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Abstract: Globally, major cities are experiencing fast settlement growth, which threatens the equi-
librium of socio-ecosystems. In Pakistan, Abbottabad city in particular is experiencing fast urban
growth. The main source of daily water usage for the population in these types of cities is groundwa-
ter (tube–wells). Excessive pumping and the high need for ground water for the local community are
affecting the subsurface sustainability. In this study, the persistent scatterer interferometry synthetic
aperture radar (PSInSAR) technique with synthetic aperture radar (SAR) images acquired from the
Sentinel-1 were used to monitor ground subsidence in Abbottabad City, Northern Pakistan. To
estimate the ground subsidence in Abbottabad City, SARPROZ software was employed to process a
series of Sentinel-1 images, acquired from March 2017 to September 2019, along both descending
and ascending orbit tracks. The subsidence observed in the results shows a significant increase from
2017 to 2019. The subsidence map shows that, during 2017, the subsidence was −30 mm/year and
about −85 mm/year in 2018. While during 2019, the subsidence reached −150 mm/year. Thus, it
has seen that, in the study area, the subsidence during these years increased with mean subsidence
60 mm/year. The overall trend of subsidence showed considerably high values in the center of
the city, while areas away from the center of the city experienced low subsidence. Overall, the
adopted methodology can be used successfully for detecting, mapping, and monitoring land surfaces
vulnerable to subsidence. This will facilitate efficient planning, designing of surface infrastructure,
and mitigation management of subsidence-induced hazards.

Keywords: PSInSAR; ground subsidence; SARPROZ; Sentinel-1; urban area

1. Introduction

Ground subsidence is a major concern throughout the world for responsible au-
thorities addressing geohazard risks [1]. There are many factors that influence ground
subsidence, including some natural and anthropogenic phenomena [2,3]. One of the most
reported factors responsible for subsidence are, for example, the excessive extraction of
groundwater [4], underground construction, and mining [5,6]. Globally, people are shifting
from rural to urban areas for better job opportunities and to access standard life facilities.
These uncontrolled and unplanned growths in a region are affecting the natural resources.
The demand for daily water exploitation is increasing and, as a result, excessive extraction
of groundwater is causing ground subsidence [2,7–9].

Various traditional techniques have been used and described previously to measure
subsidence. Previously used subsidence monitoring techniques are usually point-based,
i.e., leveling, global positioning systems (GPS) [10], ground-based observation field data,
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etc. Recently, ground-based observation analysis has been replaced by spaced-based
observations, with the advantages of enough information collection in short intervals of
time, cost-effectiveness, and it is independent of weather conditions. The first method
introduced to monitor ground subsidence was interferometric synthetic aperture radar
(InSAR), which has been employed successfully with significant accuracy effectiveness
covering areas from hundreds to thousands of square kilometers per interferogram [11].
The basic principal of InSAR is the acquisition of synthetic aperture radar (SAR) images of
the targeted region to obtain ground surface information and its patterns of deformation.
Information is extracted from the signals transmitted by the SAR system to the surface and
its scatter back from various objects on the surface. The phase (distance between satellite
antenna and target object) and amplitude (determined from surface roughness, terrain
slopes, etc.) of reflected signals are used to calculate information about various objects on
the surface [12,13]. This approach has been successfully used for the application of landslide
analysis [13], subsidence influenced by the extraction of groundwater [14], deformation
caused by mining [14], and the management of urban growth [15]. In previous studies,
differential interferometric synthetic aperture radar (DInSAR) has been successfully used
to generate high spatial resolution deformation maps across wide areas, with an accuracy
range of centimeters to millimeters [6,11]. The effectiveness of DInSAR techniques in
monitoring land subsidence has been proved in many applications [12,13], which shows
that ground subsidence caused by excessive extraction of groundwater is a common
geohazard impacting urban areas worldwide [16]. DInSAR has been widely used in many
studies to analyze the temporal evolution of land subsidence in urban areas induced by
natural and anthropogenic factors [15,17], and the compaction of subsurface layers [18].
However, the temporal decorrelation and atmospheric disturbances largely affect the
quality of interferograms using the DInSAR technique [19].

