCT
(α denotes constant value equals to 0.5) [62]

TCI

TCI = LSTmax−LSTi
LSTmax−LSTmin

× 100
(where LSTi is the LST value of a month, and LSTmax and LSTmin are the

maximum and minimum values of LST for the corresponding month in the
study year)

[63]

Response variable SMDI

SMDI = 0.5 ∗ SMDIj−1 +
SMj
50

SMDI1 = SM1
50(

where SMDIj−1 represents the SMDI for first month and SMj denotes soil
moisture anomaly of month j)

SMj =
MAJ−MMAj

MAj−MA(min)j
× 100 , ifMAj ≤ MMAJ

SMj =
MAJ−MMAj

MA(max)j−MMAj
× 100 , ifMAj > MMAj(

MA(max)j , MA(min)j, and MMAj are long term maximum, minimum, and
median soil moisture at month j)

[26,27]



Remote Sens. 2021, 13, 1715 7 of 28

Agricultural drought arises as a consequence of meteorological drought due to insuf-
ficient precipitation, which in turn results in low water content in soil [33]. Agricultural
drought was measured by SMDI drought index in this study, which was considered as
observed SMDI. Moreover, ET is a very important factor that represents the status of soil
moisture availability. Thus, surface dryness in response to the soil moisture was evaluated
through the EDI drought index based on ET and PET representing the soil factors. The pre-
cipitation factor greatly influences meteorological drought which was calculated using PAI
and PCI drought index in this study [30]. Besides these indexes, SPEI [58] and SPI [64] were
calculated on a 3-month, 6-month, and 12-month time scale, which are able to reflect the dry
and wet condition of a particular area. SPI and SPEI were confirmed as preferable meteoro-
logical drought indices by several researchers in their studies [65–67] due to their simplicity
and flexibility for calculation at different time scales. Furthermore, crop growth is hindered
by high surface temperature, which was measured in this study using the temperature
condition index (TCI) [68]. Vegetation shows its response to a state of low precipitation
and deficit soil moisture [69]. This situation was measured using the VCI and VHI drought
indexes. Therefore, TCI, VCI, and VHI were used to represent the vegetation factor for
drought characterization. We used SMDI as a response variable for the DFNN model,
considering other factors (precipitation, soil and vegetation) as predictor variables. The
detailed description and method of SMDI can be found in Narasimhan and Srinivasan [26].
SMDI calculation values lie between −4 to 4, which correspond to the estimates of the
value from SPI. Hence, we classify drought events according to Carrão et al. [70], who
followed Mckee et al. [56] drought classification (Table 3). The detailed methodological
flow chart of the study is presented in Figure 2. First, the drought indices (which represent
both response and predicted variables) were calculated based on extracted phenology
metrics. Then the drought monitoring model was constructed using DFNN architecture
and the output of the model (predicted SMDI) was compared with two machine learning
models. We validated the model with cross validation data in terms of R2, RMSE (root
mean square error), MAE (mean absolute error) and residual deviance. The output of the
model was evaluated with in-situ SPEI.
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Table 3. Drought classification based on SMDI.

Drought Class SMDI Range

Extreme Dry SMDI ≤ −2
Severe Dry −2 ≤ SMDI ≤ −1.5

Moderate Dry −1.5 < SMDI ≤ −1
Near Normal −1 < SMDI < 1
Wet condition SMDI > 1

2.4. Phenology Extraction

Phenology metrics are very important indicators for ecosystem function, as delayed
or advanced phenology metrics result in increased or decreased net primary production
(NPP) which influences crop yield. Phenology mainly refers to the calculation of Start of
Season (SOS), Length of Season (LOS), and End of Season (EOS) [71]. These phenology
stages, however, are affected by varying degrees of drought, and we investigated the
severity of drought for each phenology stage. As each crop growth stage has different
water requirements–for example, vegetative, flowering, and grain filling stages are more
sensitive to water–we extracted the period of SOS, LOS, and EOS to quantify the water
deficit during these periods. Therefore, we decided to use the same periods of each
phenology stage to calculate all drought indices. The phenology metrics were calculated
in R software using the greenbrown package [72]. For example, the SOS, LOS, and EOS
extracted from the smoothed time series NDVI in R software varies from March to May,
May to August, and September to October, respectively, from 2001–2016 over South Asia.
Thus, monthly drought indices values (VCI, TCI, VHI, SMDI, EDI, PAI, PCI, SPI-3, SPI-6,
SPEI-3, SPEI-6) between SOS, LOS, and EOS for each pixel were used to obtain individual
years’ drought status. To calculate the phenology metrics, the seasonality parameters were
checked and extracted using a fast Fourier transformation of the time series NDVI data
from GIMMS-NDVI (Global Inventory Modeling and Mapping Studies-NDVI). The tsgf
(temporal smoothing and gap-filling) method was applied for temporal smoothing, which
uses the derivative method taking into account the minimum mean annual value of each
grid cell to determine SOS, LOS and EOS. Average phenology metrics extracted from the
smoothed NDVI are presented in Figure 3.
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2.5. Construction of Deep Learning Model Using DFNN

