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Abstract: The largest area of tropical rainforests in China is on Hainan Island, and it is an important
part of the world’s tropical rainforests. The structure of the tropical rainforests in Hainan is complex,
the biomass density is high, and conducting ground surveys is difficult, costly, and time-consuming.
Remote sensing is a good monitoring method for biomass estimation. However, the saturation
phenomenon of such data from different satellite sensors results in low forest biomass estimation
accuracy in tropical rainforests with high biomass density. Based on environmental information,
the biomass of permanent sample plots, and forest age, this study established a tropical rainforest
database for Hainan. Forest age and 14 types of environmental information, combined with an
enhanced vegetation index (EVI), were introduced to establish a tropical rainforest biomass estimation
model for remote sensing that can overcome the saturation phenomenon present when using remote
sensing data. The fitting determination coefficient R2 of the model was 0.694. The remote sensing
estimate of relative bias was 2.29%, and the relative root mean square error was 35.41%. The tropical
rainforest biomass in Hainan Island is mainly distributed in the central mountainous and southern
areas. The tropical rainforests in the northern and coastal areas have been severely damaged by
tourism and real estate development. Particularly in low-altitude areas, large areas of tropical
rainforest have been replaced by economic forests. Furthermore, the tropical rainforest areas in some
cities and counties have decreased, affecting the increase in tropical rainforest biomass. On Hainan
Island, there were few tropical rainforests in areas with high rainfall. Therefore, afforestation in
these areas could maximize the ecological benefits of tropical rainforests. To further strengthen the
protection, there is an urgent need to establish a feasible, reliable, and effective tropical rainforest loss
assessment system using quantitative scientific methodologies.

Keywords: tropical rainforest ecosystem; forest biomass; forest spatiotemporal evolution; forest
environmental information; estimation models in remote sensing

1. Introduction

The rapidly increasing global population, land-use change, and large-area forest fires
have resulted in a downward trend in global biomass in recent years [1–5]. With global
warming, forest biomass could effectively delay the increase in carbon dioxide, which has
attracted much attention [6,7]. Tropical rainforests in low latitudes account for 59% of
the global forest biomass carbon sequestration [8,9]. The study of carbon sequestration
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by tropical rainforest biomass is of great significance for accurately assessing the global
carbon cycle. Due to the complex canopy structure of tropical rainforests, it is difficult to
estimate the biomass using traditional methods [6,10–12]. Additionally, owing to a lack
of large-scale traditional sample plot investigations, few studies have monitored tropical
rainforest biomass in large-scale spaces. Remote sensing technology can effectively monitor
tropical rainforests in large-scale spaces. In addition, the use of remote sensing images to
determine the distribution, type, growth, and other information of vegetation is a common
measure to monitor dynamic changes in forest biomass [13].

At present, the normalized vegetation index (NDVI) and enhanced vegetation index
(EVI) are generally used to estimate forest biomass by remote sensing [14,15]. However,
NDVI is greatly affected by vegetation density and non-vegetation areas [16–18]. Experi-
mental results have shown that NDVI performs poorly in estimating tropical rainforest
biomass. The EVI algorithm is like the NDVI. However, EVI uses the new MODIS mea-
surement method and has a better measurement capability. Moreover, EVI can avoid the
errors caused by atmospheric disturbances and soil conditions, making it more sensitive to
canopy changes in tropical rainforests [16].

In addition, scholars have improved the saturation phenomenon of forest biomass
estimation with remote sensing over the years but have been limited to vegetation index
extraction [19,20]. However, the heterogeneity of forest structures was the main factor in
the saturation phenomenon in forest biomass estimation with remote sensing. In particular,
environmental factors indirectly affect vegetation distribution, forest composition and
structure, forest growth, and forest vegetation spectral characteristics [21,22]. At present,
several remote sensing forest biomass estimation models are based on forest-related mea-
surable factors. By introducing other information, such as environmental factors, to further
improve the model structure, the accuracy of tropical rainforest biomass estimation with
remote sensing can be improved.

This study is based on data from the continual investigation of forest resources from
2003 to 2018 in Hainan (a total of 133 typical tropical rainforest permanent sample plots
in four periods) and field survey data of tropical rainforest biomass, combined with
meteorological data, terrain data, soil data, and population density data over the past 15
years. It is worth noting that in large spaces, forest age is the most important factor in
forest biomass estimation [23]. Through correlation analysis, this study screened 14 main
environmental factors to establish a tropical rainforest database (environmental information
database, permanent sample plots biomass database, and forest age database) in Hainan.
A tropical rainforest biomass estimation model using remote sensing with environmental
information was established according to the change process of tropical rainforest biomass
with forest age. We aimed to study the spatial distribution pattern of biomass in Hainan
from 2003 to 2018 to overcome the saturation phenomenon and improve the accuracy
of tropical rainforest biomass estimation with remote sensing (Figure 1). This study can
help improve the level of scientific and technological decision-making and management of
tropical rainforest resources by quantitative means and lay a foundation for the scientific
operation and management of tropical rainforest ecosystems.
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Figure 1. Tropical rainforest biomass estimation with remote sensing.