In InSAR research, a significant development has produced to reduce the limitations
of DInSAR. A reliable deformation map can be derived from a multi-image framework by
analyzing the spatial–temporal development of so-called permanent scatterers (PS) [20]. To
improve the accuracy in conventional InSAR deformation analysis, the PSInSAR technique
uses unique characteristics of anomalies caused by atmospheric delay and backscattering
of certain PS on the surface. Thus, PSInSAR can modify and improve the measurement of
deformations, from 10–20 mm to 2–3 mm [20]. PSInSAR has a wide range of applications
in monitoring geohazards, such as mapping displacements induced by seismic activities,
landslides, volcanic swelling, ground subsidence caused by groundwater extraction, under-
ground mining activities, and subway tunnel construction [5,21,22]. Similar research has
been widely conducted in urban areas using the PSInSAR technique to monitor ground sub-
sidence using Sentinel-1 data in Algeria [23], Beijing [24,25], London [26], Los Angeles [27],
Mashhad (Middle East) [28], coastal areas of Africa [29], Spain [30], etc.

Ground subsidence is a serious issue in many cities of Pakistan, especially Abbottabad
City [8], which has a population of around two million and hosts many educational
institutions, including medical, engineering, and military institutes. To facilitate urban
growth, various water supply projects have been launched by the local government in
coordination with the Japanese government [31]. Deep bore-wells for water supply have
disturbed subsurface water levels [8]. Furthermore, the main drainage for water flow
has been blocked by unplanned construction, which leads to contamination and blockage
of water outflows [8]. In order to avoid serious disasters caused by ground subsidence
in the future. This study was conducted to monitor ground subsidence in Abbottabad
City, Northern Pakistan, during period of 31 March 2017 to 17 September 2019, and
from 10 February 2017 to 21 December 2019, with both descending and ascending tracks,
respectively. As one target area can be seen by the satellite from different positions with the
incidence angle range between vertical (~23◦) and horizontal (~45◦) [32] in the East–West
direction, ascending and descending track images are used to help to improve visualization
and better understand deformation from various directions [33]. Furthermore, our study
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evaluates the capability of using the PSInSAR technique for ground subsidence analyses in
an urban area [34–37].

2. A Case Study of Abbottabad City
2.1. Geographical Location of Study Area

The study area is the center of Abbottabad City, with latitudes 34.15◦ to 34.23◦ N and
longitudes of 73.20◦ to 73.28◦ E; according to the Survey of Pakistan, the elevation is 1125 m
in topographic sheet 43F/04 and 43/08 (Figure 1). This city is amongst the northernmost
cities of Pakistan and is located nearest to the Himalayan plate boundary in the Lesser
Himalayas. Our study area lies in the Lesser Himalayan Region, and was affected by
deadly earthquakes on 8 October 2005 [38]. The earthquake influenced the whole region
and caused 230,000 casualties and caused severe destruction to infrastructure [39]. It is
important to study the geological and tectonic features within this region.
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2.2. Geological Background of the Study Area

Abbottabad City is an intra-montane basin, occupying a low land region between
ridges. Different streams originate from the surrounding mountains and flow into the
relatively open and broad basin of the city. The southern exit of the basin is a narrow gorge,
which is the western part of the Sirban Hill. The depositional setting and geomorphic
features of the Abbottabad basin are characterized by thick quaternary alluvial deposits as
this basin is fed by several streams [40].

The main lithostratigraphic units in the study area are the Hazara Formation, Patala
Formation, Margala Hill Formation, Lockhart Formation, Quaternary Alluvium, Lumshi-
wal Chichali Formation, Kawagarh Formation, Samana Suk Formation and Abbottabad
Formation [41]. A geological map of Abbottabad is shown in Figure 2. Details of the
lithological units are given in the sections below.
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2.2.1. Hazara Formation

This formation was also called “Attock Slate” by Wynne (1878), which is exposed
in the study area and are considered the oldest sedimentary deposits [42]. It consists of
shales, argillite, sandstone, siltstones and limestone units. On a fresh surface, it has a dark
greenish–gray color while weather surfaces are light gray. The deposition environment of
the Hazara Formation is deep marine [43].