Deep learning is recognized as part of machine learning, capable of solving complex
tasks in the form of object detection, feature selection, image classification, and decision
making [73]. Deep learning varies from conventional neural networks in that it utilizes
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many layers and several hidden layers, whereas a traditional neural network utilizes just
two to three layers [74,75]. In the present study, we used the H2O package, which was
designed for DFNN as a deep learning model to use in the R software [74]. DFNN, a
supervised learning model with error back-propagation, can be found in detail at https:
//docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html (accessed on
27 September 2020). DFNN, also known as Feed Forwarded Neural Network (FFNN),
approximates the function by learning the value of the parameters. In this way, information
passes from the input nodes through hidden layers to the output layers, indicating a
one-way direction with no loops in the network. Our model was a multi-layer perceptron
interconnected in a feed-forward way with one input layer containing the 12 explanatory
variables (predictor variables), 4 hidden layers each of 300 nodes, and an output layer
(response variable) (Appendix A). A drought-monitoring model was constructed based on
DFNN considering SMDI as the function of precipitation, vegetation and soil factors as
presented in Equation (1). Therefore, we employed 12 drought indices as input parameters
to reflect the complex interaction between precipitation, vegetation, and soil factors.

Model Y = f (precipitation, vegetation, soil) (1)

where Y = SMDI; precipitation = PAI, PCI, SPI-3, SPI-6, SPEI-3, SPEI-6; vegetation = VCI,
VHI, TCI; and soil = EDI. In the present study, for each input variable a raster image of
7818 (row) × 8859 (column) dimension with a total pixel cell of 69259662 was used. Each
pixel cell of a raster image represents the value of a corresponding input variable. Thus,
the total size of the data is 69,259,662 for each input variable was used in the deep leaning
model. First, the data set was randomly split into three parts, i.e., (i) training data (75% of
the total sample), (ii) validation data (12.5% of the total sample), and (iii) test data (12.5%
of the total sample). Generally, a training data set is used to fit the model with weights
and biases in the case of a neural network. The model also learns from the training data
set. Validation data is a sample of data used for unbiased evaluation of model fit while
tuning model parameters on the training data set. Alternatively, the evaluation of the final
model fit is usually done with a test data set. We applied the same data partition for 16
years (2001–2016). We calibrated the model by tuning different parameters of the model
on the training data set, and the model results were validated using cross validation (a
resampling procedure of the data set used to validate the model in order to estimate how
the model is expected to perform) data. Further, we statistically compared the model’s
performance on the test data set.

2.6. Model Calibration on Training Data Set by Tuning Model Parameter

To obtain the optimal structure of a DFNN model, the number of hidden layers and
nodes setup is a crucial factor, as the model’s performance and accuracy largely depends
on the size of the data set and model parameters. First, we used the default parameter
of the H2O package to build neural networks which include the ‘Rectifier’ activation
function with 200 neurons and 10 epoch (number of passes over the training data set to
be carried out). In addition, the L1 and L2 regulation (representing the sum of square
of all weights and biases in the network) used to prevent overfitting were assigned to a
default value of 0. The hidden drop-out ratio that permits a large number of the models to
be averaged as an ensemble was fixed to a default value of 0. Then, we examined model
performance with the above-mentioned input parameters by enabling early stopping,
which stops training when the model reaches a certain validation error. In order to obtain
low RMSE, MAE, and mean deviance with a high R2 value, we increased the number of
neurons from 200 to 300, L1 and L2 0 to 1 × 10−6, hidden drop out ratio of 0 to 0.2 after
each iteration, with epoch remaining at 10. The ‘max_W2’ (a maximum sum of squared
incoming weights into anyone neuron) parameter, useful for unbound activation function,
was also added with a value of 10. The ‘max_W2’ function introduces bias into parameter
estimates, but frequently produces substantial gains in modeling as estimate variance is
reduced, which enables high predictive accuracy. Moreover, the activation function was