2. Method
2.1. Establishment of Hainan Tropical Rainforest Database

Hainan Island in China is a special economic and pilot free-trade zone located on the
northern edge of the Indo Malay Rainforest (18◦09′–20◦11′ N, 108◦36′–111◦04′ E). Hainan
Island is composed of 18 cities and counties (Figure 2). The Hainan Island covers an area
of 34,000 km2 and has a forest coverage of 57.36%. It is the largest contiguous tropical
rainforest in China.

Figure 2. Distribution of cities and counties on Hainan Island.

China’s National Forest Continuous Inventory takes provinces as a unit. In principle,
a review is conducted every five years. The provinces where China’s National Forest
Continuous Inventory is carried out every year are uniformly arranged by the competent
forestry authorities under the State Council. Data of 133 permanent forest sample plots in
Hainan Island were obtained from China’s National Forest Continuous Inventory in 2003,
2008, 2013, and 2018 (Figure 3). Reexamination should be carried out in the same year, and
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the results should be reported to the competent forestry authorities under the State Council
two years later.

Figure 3. Permanent sample plots and distribution of sample points estimated by remote sensing in
Hainan Island.

Using ArcGIS 10.8 software, the database was established as follows: (1) Based on
the daily observation data of 553 meteorological stations in Hainan Island from 2003
to 2018, a climate database (1 km resolution) consisting of annual average maximum
temperature, annual average minimum temperature, and annual average rainfall was
constructed by spatial interpolation. By providing a prototype of the dynamic climate
data, a website is able to maintain local climate data in the local system, while another
centralized website continuously updates the data through a public database and provides
access to all website data [24]. (2) The Chinese soil science database was utilized (the
reference before 1 January 2021) [25]. In this study, spatial interpolation was used to
generate the soil types: pH−H2O, pH−KCl, total nitrogen, potassium, and phosphorus
contents, and other soil databases (2 km resolution). (3) Based on SRTM data and Hainan
administrative boundary, a DEM terrain database (90 m resolution) [26] was generated. (4)
Combining the population statistics data of Hainan Island for 2003, 2008, 2013, and 2018
with land-use types, night light brightness, and residential density, the population data
were distributed to 3.06 million grids according to the multiple-factor weight distribution
method, and a human-disturbance database (1 km resolution) of population dynamic
evolution was generated by spatial interpolation [27]. In this way, the population of a
specific area could be estimated by adding the population involved in each grid area. (5)
Based on China’s National Forest Continuous Inventory data of Hainan for 2003, 2008,
2013, and 2018 [28] and Landsat 7 and Landsat 8 remote sensing image interpretation data
in Hainan Island, a woodland range database (1 km resolution) consisting of woodland,
shrubbery, economic forest, bamboo forest, and other woodlands was generated. (6) Based
on China’s National Forest Continuous Inventory data of Hainan for 2003, 2008, 2013, and
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2018 [28], 133 permanent sample plots were screened out, and the 133 permanent sample
plots contained 16,280 sample trees. The forest biomass data of 70 main tropical rainforest
tree species (280 trees) were collected using the standard tree full digging method [29]. A
tropical rainforest biomass database of permanent sample plots was generated using the
W = a×

(
D2H

)b model; where W denotes tropical rainforest biomass, D is DBH, H is
tree height, and a, b are parameters [29]. According to this model, we measured the forest
biomass of 133 permanent plots in 2003, 2008, 2013 and 2018. Therefore, a forest biomass
sample plot database for Hainan Island was established. (7) Based on the forest age from
China’s National Forest Continuous Inventory data in Hainan (in 2018), the scope of the
natural forest resource protection project in Hainan, manual visual interpretation data of
Landsat historical remote sensing images, and a forest age database (1 km resolution) [30]
were generated by spatial interpolation.

There were 14 pieces of environmental information involved in this study, all from
the tropical rainforest database mentioned above (Figure 4). Among them, the annual
average maximum temperature (◦C), annual average minimum temperature (◦C), and
annual average rainfall (mm) were from the climate database. The information on soil
pH−H2O, soil pH−KCl, total nitrogen content of the soil (%), total potassium content
of the soil (%), and total phosphorus content of the soil (%) were all obtained from the
soil database. The slope gradient (◦), slope direction (◦), and altitude (m) were obtained
from the DEM terrain database. The human-disturbance factor (person/ha) was obtained
from the human-disturbance database. Latitude (◦ ′ ′′) and longitude (◦ ′ ′′) were used for
geographical registration between different data. In addition, tropical rainforest biomass
was derived from the tropical rainforest biomass database. Forest age was taken from
forest age database.