2.2.2. Patala Formation

This formation consists of dark-to-grey shales with coal seams. The sandstone and
limestone have interbedded the shales. At different levels, this formation has been found
to contain selenite and marcasite nodules [44].
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2.2.3. Margala Hill Formation

This formation is predominantly nodular limestone with intercalation of shale and
marls. This limestone largely contains foraminifera (12 cm to 26 cm in length and a width
of 32 cm). In massive limestone, large calcite veins can be found [44]. The argillaceous
materials surround the nodules.

2.2.4. Lockhart Formation

The Lockhart Formation is also known as Lockhart limestone. In this formation,
shales dominate in the middle part, while the top and base is thin limestone with marl
bands. The shales are olive green while the nodular limestones are grayish yellow and
marl intercalation is found in some of the literature.

2.2.5. Quaternary Alluvium

This consists of loess and unconsolidated deposits of streams. The main locality of
quaternary alluvium is the Haripur District, a lowland of the Abbottabad Region, and
Manshera and Shinkirai, which are upland areas [40]. These deposits are interlayered and
with gravels and sand, marking a reworking process.

2.2.6. Lumshiwal and Chichali Formations

Lumshiwal sandstone and Chichali Formations are located in the study area and,
more particularly in Hazara Region, do not have a very thick bed and that is why they
are often reported together in some previous studies [42]. The Chichali Formation mostly
consists of organic black shales, which are soft and thinly laminated in the study area. Here,
the shales in the Chichali Formation show a resemblance to Spiti Shale in India. However,
in the main locality, the outcrops are sandstone with belemnites.

The Lumshiwal sandstone overlies the Chichali Formation. It mostly contains quartz
grains embedded in a black shale matrix with minor glauconite. The rock units are mostly
calcareous with soft and crumble texture and medium grain size [42].

2.2.7. Kawagarh Formation

This formation is well exposed in Kala Chitta Mountain Range and mostly consists
of limestone from the Cretaceous age. This formation is also known as Kawagarh Lime-
stone [42]. It is less exposed in our study and is densely covered by timber and brush.

2.2.8. Samana Suk Formation

The rock units included in this formation are mostly dark gray limestone, located in
the west of Kohat, particularly in the Parachinar Area [42]. This formation is considered a
sequence from the Jurassic age. In our study area, it is widespread to Gari Habibullah and
the Abbottabad Region.

2.2.9. Abbottabad Formation

The Abbottabad group is termed “Infra-Trias” and was primarily described by Middle-
miss in 1896. It has rocks such as conglomerates, sandstones, shales, and limestones, with
thicknesses of about 2250 feet [45]. The rocks were later named the Abbottabad Formation
by Marks and Muhammad Ali [45]. With the addition of a new formation (the Hazira
Formation), Gardezi and Ghazanfar in 1995 [46] termed it the “Abbottabad group”. Based
on the maximum development location, it is now known as the Abbottabad Formation
and overlies the Hazara group with a basal conglomerate deposit marking a break in the
deposition at the bottom of the Hazara group. This is followed by a thick sequence of
sandstones, interbedded shales, orthoquartzites, arenaceous dolomites, dolomites, volcanic
materials, quartz breccia, siltstones, and silty shales, and hematitic mudstones.
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3. Dataset and Methodology
3.1. Datasets and Data Processing

In our study, we used SAR images from the Sentinel-1 C-band, acquired along both
descending and ascending orbit tracks [47]. In the range direction, this sensor has a ground
resolution of about 5 m, while in the azimuth direction it is about 20 m. This sensor has
different modes of acquisitions, including stripmap (SM), interferometric wide (IW), extra-
wide swath (EW), and wave (Wave), by comparing the IW mode with other acquisition
modes, it has been observed that IW needs more data processing for co-registration of
images with a high accuracy of up to 0.001 pixels [23].