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html
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changed from ‘Rectified leaner unit’ to ‘RectifierWithDropout’ (‘Rectified leaner unit’ and
‘RectifierWithDropout’ represent non-linear activation functions) to activate the neurons
more actively. We obtained minimum error for each of the performance metrics (RMSE,
MAE, and deviance) when the data set irritated 10 times with 300 neurons, presented in
Figure 4. We highlighted the scoring statistics considering drought severity for the year
of 2012 as the same input parameters were applied for the rest of the years, hence why
discussion of all years is not necessary. Further, we demonstrated the scoring history of
the DFNN model at three phenology stages. Though there were some differences, the
scoring trend both in training and validation data were similar. We observed, during the
SOS stage, after starting the model, that the error increased sharply then decreased sharply,
with some upward and downward curves as the model progressed (Figure 4a). Error
became flat at epoch 10 for both data sets, demonstrating a low error rate. However, quite
the opposite scenario was found at the LOS stage, which showed a sharply decreasing
curve after starting the iteration. It became somewhat flat at epoch 10, though an upward
and downward curve is observed between 3–8 epochs (Figure 4b). In the case of the EOS
stage, the model initially showed a similar pattern to that seen in SOS, and then after the
10th learning time, the error values were likely at a minimum compared to other learning
times (Figure 4c). After calibration of the DFNN model, we obtained R2 for training and
validation data set, as shown in Table 4. Our model produced low R2 for training and
validation data set with fewer epochs, and a gradually higher R2 value occurred with
increasing epoch numbers. The results of the model had a good agreement with R2 values
of 0.811, 0.891, and 0.793 during SOS, LOS, and EOS stages, respectively, with epoch
number 10. These findings indicate that a model with a large number of epochs facilitates
better learning of the training data set and, in turn, better prediction results.

Table 4. Scoring performance of DFNN model at each iteration during the different phenological stage.

Epoch
Samples Training Speed (obs/sec) Training-R2 Validation-R2

SOS LOS EOS SOS LOS EOS SOS LOS EOS SOS LOS EOS

1 5501 5499 5500 592 595 768 0.622 0.550 0.684 0.749 0.555 0.689
2 11,002 10,998 11,000 671 696 861 0.575 0.565 0.737 0.703 0.569 0.737
3 16,503 16,497 16,500 724 766 929 0.643 0.608 0.755 0.770 0.611 0.745
4 22,004 21,996 22,000 770 820 989 0.502 0.757 0.744 0.523 0.762 0.742
5 27,505 27,495 27,500 808 866 1041 0.694 0.808 0.759 0.720 0.801 0.752
6 33,006 32,994 33,000 840 902 1084 0.778 0.870 0.784 0.816 0.873 0.775
7 38,507 38,493 38,500 871 937 1114 0.791 0.875 0.762 0.817 0.878 0.749
8 44,008 43,992 44,000 900 970 1151 0.798 0.881 0.769 0.815 0.878 0.754
9 49,509 49,491 49,500 929 1001 1185 0.801 0.889 0.784 0.818 0.880 0.775
10 55,010 54,990 55,000 956 1030 1216 0.811 0.891 0.793 0.830 0.892 0.778
11 60,511 60,489 60,500 981 1039 1244 0.809 0.881 0.778 0.828 0.886 0.761

2.7. Model Validation Using Cross-Validation Data

We validated the DFNN model internally using a cross-validation method that per-
mitted us to examine how well a model learned, i.e., the stability of the network structure.
A number of 5 to 10 is considered good for K-folds cross-validation, and we selected
the value for K as 10. The data were randomly split for 10 fold cross-validation. All 10
cross-validation models were formed based on 90% of the training data and 10% of the
validation data. The model computed validation metrics for every 10 cross-validations by
scoring against the true levels of 20% validation data. As a result, to make one prediction,
10 validation predictions are merged, and in this way overall cross-validation metrics
are computed. The outcome of the DFNN model cross-validation metrics is presented in
Figure 5. Figure 5 demonstrated high R2 value ranges from 0.77 to 0.80, 0.86 to 0.90, and
0.75 to 0.80 for the periods of SOS, LOS, and EOS phonology stages, respectively. A high
R2 value indicates a low error rate which is presented as RMSE (mean value for SOS = 0.32,
LOS = 0.31, and EOS = 0.44), MAE (mean value for SOS = 0.41, LOS = 0.22, and EOS = 0.33),
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and residual deviance (mean value for SOS = 0.17, LOS = 0.09, and EOS = 0.19) metrics by
cross-validation analysis. Overall results suggested that the parameter used for the DFNN
model was stable enough to reflect the high accuracy of the model for drought monitoring.
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2.8. Machine Learning Model