Figure 4. Hainan tropical rainforest database.

2.2. Enhanced Vegetation Index Extraction Method Based on MODIS Product Data

In this study, the EVI index was calculated using MODIS product data provided by
NASA [31]. The time and spatial resolutions were 16 days and 250 m [32], respectively,
and the time series were 2003, 2008, 2013, and 2018. The product data of the study area
covered by the image in each period includes two tile data points (h28v06 and h28v07).
In addition, the vector image of Hainan was used to calculate a mask of the original
image data. Using the batch processing function of the MODIS Reprojection Tool (MRT)
software, the concatenation and projection of MODIS datasets (UTM zone 49n, WGS-84)
was completed [33]. IDL programming technology [34] was used for vector clipping and
other batch processing of the study area. Of the different image denoising methods in
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TIMESET, such as S-G filtering, asymmetric Gaussian fitting, and double logistic fitting,
we used the S-G filter to preserve the image details. Furthermore, the algorithm was not
limited by the data of the image itself, which improved the applicability of smoothing
filtering.

At present, the strategy of using remote sensing estimation methods to calculate
vegetation coverage mainly involves regression models, unit data value decomposition
models, and the most used vegetation index methods. As there is a significant correlation
between vegetation coverage and vegetation index, the unit data value dichotomy model
(including 1%, 99%, and 5%, 95%) and maximum value composite (MVC) could be used to
estimate the vegetation coverage. In this study, a MVC method was adopted to superimpose
image layers with different cycles for each year, and the unit data value of each raster was
taken as the maximum value among multiple cycle image layers, thus forming a method
of synthesizing image data [33]. The calculation formula is as follows:

EVIi = Max EVIi−j (1)

where EVIi is the maximum composite value of EVI in the i-th year, which was also the
highest value of vegetation coverage. EVIi−j is the value of vegetation coverage of each
unit data value in each cycle, and each cycle is 16 days. As a result, there are 23 images per
year (1 ≤ j ≤ 23).

2.3. Establishment of the Tropical Rainforest Biomass Estimation Model for Remote Sensing
in Hainan

Previous experiments, based on the commonly used tropical rainforest biomass remote
sensing estimation linear model (Model 2), considered only EVI to estimate the tropical
rainforest biomass:

W = a× EVI + b (2)

where a is the model fitting parameter, and b is the constant. W is the tropical rainforest
biomass. Considering that EVI may be saturated in tropical rainforest biomass estimation
with remote sensing, a tropical rainforest biomass estimation model for remote sensing
(Model 3) with forest age was established:

W = e (a− b
t+c ) × e(d×EVI) (3)

where a, b, and c are the model fitting parameters of forest biomass change with forest
age, and t is forest age. d is the model fitting parameter of the impact of EVI on forest
biomass. Finally, the environmental factors indirectly affecting vegetation distribution, for-
est structure, forest growth, and forest vegetation spectral characteristics were introduced
to establish a tropical rainforest biomass estimation model for remote sensing:

W = e(a− b
t+c ) × ed×EVI+∑ ci×xi (4)

where ci is the model fitting parameter of the impact of environmental information on
forest biomass, and xi is the environmental information, including latitude, longitude,
average annual maximum temperature, average annual minimum temperature, annual
average rainfall, slope gradient, slope direction, altitude, human-disturbance factor, soil
pH−H2O, soil pH−KCl, and the total nitrogen, phosphorus, and potassium contents of
the soil.

The three tropical rainforest biomass estimation models established in this study were
all realized using IBM SPSS Statistics 25 software.

2.4. Data Preprocessing before Tropical Rainforest Biomass Estimation Model Fitting

In this study, Model 2, Model 3, and Model 4 were tested for multicollinearity. Among
them, Model 2 was a linear model. The tolerance value and VIF value were 1.000 and 1.000,
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respectively. Model 3 and Model 4 were nonlinear models. The VIF value and tolerance
value of EVI of Model 3 were 1.024 and 0.977, respectively. The VIF value and tolerance
value of forest age were also 1.024 and 0.977, respectively. In Model 4, a multicollinearity
analysis was performed using EVI, forest age, and 14 environmental factors. The VIF values
of these 16 factors were between 1.215 and 7.248, and the tolerance values were between
0.138 and 0.823. The VIF values of the three models were all less than 10, and the tolerance
values were between 0 and 1. The results showed that there was no multicollinearity in
the three models. When different feature vectors come together, as a result of their own
expression, the absolute value of the small data is negligible compared to that of the big
data. This study needed to normalize the extracted features vector, ensuring that each
feature vector was treated equally by the classifier (Table 1). The normalization of a feature
vector was as follows: 1. Latitude (◦ ′ ′′): From north to south, Hainan Island stretches from
Mulan Bay (northern latitude: 20