For this study, 73 images from the descending track, from 31 March 2017 to 17 September 2019
(track number 107) and 79 images from the ascending track, from 10 February 2017 to
21 December 2019 (track number 100) were obtained. All images were obtained in the IW
acquisition mode. The IW mode of Sentinel-1 covers a single scene with an area coverage
of 250 km2. The single scene is divided into three sub-swaths with the terrain observation
by progressive scan (TOPS) mode. SAR images have a high spatial and temporal resolution
with a short revisiting time, making it possible to investigate subsidence phenomena from
space [48]. For this analysis, SARPROZ software [49] was used, which is commercial
software and is very useful for SAR/InSAR data analyses [23].

3.2. Methodology
3.2.1. Workflow of PSInSAR

Our PSInSAR procedure involved data preparation, preliminary analysis, atmosphere
phase screen (APS) estimation, and multi-image PS processing. The overall processing
steps are given in Figure 3.
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3.2.2. Data Preparation

In data preparation, processing steps include importing single look complex (SLC)
data with precise orbits. Here, images were selected with the same orbits, both ascending
and descending. However, both ascending and descending images cannot be processed at
the same time. In the following step, polarization of images was selected based on orbit
information and slave and master images were selected. This was very important step,
where orbit and track information were geo-located on Google Earth to remove SAR images
of different tracks or area coverages. Images with less track difference were taken to reduce
errors. At first, the master image was extracted covering the study area and then the slave
images covering the same common area, according to the master image, were extracted.
Here, a star graph between the master image and the slave image was created (Figure 4).
During co-registration step a specific area has been considered and being co-registered [23].

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 4. Star graph showing temporal/perpendicular baseline distribution of data pairs. 

3.2.3. Preliminary Analysis 
Atmospheric phase screen (APS), orbit errors, etc., were estimated and eliminated. 

After this, the phase stability was assessed. The values of absolute amplitude were mostly 
insensitive for creating disturbances in processing [50]. Thus, it was expected that, during 
all these acquisitions, the pixels will of a similar amplitude and will have smaller phase 
dispersions. In SARPROZ processing, PS is selected based on the amplitude stability index 
(ASI). ASI = 1 − 𝐷  = 1 − 𝜎 /𝑚  (1)

Where 𝐷   is the amplitude dispersion, 𝑚  represents amplitude mean deviation in time, 
and the standard deviation in time is given by 𝜎 . 

3.2.4. Atmosphere Phase Screen (APS) Estimation 
The SAR images during  acquisition are influenced by various atmospheric phase 

delays and, often, signal delays occur, such as radar signals being delayed by aerosol par-
ticles [23]. To avoid these disturbances in the resultant data, various spatial temporal fil-
ters are used to estimate APS [51]. At this stage, APS results are eliminated while the topo-
graphic height effects and linear velocities of deformations are estimated from the remain-
ing phases [23]. For this purpose, the selection of an appropriate threshold, ASI > 0.75, is 
recommended reference for the selection of the first PSs. ASI > 0.6 was chosen in our case 
study for the selection of PSs. This strict parameter selection satisfies allowing only a small 
amount of PS points, but this is necessary for the estimation of the correct APS. At this 
stage, after the selection of the first PS, it is needed to establish a reference network by 
using Delaunay triangulation to connect PSs. This step is followed by elimination of the 
estimated linear model (linear displacement velocities and residual height) and by using 
an inversion graph to estimate APS from the phase residual. It is also important to deter-
mine one reference point here and fix its velocity. After the graph inversion and removal 
of APS, temporal coherence analysis of PSs was used to estimate the quality of APS, which 
gave a suitable output with a coherence higher than 0.7 (Figure 5). 

Figure 4. Star graph showing temporal/perpendicular baseline distribution of data pairs.

3.2.3. Preliminary Analysis

Atmospheric phase screen (APS), orbit errors, etc., were estimated and eliminated.
After this, the phase stability was assessed. The values of absolute amplitude were mostly
insensitive for creating disturbances in processing [50]. Thus, it was expected that, during
all these acquisitions, the pixels will of a similar amplitude and will have smaller phase
dispersions. In SARPROZ processing, PS is selected based on the amplitude stability
index (ASI).