Apart from deep learning, two machine learning models, DRF and GBM, were used.
These two machine learning algorithms are flexible and robust for classification and regres-
sion tasks [16]. DRF is a tree-based algorithm that produces a forest of trees rather than
a single tree that uses a randomized subset of candidate features by applying bootstrap
sampling to make a final prediction [51]. GBM is also tree-based, using forward-learning
ensemble methods that build a regression tree on all features of the data set for building
a predictive model. It works by optimizing the loss function using a weak learner to
make a prediction, and by applying an additive model the loss function is minimized.
We used the H2O package for DRF and GBM analysis in the R software. To obtain optimum
performance, we kept the same value for some important parameters such as ‘number
of trees’, ‘max. depth’, ‘learn_rate’, ‘sample_rate’, fold_assignment = “Random” etc. for
both the DRF and GBM models. The important parameters with their choice of values are
present in Appendix B.
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2.9. Mann-Kendall Test for Drought Trend Analysis

The rank-based Mann–Kendall method, a nonparametric test, was applied to track the
increasing and decreasing trends of drought over South Asia at the pixel level during 2001–2016.
The Mann–Kendall test, expressed by Mann [76] and explained by Kendall [77], is com-
monly used for trend detection in the case of time series of environmental, climate and
hydrological data [78,79], as well as droughts and aridities of very different spatiotemporal
ranges in other very remote regions [80,81]. In general, the Mann–Kendal test follows a
monotonic trend rather than a strictly linear trend [82]. The magnitude of the trend was
detected by Shen’s slope estimator [83] to calculate the upward and downward change of
drought levels. A slope with a positive value indicates an increasing trend, while negative
values represent a decreasing trend. The equation of Shen’s slope is as follows:

β = mean
(

xj − xi

j − i

)
j > i (2)

In Equation (2), β is the trend of SMDI, i and j indicate the interval of the time series,
and xi and xj indicate the SMDI value for the year between i and j. The Mann–Kendall test
was performed using ‘spatialEco’ package in R software [84].

3. Results
3.1. Deep Learning and Machine Learning Model Performance with Observed Data and Its
Statistical Comparison Using Test Data Set in Detecting Drought Pattern

The discrimination between the deep learning and machine learning approaches for
drought distribution in terms of spatial pattern over South Asia is presented in Figure 6.
We also observed and compared the spatiotemporal change of drought conditions at three
phenology stages during the 2012 drought year, taking drought severity into account. Both
deep learning and two machine learning models show relatively low SMDI levels during
the SOS and LOS compared to the EOS stage. The northern and southwestern parts of
India, Bangladesh, and Nepal had more dry soil during SOS and LOS stages. However,
EOS representing drier soil in the southwestern part of India and the northwestern part
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of Bangladesh. When compared to the observed SMDI distribution, the DFNN and GBM
models captured a nearly identical drought pattern. Simultaneously, SMDI levels were
underestimated by the DRF model compared to the observed SMDI pattern over the South
Asia region. It is evident that at three phenology stages DFNN and GBM caught similar
SMDI patterns and well-matched with observed SMDI in terms of spatial distribution over
different parts of the South Asia region. To compare further, we statistically evaluated the
predicted performance on the test between the deep learning and machine learning models
in terms of RMSE, MAE, and MSE (mean square error) during three phenology stages
(Table 5). Results presented in Table 5 indicate that DFNN showed better performance with
low RMSE, MAE, and MSE than GBM and RF.
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As we can see in Figure 7, the frequency distribution of SMDI is almost identical to that
of the DFNN and GBM models. Still, less similarity was noticed in frequency distribution
for the DRF model. The frequency distribution shows its peak SMDI value of −1.2 and
−1.5 for both SOS and LOS stages, respectively. The frequency distribution curve was
found in the EOS stage with a peak greater than 0 (0.3) for all models. The performance
of deep learning and two machine learning models using a tailor diagram (DFNN, DRF,
and RF) is presented in Figure 8. The Taylor diagram presented in Figure 8 reveals that
DFNN and GBM performed well, demonstrating closer results to each other than the
DRF model. Further, the DFNN and GBM model comparison shows that the DFNN
performance is slightly better than the GBM model, even though the DFNN and GBM
models capture almost similar spatial patterns to the observed data in estimating SMDI.
This difference might be due to the multi-layer approach with high tuning parameters
that makes computations more practical in the DFNN model than the shallow-depth GBM
machine learning model, which has a comparatively low tuning parameter.
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Table 5. Comparison of the performance of deep learning and machine learning model on the test
data set for the prediction of SMDI.