◦
09′32′′) to Jinmu Corner (northern latitude: 18

◦
09′21′′);

2. Longitude (◦ ′ ′′): From west to east, it stretches from Beibu Gulf (eastern latitude:
108

◦
37′15′′) to Tonggu Corner (eastern latitude: 111

◦
03′06′′); 3. Altitude (m): Wuzhishan

is the highest mountain on Hainan Island, with a peak altitude of 1867.1 m, while the
lowest altitude of Hainan Island is 0 m; 4. Annual average rainfall (mm): Over nearly
15 years, the annual average rainfall on Hainan Island from 2003 to 2018 was between
834 mm and 3404 mm; 5. Annual average minimum temperature (◦C): The lowest annual
average minimum temperature on Hainan Island from 2003 to 2018 was between 14.73 ◦C
and 25 ◦C; 6. Annual average maximum temperature (◦C); The annual average maximum
temperature on Hainan Island from 2003 to 2018 was between 27.35 ◦C and 35.47 ◦C; 7.
Slope gradient (◦): The slope gradient was between 0◦ and 64.5◦; 8. Slope direction (◦): The
slope direction was between 0◦ and 459◦; 9. Human-disturbance factor (person/ha): The
human-disturbance factor on Hainan Island from 2003 to 2018 was between 0.43 person/ha
and 127.01 person/ha; 10. Soil pH−H2O: The soil pH−H2O on Hainan Island was
between 0 and 14; 11. Soil pH−KCl: The soil pH−KCl on Hainan Island was between 0
and 14; 12. Total nitrogen content of the soil (%): The total nitrogen content of the soil on
Hainan Island was between 0% and 0.67%; 13. Total phosphorus content of the soil (%):
The total phosphorus content of the soil on Hainan Island was between 0% and 0.76%; 14.
Total potassium content of the soil (%): The total potassium content of the soil in Hainan
Island was between 0% and 4.40%.

Table 1. Normalization formulas of the 14 environmental information variables.

Environmental Information Normalization Formula

Latitude (◦ ′ ′ ′) XB = B−Bmin
Bmax−Bmin

Longitude (◦ ′ ′ ′) XL = L−Lmin
Lmax−Lmin

Altitude (m) XH = H−Hmin
Hmax−Hmin

Annual average rainfall (mm) XR = R−Rmin
Rmax−Rmin

Annual average minimum temperature (◦C) XTMIN = TMIN−TMINmin
TMINmax−TMINmin

Annual average maximum temperature (◦C) XTMAX = TMAX−TMAXmin
TMAXmax−TMAXmin

Slope gradient (◦) Xα = sinα

Slope direction (◦) Xβ =
cosβ+1

2
Human-disturbance factor (person/ha) XC = C−Cmin

Cmax−Cmin

Soil pH − H2O XH2O = H2O−H2Omin
H2Omax−H2Omin

Soil pH − KCl XKCl =
KCl−KClmin

KClmax−KClmin

Total nitrogen content of the soil (%) XN = N−Nmin
Nmax−Nmin

Total phosphorus content of the soil (%) XP = P−Pmin
Pmax−Pmin

Total potassium content of the soil (%) XK = K−Kmin
Kmax−Kmin
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3. Results
3.1. Fitting Results and Accuracy Evaluation of the Remote Sensing Estimation Model for Tropical
Rainforest Biomass in Hainan

We used 399 fitting sample data points and 133 verification sample data points from
133 forest sample plots from phase 4 (in 2003, 2008, 2013, and 2018). Model 3 and Model
4 were developed and built based on 399 fitting sample data units. IBM SPSS Statistics
25 software was used to fit the tropical rainforest biomass estimation model for remote
sensing. Combined with the forest age, environmental information, and remote sensing
factor EVI, the goodness of fit significantly improved from Model 2 (R2< 0.100) to Model
3 (R2 = 0.568), and finally to Model 4 (R2 = 0.694). The estimated values, standard errors,
and 95% confidence intervals of the parameters fitted by Model 3 are listed in Table 2.
The estimated values, standard errors, and 95% confidence intervals of the parameters
fitted by Model 4 are listed in Table 3. The results show that the human-disturbance factor
had the strongest correlation with the tropical rainforest biomass estimation model in
remote sensing. It was much higher than other environmental information. In addition
to human interference with environmental information, the annual average rainfall, total
phosphorus content of soil, longitude and tropical rainforest biomass estimation model
for remote sensing were also strongly correlated. Annual average minimum temperature,
soil pH−KCl, and the tropical rainforest biomass estimation remote sensing model had a
weak correlation.

Table 2. Fitting results of the tropical rainforest biomass estimation remote sensing model (Model 3).