ASI = 1 − DA = 1 − σA/mA (1)

Where DA is the amplitude dispersion, mA represents amplitude mean deviation in
time, and the standard deviation in time is given by σA.

3.2.4. Atmosphere Phase Screen (APS) Estimation

The SAR images during acquisition are influenced by various atmospheric phase
delays and, often, signal delays occur, such as radar signals being delayed by aerosol
particles [23]. To avoid these disturbances in the resultant data, various spatial temporal
filters are used to estimate APS [51]. At this stage, APS results are eliminated while
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the topographic height effects and linear velocities of deformations are estimated from
the remaining phases [23]. For this purpose, the selection of an appropriate threshold,
ASI > 0.75, is recommended reference for the selection of the first PSs. ASI > 0.6 was chosen
in our case study for the selection of PSs. This strict parameter selection satisfies allowing
only a small amount of PS points, but this is necessary for the estimation of the correct APS.
At this stage, after the selection of the first PS, it is needed to establish a reference network
by using Delaunay triangulation to connect PSs. This step is followed by elimination of the
estimated linear model (linear displacement velocities and residual height) and by using an
inversion graph to estimate APS from the phase residual. It is also important to determine
one reference point here and fix its velocity. After the graph inversion and removal of APS,
temporal coherence analysis of PSs was used to estimate the quality of APS, which gave a
suitable output with a coherence higher than 0.7 (Figure 5).
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3.2.5. Multi-Image Sparse Point Processing

In this step, the second order PS points were selected. At this stage, in order to
obtained dense PS points, ASI > 0.6 criteria were selected. Here, the same parameters and
reference points were used for the removal of APS as used when processing APS estimation.
Finally, all PS points were geocoded and overlaid over Google Earth and only those PS
points with coherence greater than 0.7 were selected for the final subsidence map [50].

3.2.6. Post-Processing Spatiotemporal Analysis

The detected deformation areas were finally transformed into an external reference
system, i.e., geographic coordinates. The derived ground deformation map and geological
map were overlaid and inputted into ArcGIS for further analysis. The GIS analysis consisted
of integration of PSInSAR results with a geological [38] and tube-well location [8] map
to interpret and validate the detected subsidence areas, which could then be compared
with the geological background of Abbottabad. The result from previous steps were then
combined with different information layers in ArcGIS. These layers were used to interpret
the geological formations and tube-well location in the study area and its relationship with
subsidence, estimated from PSInSAR.

4. Results and Analysis

For the deformation monitoring in this area, we used PSInSAR, as described above,
implemented in SARPROZ, which could allow us to detect deformation areas in Abbot-
tabad City. The stable points, defined by a stability threshold range (from −5 to 5 mm/year)
are shown in green. For calculating and identifying motions in the area, a stable point is
selected as a reference point to compare with the motions of other points in the area, since
the movement is monitored according to the reference point in PSInSAR. While performing
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this approach, temporal coherence needed to be enough for further processing. PS points
with temporal coherence bigger than 0.7 were considered as trustworthy points with less
probability of error [23].

For the measurement of the motion along the line of sight (LOS), using PS points, it
was observed that the movement away from the sensor was negative and is represented in
the red. Other stable points that represent relatively no movement are located within the
study area and are shown in Figure 5 (blue to light blue), points that showed comparatively
high movement compared to the blue dots but a lower movement compared to red dots are
marked as yellow to dark yellow and orange. The subsidence in Abbottabad was observed
to be ranging from −25 to −50 mm/year (Figure 6). Scatter plot results show that there
was an obvious subsidence in Abbottabad City.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 6. The scatter plot of Sentinel-1 data descending track on the right side and ascending on 
the left side (2017–2019). 

The subsidence map obtained from both descending (track number 107) and ascend-
ing (track number 100) tracks during the time period of analyses showed sufficient PS 
points in the study area (Figure 7). The subsidence maps are superimposed over Google 
Earth in the study area. In the study area, a dense points cloud can be seen in Figure 7a,b; 
here, the results in both the ascending and descending tracks show that most of the area 
is stable (marked in blue), which are relatively upland or hilly terrains. While the main 
settlement areas along the main road are shown in red, highlighting the relatively high 
subsidence area. The color ramp (red = high, blue = stable, yellow/light green = low) rep-
resenting movement and the relative stability of the PS points. 