Phenology Model
Test Data

RMSE MAE MSE

SOS
DFNN 0.417 0.310 0.174
GBM 0.439 0.330 0.193
DRF 0.443 0.318 0.196

LOS
DFNN 0.486 0.359 0.237
GBM 0.514 0.381 0.264
DRF 0.517 0.399 0.268

EOS
DFNN 0.466 0.354 0.217
GBM 0.501 0.378 0.251
DRF 0.514 0.403 0.265
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3.2. Spatiotemporal Pattern of Drought Based on SMDI Using a Deep Learning Model during
Three Crop Phenology Stages

To study the effect of precipitation, soil, and vegetation factors on SMDI, we did a
spatiotemporal analysis using a deep learning model. Spatially distributed SMDI with the
impact of input model parameters was investigated during three phenology stages: SOS,
LOS, and EOS. Figures 9–11 show the evolution of drought during different phenology
stages based on annual simulated SMDI values from the deep learning model over a 16-year
period. The findings seem to expose that the severest yearly droughts for the South Asia
region were found in 2002, 2006, 2012, and 2016 during SOS (Figure 9) whereas 2002, 2004,
2012, and 2016 saw severe drought for the duration of the LOS stage (Figure 10). However,
drought that hit at the EOS stage is visible during 2001, 2002, 2009, and 2014 (Figure 11).
Overall, the spatial agreement coming from the results of the deep learning model shows
high stability of SMDI values at three phenology stages. This high spatial agreement of
SMDI is demonstrative of precipitation, vegetation, and soil factors on drought patterns
over the South Asia region, which derives from the simulation of the deep learning model.
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The trend of drought over South Asia during three phenology stages was estimated
based on the Mann–Kendal test from 2001–2016, as shown in Figure 12. The spatiotemporal
pattern of increasing and decreasing drought trend (Figure 12a) and the corresponding
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significant level (Figure 12b) demonstrated that drought spatially increases in the central
part of Afghanistan and Northwestern part of Pakistan during SOS and LOS stages. Alter-
natively, Afghanistan, central Pakistan, and the northwestern part of India demonstrated
an increasing drought trend during the EOS stage. The erratic rainfall pattern with high
potential evapotranspiration causes a significant increasing trend of drought for the region
mentioned above. However, the southeastern and southwestern parts of Nepal and north-
ern parts of Bangladesh show a significant decreasing agricultural drought trend due to
high rainfall during the pre-monsoon and monsoon seasons.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 30 
 

 

The trend of drought over South Asia during three phenology stages was estimated 
based on the Mann–Kendal test from 2001–2016, as shown in Figure 12. The spatiotem-
poral pattern of increasing and decreasing drought trend (Figure 12a) and the correspond-
ing significant level (Figure 12b) demonstrated that drought spatially increases in the cen-
tral part of Afghanistan and Northwestern part of Pakistan during SOS and LOS stages. 
Alternatively, Afghanistan, central Pakistan, and the northwestern part of India demon-
strated an increasing drought trend during the EOS stage. The erratic rainfall pattern with 
high potential evapotranspiration causes a significant increasing trend of drought for the 
region mentioned above. However, the southeastern and southwestern parts of Nepal and 
northern parts of Bangladesh show a significant decreasing agricultural drought trend 
due to high rainfall during the pre-monsoon and monsoon seasons. 

 

 
Figure 12. The spatial pattern of drought trends over south Asia during SOS, LOS, and EOS phe-
nology stage form 2001–2016. The positive and negative values of the slope (a) indicate the in-
creasing and decreasing trend of drought, and the p-value (b) shows the significant level (p-value 
≤ 0.05) of changing drought. 

For a clear understanding, we have plotted the observed and predicted SMDI during 
three phenology stages from 2001–2016 (Figure 13). The performance of SMDI against the 
observed SMDI data demonstrates high accuracy prediction. The plots of SMDI are a close 
to one to one (1:1) line that agrees well with the observed SMDI values. The predicted 
SMDI looks to be functioning better at the LOS (R2 = 0.52 to 0.94) than the SOS (R2 = 0.57 
to 0.90) and EOS (R2 = 0.49 to 0.82) stages.  