Name Parameter Estimate Standard Error
95% Confidence Intervals

Lower Limit Superior Limit

a 9.200 0.910 7.410 10.990
b 413.135 211.089 −2.153 828.423
c 79.469 31.004 18.473 140.465

EVI d −0.406 0.329 −1.054 0.242

Table 3. Fitting results of tropical rainforest biomass estimation remote sensing model (Model 4).

Name Parameter Estimate Standard Error 95% Confidence Intervals
Lower Limit Superior Limit

a 9.800 0.886 8.057 11.543
b 248.635 95.162 61.386 435.885
c 50.643 16.637 17.907 83.380

EVI d 0.555 0.363 −0.160 1.270
Latitude c1 −0.667 0.288 −1.233 −0.101

Longitude c2 1.992 0.491 1.026 2.959
Annual average maximum

temperature c3 −1.299 1.114 −3.491 0.894

Annual average minimum
temperature c4 0.133 0.552 −0.954 1.220

Annual average rainfall c5 −4.411 1.047 −6.472 −2.349
Altitude c6 −0.138 0.295 −0.719 0.443

Slope gradient c7 −0.294 0.190 −0.668 0.080
Slope direction c8 −0.273 0.078 −0.426 −0.119

Human-disturbance factor c9 −20.616 7.465 −35.304 −5.928
Soil pH − H2O c10 −0.581 0.342 −1.254 0.092
Soil pH − KCl c11 −0.170 0.348 −0.855 0.515

Total nitrogen content of soil c12 0.886 0.509 −0.116 1.887
Total phosphorus content of soil c13 1.996 1.088 −0.123 4.115
Total potassium content of soil c14 0.884 0.188 0.513 1.254

We used 133 verification sample data points to analyze the accuracy of Model 3 and
Model 4. For verifying the accuracy of Model 4 estimation, the actual and remote sensing
tropical rainforest biomass estimation values were compared and analyzed. We obtained
Figure 5 through precision analysis. It can be seen from the figure that the estimated values
are evenly distributed on both sides of the actual values. The R2 of the verification accuracy
of Model 3 was 0.631. The R2 of the verification accuracy of Model 4 was 0.788, indicating
good accuracy. Model 3’s Bias, relative Bias, root mean square error (RMSE), and relative
root mean square error (RRMSE) were 6.376 Mg/ha, 3.619%, 88.565 Mg/ha, and 50.339%,
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respectively. Model 4’s Bias, relative Bias, RMSE, and RRMSE [35,36] were calculated as
4.920 Mg/ha, 2.796%, 67.459 Mg/ha, and 38.339%, respectively.

Figure 5. Accuracy evaluation of the tropical rainforest biomass estimation model (Model 3 and
Model 4) for remote sensing.

3.2. Spatial Pattern of Tropical Rainforest Biomass in Hainan

Based on the longitude and latitude of 5662 remote sensing estimation plots (Figure 3),
EVI, forest age, and 14 main pieces of environmental information were extracted from
the tropical rainforest database. The values of the 14 major environmental information
variables collected from the databases of climate, topography, soil, and human-disturbance
factors, and tropical rainforest biomass in 2003, 2008, 2013, and 2018, were estimated using
the fitted tropical rainforest biomass estimation remote sensing model. A spatial pattern
distribution of tropical rainforest biomass in Hainan was then generated using ordinary
kriging spatial interpolation (Figure 6), with a spatial resolution of 2.0 km.

The kriging method was used to interpolate the tropical rainforest biomass and
forestland area (Mg/ha) of each city and county in Hainan Island, and the total tropical
rainforest biomass and forestland area of 18 cities and counties were calculated (shown
in Figures 7 and 8). The administrative division of Hainan Island from 2003 to 2018 is
shown in Figure 2, and the biomass distribution of the tropical rainforest on Hainan Island
is shown in Figure 7. The tropical rainforest biomass distribution in Hainan’s cities and
counties was inconsistent. In this study, the biomass distribution of the tropical rainforest
in Hainan Island was ranked. The tropical rainforest biomass above 10 Tg was divided
into the first gradient, which included Ledong Li Autonomous County, Qiongzhong
Li and Miao Autonomous County, Wuzhishan City, Sanya City, Baoting Li and Miao
Autonomous County, Baisha Li Autonomous County, and Dongfang City. Cities and
counties with tropical rain forest biomass above 5 Tg were divided into the second gradient,
namely, Changjiang Li Autonomous County, Qionghai City, Wanning City, and Lingshui Li
Autonomous County. Cities and counties with biomass below 5 Tg were divided into the
third gradient, and they are Tunchang County, Wenchang City, Danzhou City, Chengmai
County, Ding’an County, Haikou City, and Lingao County. The tropical rainforest biomass
in all cities and counties increased annually, and Ledong Li Autonomous County had the
fastest growth rate.