  
Figure 7. Ground subsidence in the study area from the descending track (a) and ascending track (b). 

Figure 7 shows that subsidence in the study area ranges from 0 to approximately −30 
mm, where the red color shows a subsidence of about −30 mm. Here the (a) represents 
subsidence in the descending track and (b) represent subsidence in the ascending track. 

Figure 6. The scatter plot of Sentinel-1 data descending track on the right side and ascending on the
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The subsidence map obtained from both descending (track number 107) and ascending
(track number 100) tracks during the time period of analyses showed sufficient PS points
in the study area (Figure 7). The subsidence maps are superimposed over Google Earth in
the study area. In the study area, a dense points cloud can be seen in Figure 7a,b; here, the
results in both the ascending and descending tracks show that most of the area is stable
(marked in blue), which are relatively upland or hilly terrains. While the main settlement
areas along the main road are shown in red, highlighting the relatively high subsidence
area. The color ramp (red = high, blue = stable, yellow/light green = low) representing
movement and the relative stability of the PS points.
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Figure 7 shows that subsidence in the study area ranges from 0 to approximately
−30 mm, where the red color shows a subsidence of about −30 mm. Here the (a) represents
subsidence in the descending track and (b) represent subsidence in the ascending track.

The final subsidence map obtained from both the descending (31 March 2017 to
17 September 2019) and ascending (10 February 2017 to 21 December 2019) tracks are
visualized to determine subsidence trends of various PS points during the study time
period (Figure 8). The graph in (a) in Figure 8 demonstrates the subsidence in the study
area during 2017, which ranged from 0 to −30 mm per year. The graph in (b) in Figure 8
shows subsidence of the same PS points during 2018. There are notable fluctuations in the
readings, but the average subsidence is nearly 18 mm per year during 2018. From Figure 8b
we can see that the subsidence ranges approximately from −5 mm per year to −85 mm
per year. During 2019, the range of subsidence was from −25 to −150 mm per year as
shown in Figure 8c. These graphic representations show that the subsidence increased
approximately −55 to −60 mm per year from 2017 to 2019.
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Figure 8. Subsidence fluctuation graphs; (a) 2017, (b) 2018, and (c) 2019.

Figure 8a shows the ground subsidence in 2017. Figure 8b shows the ground subsi-
dence in 2018. Figure 8c shows the ground subsidence in 2019. The x-axis in the figure
represent PS points in the study area, while the y-axis represents the subsidence.

In the study area, five PS points (P1, P2, P3, P4, and P5) from the subsidence area were
selected within the descending and ascending results (Figure 9a,b). Here, the PS points high-
light the relative movement and stability (red = high, blue = stable, yellow/light green = low)
compared to the surroundings. Analyses of the subsidence along these five PS points are
shown in Figure 10.
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Figure 10. Subsidence along PS points (P1, P2, P3, P4, and P5) in descending track (x-axis is time 2017–2019. y-axis represents
subsidence).

The subsidence area is shown with red dots in (Figure 9a,b). The obtained results
highlight variations in the ground subsidence from place to place during the analysis
periods. The subsidence along these points (P1, P2, P3, P4, and P5) are plotted in Figure 10.
Here, P1 lies on southernmost part of the study area where subsidence reached −104.4 mm,
points P2, P3, and P4 lie generally in the central part of the study area where subsidence
reached −132.2 mm, −184.1 mm, and −160.7 mm, respectively, during the study analysis
period. PS point P5 lies in the northern part of study area with a subsidence that reached
−75.2 mm during the study time. It is obvious from the results that the subsidence
was relatively higher in the central part of city, while it decreased towards northern and
southern parts of the city.
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The subsidence along these five PS points were analyzed, which show variations in
subsidence from 2017 to 2019. The graphic representations of these five points are given in
Figure 10. The graphs clearly show that points 2, 3 and 4 have high subsidence and are
located in the central part of study area, while point 1 and point 5 have comparatively low
subsidence during study period.