Figure 12. The spatial pattern of drought trends over south Asia during SOS, LOS, and EOS phenol-
ogy stage form 2001–2016. The positive and negative values of the slope (a) indicate the increasing
and decreasing trend of drought, and the p-value (b) shows the significant level (p-value ≤ 0.05) of
changing drought.

For a clear understanding, we have plotted the observed and predicted SMDI during
three phenology stages from 2001–2016 (Figure 13). The performance of SMDI against the
observed SMDI data demonstrates high accuracy prediction. The plots of SMDI are a close
to one to one (1:1) line that agrees well with the observed SMDI values. The predicted
SMDI looks to be functioning better at the LOS (R2 = 0.52 to 0.94) than the SOS (R2 = 0.57
to 0.90) and EOS (R2 = 0.49 to 0.82) stages.
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Further, we investigated how much each input variable stimulates the SMDI distribu-
tion over South Asia by exploring the variable importance feature to the input function
of the deep learning model. Results presented in Table 6 suggested that precipitation
factors were the most important factors, contributing significantly to SMDI during the
three phenology stages. In addition, among the precipitation factors SPI-6 had the highest
contribution effects on SMDI variability simulated by the DFNN model.
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Table 6. Contribution of each input variable to the output function of the model. The relative
importance indicates how changes in the explanatory variables are linked to shifts in the response
variable of the model and the percentage represent the corresponding contribution of the variables.

Variables
Relative Importance Percentage

SOS LOS EOS SOS LOS EOS

SPI-6 1.0 1.0 1.0 15.60 20.40 19.30
SPI-3 0.918 0.671 0.578 8.18 9.40 6.16

SPI-12 0.538 0.435 0.451 6.62 4.30 5.14
SPEI-6 0.910 0.387 0.453 14.20 8.70 8.71
SPEI-3 0.457 0.323 0.440 4.12 4.38 5.33
SPEI-12 0.238 0.211 0.291 3.08 2.22 3.54

PCI 0.393 0.463 0.677 5.20 9.40 13.12
EDI 0.701 0.502 0.465 10.90 10.20 9.00
PAI 0.593 0.367 0.396 9.20 7.50 7.60
TCI 0.548 0.479 0.453 8.50 9.80 8.80
VHI 0.470 0.346 0.337 7.30 7.00 6.50
VCI 0.455 0.331 0.353 7.10 6.70 6.80

In addition, we measured the marginal impact of SPI-6 in three phenology stages pre-
sented in Figure 14 with the H2O partial plot function of the R program to understand how
SPI-6 influences the spatial distribution of SMDI over South Asia. The spatial variability of
SMDI followed the variability of SPI-6 to a great extent, indicating that with an increase
in SPI-6 value, the SMDI value also increased. The relationship between SPI-6 and SMDI
shows a linear trend that describes a unit change of SPI -6 value changes in soil moisture
occurs. From the above findings, we can conclude that soil moisture- induced drought
increases with a low precipitation rate.
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We performed a temporal analysis that provided a reasonable estimate of drought
severity for each phenology stage that is very sensitive to water stress (Figure 15) to
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understand how much each region is affected by drought. For example, droughts that
hit the South Asia region are distinctly noticeable for the years of 2002, 2004, 2006, 2012,
and 2016 affecting 21.22%, 22.99%, 23.82%, 23.57%, and 39.19%, respectively, of the total
area during the SOS stage. Further notable drought was detected in South Asia in 2002,
2004, 2012, and 2016, affecting 42.9%, 33.9%, 33.4%, and 32.2% of the total area, respectively,
during the LOS stage. However, comparatively less drought intensity was observed during
the EOS stage, influencing 34.64%, 27.48% and 11.2% land of the total area, respectively, in
2002, 2009, and 2014. Furthermore, we also explored the relationship of SMDI simulated by
the DFNN model with ground observed SPEI for the evaluation of inter-annual variability
of SMDI concerning precipitation. Taking one of the drought-affected stations as an
example, the temporal variation of SMDI and SPEI is presented in Figure 16 reveals that
SMDI anomaly fluctuations matched well with those of SPEI-3 and SPEI-6 anomaly. Based
on the analysis, it can be concluded that SMDI is well correlated with SPEI and SPEI shows
a more significant effect on SMDI anomaly.
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3.3. Uncertainties in SMDI Analysis by DFNN Model