The administrative division of Hainan Island is shown in Figure 2, from 2003 to
2018, and the forested area of Hainan Island is shown in Figure 8. The forestland area is
concentrated in the central part of Hainan. We classified the forestland area in different
cities and counties of Hainan Island. The forestland area of the first gradient was more
than 105 ha, which included Qiongzhong Li and Miao Autonomous County, Ledong Li
Autonomous County, and Baisha Li Autonomous County. The cities and counties with
a forestland area of more than 5× 104 ha were divided into the second gradient, namely
Sanya City, Wanning City, Qionghai City, Wuzhishan City, Dongfang City, Tunchang
County, Baoting Li and Miao Autonomous County, and Changjiang Li Autonomous County.
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The cities and counties with a forestland area of less than 5× 104 ha were divided into
the third gradient, namely Danzhou City, Chengmai County, Wenchang City, Lingshui
Li Autonomous County, Ding’an County, Linggao County, and Haikou City. Except for
Lingshui Li Autonomous County, Baoting Li and Miao Autonomous County, Qionghai
City, Wanning City, and Ledong Li Autonomous County, the woodland areas of other cities
and counties showed a downward trend. Among them, from 2003 to 2018, Qiongzhong Li
and Miao Autonomous County was the most seriously damaged forestland area.

Figure 6. Spatial pattern and distribution of tropical rainforest biomass in Hainan Island from 2003
to 2018.
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Figure 7. Distribution of tropical rainforest biomass in different cities and counties in Hainan Island
from 2003 to 2018.

Figure 8. Distribution of Forestland area in different cities and counties in Hainan Island from 2003
to 2018.

From 2013 to 2018, the forestland area in some cities and counties decreased rapidly.
The most destructive cities and counties were Danzhou City, Chengmai County, Dongfang
City, Qiongzhong Li and Miao Autonomous County, Baisha Li Autonomous County,
Ding’an County, Changjiang Li Autonomous County, Wuzhishan City, Lingao County,
Sanya City, and Haikou City.
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The specific changes of tropical rainforest biomass and forestland area in each city
and county of Hainan Island from 2003 to 2018 are shown in Figure A1 of Appendix A.

4. Discussion
4.1. Feasibility Analysis of Introducing Environmental Information to Estimate Forest Biomass

The common forest biomass estimation methods with remote sensing include adjust-
ing features, such as remote sensing color band, parameters, and texture (Table 4). The
choice of research methods has a significant effect on forest biomass estimation in the
temperate zone. However, in tropical rainforests with complex forest structures, the effect
of remote sensing estimation was not significant. Foody used a neural network to estimate
tropical rainforest biomass in Borneo, Malaysia. However, the remote sensing data of
some plots were affected by clouds or cloud shadows, resulting in a small number of sam-
ples [37]. Rödig used a forest model to estimate the change in tropical rainforest biomass
in the Amazon, combined with remote sensing and field work to improve the accuracy.
However, this method underestimated approximately 15% of biomass [38]. Sambatti used
airborne InSAR to estimate Amazon’s tropical rainforest biomass and found that the best
results were obtained by using X-band and P-band InSAR [39]. Hansen used airborne laser
scanning (ALS) to model tropical rainforest forest biomass in Tanzania, and it was effective
under extreme conditions of tropical rainforests [40]. However, the high cost of lidar and
airborne InSAR, as well as the lack of data in some periods and tropical regions, were not
conducive to tropical rainforest biomass estimation in Hainan from 2003 to 2018.

The most commonly used vegetation information measures for forest biomass estima-
tion with remote sensing have been NDVI and EVI. Motlagh used Spot-6 satellite images
and a regression model to analyze the accuracy measurement results of NDVI, RVI, and
TVI on the forest biomass of Helka forest in northern Iran and concluded that NDVI had
the highest accuracy [41]. However, NDVI is easily affected by the forest canopy, soil, atmo-
spheric molecules, and excessive forest biomass [42,43], especially in tropical rainforests,
which is close to saturation due to the complex canopy structure [44–46]. Bhardwaj also
confirmed that NDVI might not be a reliable method for estimating forest biomass carbon
storage in Himalayan subtropical forests [1]. For improving the sensitivity of tropical
rainforest biomass estimation, the EVI was selected in this study. EVI could minimize soil
brightness by introducing background adjustment parameters and atmospheric correction
parameters to increase sensitivity to differences in forest canopy density. Moreover, EVI
introduced a blue-light band, which could reduce the influence of the atmosphere using the
difference in aerosol scattering between the blue- and red-light bands [47]. EVI was better
than NDVI when used to extract vegetation information from remote sensing images, and
it could filter out impurities outside the vegetation information.