In order to analyze the east–west subsidence trend in the study area, an east to west
subsidence profile was plotted in the study area. This profile reveals that subsidence is
lower (−6.8 mm, −5.9 mm etc.) in the eastern part of the main city (Figure 11b). The
major subsidence is apparent in the central part of Abbottabad City, and reached approx.
−168 mm (Figure 11b) while the western part of the city experienced low subsidence
(−7.8 mm, −5.6 mm, etc.). This observation clearly shows that subsidence is obvious in
the center of Abbottabad City during period from 2017 to 2019.
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In Figure 11a, the black line illustrates the east–west subsidence profile, where a, b,
and c represent subsidence at some specific points. Figure 11b represents a subsidence
fluctuation graph of the east–west subsidence profile (x-axis mark PS points, y-axis subsi-
dence). In Figure 11b, the (a), (b), and (c) highlight subsidence at the corresponding specific
points, as shown in Figure 11a.

The north–south subsidence trend was also analyzed in the final subsidence map.
This subsidence profile suggests that the subsidence was lower (−28 mm, −32.8 mm, etc.)
in the northern part of the city and experienced a small increase (−116.8 mm) towards
the center, and again decreased (−80.4 mm) as given in graph at point c (Figure 12b). The
center of the city shows a high subsidence, approximately −164 mm (Figure 12b). Towards
the southern part of the city, the ground subsidence decreases (−17 mm, −11 mm, etc.)
again, somewhat less than that in the northernmost point (Figure 12b).
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In Figure 12a the black line represents the north–south subsidence profile, where (a),
(b), (c), (d), and (e) highlight subsidence at these specific points. Figure 12b represents
a subsidence fluctuation graph of the north–south subsidence profile (x-axis represent
PS points, y-axis represent subsidence). In Figure 12b the (a), (b), (c), (d), and (e) mark
subsidence at the corresponding specific points, as shown in Figure 12a.

5. Discussion

The results obtained during this study suggest that several factors contribute to and
are responsible for ground subsidence in Abbottabad City. These causative factors include
excessive groundwater extraction to fulfill the needs of people, natural consolidation of
quaternary alluvium, and soil loss during rainy seasons, as well as unplanned building
construction and the load of infrastructure [8].

5.1. Excessive Ground Water Extraction

One of the possible causative factors responsible for subsidence in the study area is the
excessive extraction of groundwater for domestic and commercial uses [52]. Some previous
studies have observed impact of excessive ground water with ground subsidence [15,53].
In Pakistan, there is a water crisis and the main sources of daily water usage for people are
bore-wells and tube-wells [54]. Due to unplanned settlement growth in major cities [55],
water demand has increased and most houses have constructed a bore-well for their
needs. Furthermore, several factories owned by private and government agencies, such
as chemical and agriculture industries, operate in this city. These industries in particular
have high groundwater consumption needs. To fulfill the water needs of the people in this
city, the local government has launched water tube-well projects in cooperation with the
Japanese government (Japan International Cooperation Agency) [56] to provide sufficient
water supply, and which started to supply water regularly in 2015 [57]. It is apparent in
the results (Figures 11b and 12b) that ground subsidence is found more in the center of
city and that one of possible cause is the presence of a tube-well, as reported in a previous
study [8]. The modified tube-well map [8] shows that center of city, with more tube-
wells, has experienced more subsidence (Figure 13a,b). Variations in fluid pressure in the
subsurface layers, driven by excessive ground water extraction, influence the compaction
of the ground surface [8].
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In Figure 13a, (a), (b), (c), (d), (e), and (f) represent various locations in the study
area showing cracks in the walls of local houses, identified from field photos, as shown
in Figure 14a–f. In Figure 13a, the doted circles mark three different locations where
the photos were captured. The cracks found in local houses show that the study area
experienced subsidence.
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5.2. Subsurface Geology