Deep learning-based SMDI prediction is suitable for spatiotemporal drought infor-
mation that helps government planners to make mitigation and adaptation strategies
at the regional level. The deep learning model uses the observation weight column of
each incoming data associated with neurons used for bias correction. Thus, the weight of
each node determines the output of the entire network. However, the simulated results
of drought by the deep learning model mainly depend on learning from past drought
information, so an area with no experience of drought is challenging to predict for. Addi-
tionally, in our case we used different multi-sensors for remote sensing data with different
spatial resolutions, which requires a large number of high-quality training images for
better model learning. Moreover, the complexity of the high resolution remote sensing
images includes various types of objects with different sizes, rotations, and formats in a
single scene, requiring transformation to the same features which creates a problem of
robust learning and discriminative illustrations from the objects with deep learning [85].
The above-mentioned causes lead to some uncertainties during the model simulation. For
this, we calculated the bias that was generated during the training of the data for each
neuron and investigated its spatial pattern (Figure 17). The bias of all neurons ranges from
0.20–0.55 for three phenology stages (Figure 17a–c). Furthermore, the spatial distribution
of bias estimated by calculating the difference between model derived SMDI and observed
SMDI presented in Figure 17d–f shows that most of the South Asia region had no bias or
tended to zero, but some pixels of the northern and southern parts displayed overestimated
and underestimated values compared to the observed values. To minimize bias, we need
more training data with a more precise and accurate transformation of remote sensing for
better model learning.
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4. Discussion
4.1. Model Comparison and Performance

This study established the application of a deep learning model for monitoring drought
over South Asia. We also used two machine learning models, DRF and GBM, to compare their
performance against deep learning. In the case of capturing the spatial pattern of SMDI, the
DRF model differs significantly compared to the observed SMDI due to high errors during
the training of the data set for each iteration [16,86]. High learning rate and high speed in the
case of big data set reduce estimation error for each iteration of the DFNN and GBM models
compared to the DRF model, which leads the predicted pattern of SMDI trending towards the
observed SMDI pattern. However, the overall performance of deep learning is better than
the DRF and RF models because it tends to reduce estimation error with high accuracy due
to a multi-layer neural network. Alternatively, DRF requires more computational demand
owing to large tree size, which is one of the reasons for low performance over deep learning.
Then again, GBM is a slow depth model that offers fewer advantages for dealing with multi-
dimensional complex features than the deep learning model [87,88]. These differences might
cause the error and low accuracy for predicting SMDI by the DRF and GBM models. Moreover,
deep learning has the ability to find the optimal output in the case of high-dimensional data
features due to its multi-layer approach. Additionally, many input parameters such as hidden
layers with neurons, adaptive learning rate, grid search, dropout function etc. make the
computation more practical, more relevant, and advance the underlying algorithms resulting
in high predictive accuracy [85]. Sometimes even tree-based non-linear algorithms such as
GBM and DRF fail to learn from the data. In that circumstance, deep neural architecture
generates non-linear interaction among the variables due to its training stability, facilitating
learning the entire network together [75,89].

4.2. Drought Variation in Three Phenology Stages

In reality, most of the South Asia region persisted a dry condition and suffered from moder-
ate to severe drought, based on drought classifications presented in Table 1, at three phenology
stages during the above-mentioned drought years (presented in Section 3.2). Our findings
are consistent with the results reported by Mujumdar et al. [90], Neena et al. [91], and
Krishnan et al. [92] in which moderate to severe drought in the Indian sub-continent for
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the years 2002, 2004, 2009, 2014, and 2016 was noticed. The persistence of low soil moisture
during the different phenology stages is associated with low precipitation, which brings
changes in hydrology and water availability in soil particles. The low precipitation in-
volved with the EI Nino condition over the northwest and northcentral pacific leads to
monsoon rainfall deficiency in the South Asia region. Drought most affected the SOS and
LOS stages, compared to the EOS stage. SOS is mainly the onset of the monsoon season
characterized by a hot summer, which suffers from insufficient rainfall, whereas the LOS
stage lasts for the monsoon season with hot and humid conditions, which is also influenced
by low rainfall due to Indian Ocean Oscillation and the sea surface temperature gradient
between the Indian Ocean and the Bay of Bengal [93,94]. As a result, seasonal drought
occurs in SOS and LOS stages. In contrast, the EOS stage, which is the post-monsoon season
period, experienced comparatively fewer drought phenomena because the soil particles
hold the water that comes from rainfall during the monsoon season. Further, drought
gradually expanded from SOS to the LOS stage because crop water requirements reached
high levels during LOS due to a rapid increase in the crops’ vegetative growth. In addition,
high evapotranspiration with rising temperature makes the LOS stage more vulnerable to
drought conditions. However, the regional variation of drought trend over South Asia is
mainly attributed to the high variability of temperature and rainfall associated with faster
changing of the warming phase in the Indian Ocean [95].