However, neither NDVI nor EVI could overcome the saturation phenomenon of forest
biomass estimation using remote sensing. Shen studied the relationship between forest
coverage and forest biomass and found no significant correlation between aboveground
biomass and EVI and NDVI when the canopy was covered with high flower density [47],
and the RMSE of forest biomass estimation was low. Anaya also proved that there was
no significant correlation between EVI and tropical rainforest biomass, even when the
parameters were adjusted [48]. Eckert used Pearson’s correlation analysis and stepwise
multiple linear regression analysis to determine the correlation between forest biomass
and EVI. Based on the spectral and texture information of Worldview-2, the model was
established, and the accuracy of the degraded forests was found to be higher than that of
non-degraded forests [49]. This further proved that when the forest biomass density is
high, the EVI would produce the saturation phenomenon in remote sensing estimation.

Propastin used NDVI to simulate the spatial relationship between vegetation and
rainfall in central Sulawesi Island and concluded that the spatial change in the study area
was caused by the difference in potential environmental factors (such as the vegetation
composition, soil type, hydrology, and land use) caused by terrain diversity [50]. Therefore,
this study considered introducing environmental information to estimate tropical rainforest
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biomass. In addition, Propastin added altitude when estimating forest biomass with
the remote sensing multispectral vegetation index (VI), which improved the accuracy
of the traditional GWR model [51]. This indirectly showed the feasibility of introducing
environmental information into this study to improve tropical rainforest biomass estimation
accuracy.

Table 4. Comparative analysis of forest biomass estimation with remote sensing.

Researcher Region Used Method Standard

Foody et al., 2001 Forests in Borneo,
Malaysia

Remote sensing data,
Artificial neural

networks
R2 = 0.645

Sambatti et al.,
2012

Pará, Brazilian
Amazon

Assessing forest
biomass and

exploration in the
Brazilian Amazon

with airborne InSAR

R2 = 0.82
Normalized RMSE = 13.7 %

Hansen et al.,
2015

Amani Nature
Reserve located in

the East
Usambara

Mountains in
eastern Tanzania,

tropical
submontane

rainforest

Airborne Laser
Scanning RMSE = 0.33 gm−2

Rödig et al., 2017 Amazon
rainforest

Remote sensing data,
An individual-based

forest model

R2 = 0.41
RMSEsamplesize>4ha = 0.12

RMSEall = 0.15 gm−2

Motlagh et al.,
2018

Hyrcanian forests
of north of Iran

NDVI, RVI and TVI;
Spot-6 satellite images

and regression
models

NDVI′s R2 = 0.56 ∼ 0.62

Bhardwaj et al.,
2016

Sub-tropical
forests of

northwestern
Himalaya

NDVI, the
relationship was
derived through

different functions
simultaneously.

R2 = 0.62

Shen et al., 2010

Haibei Alpine
Meadow

Ecosystem
Research Station

NDVI, EVI, a linear
spectral mixture

model.

NDVI′s RMSE 1
4 43 gm−2

EVI′s RMSE 1
4 43 gm−2

Anaya et al., 2009

Colombia is a
tropical country

in northern South
America

EVI, allometric
relationships

Primary′s R2 = 0.82
Secondary′s R2 = 0.55

Eckert et al., 2012

Soanierana
Ivongo District of

Analanjirofo
Region

Spectrum, texture,
EVI, the simple linear
model, usually fitted

by ordinary least
squares methods

(OLS)

Degraded f orest′s
R2 = 0.843

RMSE = 6.8 gm−2

Undegraded f orest′s
R2 = 0816

Normalized RMSE = 11.8 %

Propastin et al.,
2008

Central Sulawesi,
Indonesia

NDVI, precipitation,
geographically

weighted regression
model

R2 = 0.94

Propastin, 2012 Central Sulawesi,
Indonesia

Multispectral remote
sensing data, altitude
information, GAWR
model, developed
stratum-specific

allometric equations

GRW ′NDVI
′s R2 = 0.70

GAWR′NDVIs R2 = 0.81

In this study, only 14 main environmental factors, including climate, topography, soil,
and human-disturbance factors, were considered for tropical rainforest biomass estimation.
With an in-depth investigation of tropical rainforest resources and environment, the Hainan
tropical rainforest database could be further improved by considering natural disasters



Remote Sens. 2021, 13, 1696 14 of 20

and other environmental information. Therefore, future research should use a multimodal
data fusion method to carry out feature fusion of all environmental information, such as
meteorological fusion factors, topographic fusion factors, soil fusion factors, natural disaster
fusion factors, and human-disturbance factors, before tropical rainforest biomass remote
sensing estimation model fitting. This can avoid not only the over-fitting problem but also
ensure further improvement in the accuracy of tropical rainforest biomass estimation with
remote sensing.