4.3. SMDI Prediction and Drought Severity Assessment

The SMDI drought index is very robust to short-term dry conditions and very com-
parable across the season that estimated well the dry conditions in the three phenology
stages (SOS, LOS, and EOS), which represents agricultural drought. It is also spatially
comparable and varies from one phenology stage to other stages because SMDI is derived
from historical value, and the calculation is independent at each grid cell. Though drought
affects a large area of each phenology stage, dry and wetness conditions are primarily
region-specific, based on precipitation, land cover type, soil texture, and water holding
capacity [96–98]. The country-level analysis shows the severity of local droughts in India,
Pakistan, and Afghanistan during the three phenology stages. This result might be due
to the moderate El Niño condition with irregular atmospheric convective activity over
the north-central Pacific, which caused rainfall insufficiency over the Indian subconti-
nent [99–101]. Moreover, extended monsoon breaks in the Indian Ocean triggered by
ocean-atmosphere dynamical coupling on the intra-seasonal time scale generates drought
over the Indian sub-continent [92,102]. The continental- and country-scale analysis aids
in understanding the magnitude of local droughts, which may aid in policy formation for
post-disaster management to mitigate drought’s impact on natural resources.

5. Conclusions

The present study explored the applicability of a deep learning model to monitor
agricultural drought using remote-sensing data. The skill of the model was evaluated
using cross-validation data during the training phase of the model. Additionally, the inter-
annual variability of the SMDI was investigated using ground observation data measured
with SPEI. The results suggested that the DFNN model was the most-capable tool for
monitoring drought across South Asia during three phenology stages. The DFNN model
outperformed the other two DRF and GBM models considering precipitation, soil, and
vegetation factors. The simulated SMDI by the DFNN model had good consistency with
the observed SMDI, and it also matched well with SPEI. The DFNN model estimated
yearly drought intensity with high spatial variability across the three phenology stages.
The spatial variability was attributed mainly due to the precipitation variability that was
examined by the model using relative importance features. Results suggested that droughts
in the South Asia region are clearly evident for the years of 2002, 2004, 2006, 2012, and 2016
influencing 21.22%, 22.99%, 23.82%, 23.57% and 39.19% respectively of the total area during
the SOS stage while, during LOS stage, 42.9%, 33.9%, 33.4%, and 32.2% of the total area was
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affected by drought in the years of 2002, 2004, 2012, and 2016 respectively. Alternatively,
a reasonably less drought intensity was found during the EOS stage, which caused soil
dryness for the years 2002, 2009 and 2014, affecting 34.64%, 27.48% and 11.2% of the total
area. The drought prediction system using a deep learning approach facilitates improving
agricultural drought monitoring capability over South Asia during crop phenology stages.
Moreover, that this study provides a guide of necessity to adopt adaptation strategies
or improved management practices by understanding the risk of drought in each crop
growing month is one of our contributions. However, the effectiveness and operational
ability of the model depend on model input parameters and the size of the training data
set. In this regard, incorporation of more drought factors as input parameters with remote
sensing-based approaches to meteorological and hydrological drought using different
hybrid models could be a future research approach.
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Appendix A 

 

Figure A1. An architecture of the DFNN model used in this study with one input layer, four hidden
layer, and one output layer connected with neurons (a). The output is achieved by the linear sum
through non-linear activation function (RectifierWithdropout) passing by the layers with neurons
where each neurons receive one or more input signal (b).
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Appendix B

Table A1. The detailed list of parameters with their values used for DRF and GBM models.

Model Parameters

DRF

training_frame = train, validation_frame = valid, model_id = “Random forest”,
ntrees = 300, learn_rate = 0.3, max_depth = 30, sample_rate = 0.7, col_sample_rate =

0.7, stopping_rounds = 2, stopping_tolerance = 0.001, score_each_iteration = T,
nfolds =10, fold_assignment = “Random”, max_depth = 30,

keep_cross_validation_fold_assignment = T, seed = 125, stopping_metric = “RMSE”

GBM

training_frame = train, validation_frame = valid, ntrees = 300, learn_rate = 0.3,
max_depth = 30, sample_rate = 0.7, col_sample_rate = 0.7, stopping_rounds = 2,

stopping_tolerance = 0.001, score_each_iteration = T, model_id = “gbm”, nfolds = 10,
fold_assignment= “Random”, keep_cross_validation_fold_assignment = T, seed =

125, stopping_metric= “RMSE”
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