4.2. Evaluation and Analysis of the Spatial Pattern of Tropical Rainforest Biomass in Hainan

In this study, the ordinary kriging interpolation method was used to perform the
difference analysis, as shown in Figure 9. From 2003 to 2018, the tropical rainforest biomass
in Hainan was mainly distributed in the central mountainous area and southern area of
Hainan, including Qiongzhong, Wuzhishan, Baisha, Changjiang, Dongfang, Ledong, and
Tunchang. Only a few tropical rainforests are distributed in the northern and coastal areas,
and the proportion of non-forest land was large, especially in the coastal areas of Wenchang,
Haikou, Ding’an County, Chengmai County, Lingao County, Sanya City, Ledong Li, Miao
Autonomous County, and Wanning City, which are close to the coastline. It was found
that human-disturbance has a strong correlation with biomass, which is mainly reflected
in the destruction of natural forestland areas. Indeed, from 2003 to 2015, land utilization
changed in Hainan Island; with the development of tourism, the conversion of cultivated
land to construction land took place in coastal plain areas, and the conversion of woodland
to farmland mainly took place in the east, northwest, and southeast of Hainan. For income,
the local government converted farmland into forests in Hainan, with coconut forests
in the northeast, eucalyptus forests in the west, and rubber forests in the northwest [52].
The tropical rainforests in northern Hainan were largely replaced by economic forests.
However, owing to the strong carbon sequestration, the tropical rainforest biomass in
Hainan showed an increasing trend. The forestland area fluctuated greatly every year, and
the forestland area decreased in some cities and counties, which slowed further increases
in the tropical rainforest biomass. As the tropical rainforests were challenging to repair,
the ecological loss caused by the reduction of tropical rainforest areas needs to be further
evaluated.

The year 2013 witnessed severe changes in the tropical rainforest areas in Hainan.
The main reason was that Hainan concentrated on developing tourism and the real estate
industry as its main economy during this period, which seriously damaged the coastal
tropical rainforests. In addition, low-altitude natural forests were at risk of being replaced
by economic forests, such as fruit trees [53]. However, in Wanning City, Lingshui Li
and Miao Autonomous County, Wenchang City, Haikou City, and Lingao County the
forestland area gradually recovered. Part of the reason for this was the establishment of
nature reserves. From 2000 to 2010, the forest area in nature reserves showed an increasing
trend, while the adjacent unprotected areas and wider unprotected areas experienced
deforestation [54]. The development of real estate in these areas was another concern. For
maintaining the overall ecological balance of Hainan, the local government increased the
area of forested land, but the area of restoration was far less than that of destruction. In
addition, the ecological loss caused by replacing the destroyed natural rainforest with
artificial rainforests needs to be further evaluated.

To meet the ecological civilization model advocated by Hainan, cities and counties
with low woodland areas and high damage need to consider afforestation and ecological
restoration in non-woodland and parts of unused construction land. From the fitting pa-
rameters of the tropical rainforest biomass estimation remote sensing model, the areas with
large annual average rainfall had fewer tropical rainforests. However, sufficient rainfall
would make the carbon sequestration of tropical rainforest biomass more evident [55].
Local governments could prioritize afforestation and ecological restoration in areas with
abundant rainfall. In addition, tropical rainforest biomass is generally proportional to
biodiversity [38]. The areas with high tropical rainforest biomass were suitable for adding
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nature reserves to strengthen the protection of tropical rainforests further, for example, in
the north of Sanya City, in the west of Baoting Li and Miao Autonomous County, in the
south of Wuzhishan City, in the south of Tunchang County, and in the south of Ding’an
County.

Figure 9. Distribution of forestland area and tropical rainforest biomass in Hainan Island from 2003
to 2018.

5. Conclusions

To overcome the saturation phenomenon of tropical rainforest biomass estimation
with remote sensing and improve the accuracy of spatial distribution estimation of tropical
rainforests in Hainan Island, this study established the Hainan tropical rainforest database
and introduced a tropical rainforest biomass estimation model that uses EVI, forest age,
and 14 environmental variables for remote sensing. Based on this model, the temporal
and spatial patterns of the tropical rainforest biomass in Hainan Island from 2003 to 2018
were evaluated and analyzed. This was a breakthrough attempt to estimate the spatial
distribution of tropical rainforests on a large scale. Considering that Hainan will soon
become a global free-trade port, any future development trends should effectively balance
economic development and environmental protection. Future work will consider further
improving the Hainan tropical rainforest database and increasing environmental informa-
tion to improve the accuracy of tropical rainforest biomass estimation. This study can lay
the foundation for using scientific and technological tools in the decision-making process
and management of tropical rainforests. In addition, despite the construction of artificial
tropical rainforests, the area of tropical rainforests in Hainan was found to have decreased
annually, making it difficult to reach the previous ecological level. Therefore, establishing
an ecological loss evaluation system for tropical rainforests will be an important future
research direction.
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Histograms showing the forest biomass of each city and county in Hainan Island, and
line charts showing the forest area of each city and county in Hainan Island.
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Figure A1. Trends of biomass and forestland area of tropical rainforest in different cities and counties
in Hainan Island from 2003 to 2018.
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