The consolidation properties of soils have been considered as a fundamental reason
for subsidence around the world [53]. It has been observed that most of the Abbottabad
city has developed over the region with alluvium deposits [38]. In addition to the shale
of the Hazara Formation on west side (with less limestone), thick bedded limestone to
light grey medium limestone was found in the southern part of the study area. Geological
investigation of Abbottabad City also suggested that Abbottabad City was once a stream
channel [40], as the basin is characterized by thick quaternary alluvium deposits with
angular to sub-angular conglomerates, sandy dolomites of buff, and calcareous shale
siltstones, occupying a lowland region between the ridges [45]. Most of city, including
institutions, the military academy and other residential and commercial buildings are built
on the alluvium deposits and dolomites [40]. The subsurface aquifer layers in the study
area were reported in [58]. This study showed that first layer consists of clay, silt with
gravels inter-beds, and the thickness in the west was about 30–40 m, and in central area the
thickness was about 70–80 m. Gravel comprises the second layer with a thickness up to
40 m in the southern and central parts of the subsidence area. Unconsolidated sediments
comprise the third layer and is underlain by bedrocks, with shales covering the western part
and limestone and dolomites covering the eastern part [8]. The overgrowth settlement [59]
and unplanned constructions blocked the water channels, resulting in water stagnation on
roads and streets during rainy seasons (Figure 15) [8]. Different streams originating from
the surrounding mountains flow into the relatively broad basin, where drainage blockage
causes the water to percolate into the subsurface layers of the basin [40,59] It is noted from
the results that subsidence mostly occurred in quaternary alluvium deposits (Figure 16). It
is possible that the water percolation into the subsurface, which saturates the subsurface
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layers, together with the load of infrastructure are responsible for causing subsidence in
the study area [8].
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Furthermore, the relationship of rainfall and subsidence has also been described
in [8,60] and the balance of subsurface aquifers is disturbed by high precipitation. This rate
of precipitation can influence subsidence with other causative factors. The high monsoon
precipitation in the study area has been reported previously [8]. The refills of subsurface
aquifers cause saturation of the subsurface layers and a significant correlation of subsidence
in the study area with rainfall has been reported previously [8].

The photos in Figure 15 were taken during the rainy season at different times, which
illustrate flooding at various locations on the main road. This road passes through the
main city; the subsidence can be seen around the road in Figure 13a,b.

Figure 16 represents the PS points overlaying a geological map of Abbottabad City.
Here, the red polygons highlight the subsidence area, which is prominent in the quaternary
alluvium deposits. There were enough scatterers in the study area for ground subsidence
assessment. The red dots in the polygon mark subsidence in the study area.

PSInSAR is a very useful technique to monitor ground subsidence in an urban area,
structure collapse, landslides, mining subsidence, etc. However, some decorrelations
and noise effects can influence the final analysis. Meanwhile, our results successfully
demonstrated subsidence phenomena in the study area, but it can be further modified with
in situ data analysis and other techniques, such as SBAS or Quasi-PS. It is also suggested
that, in the future, multi-scale (space-based and ground-based) study should be conducted
to thoroughly analyze ground subsidence and to avoid serious damage in this area.
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6. Conclusions

In present study, we monitored ground subsidence from March 2017 to September 2019
and highlighted the ability of PSInSAR to monitor time series subsidence in Abbottabad
City. All the main processing parameters are well explained and various steps to minimize
noise and errors have been employed during processing. Various causative factors have
been discussed, including excessive groundwater pumping, soil consolidation, subsurface
geology, etc. The subsidence maps of the study area show that Abbottabad City is experi-
encing an increasing ground subsidence. The results also highlight that the subsidence is
relatively higher in the city’s center while subsidence in northern and southern parts of
the study area are relatively lower. An overall observation of the study area shows that
the subsidence in the center of Abbottabad City reached approximately −184.1 mm, while
areas away from the center of the city experienced low subsidence.

This study suggests that significant ground subsidence has been observed in the city
center during the analysis period (2017–2019). The most prominent reasons for this seem
to be rapid population growth in the last few years with an increasing need of daily-use
water (household and industrialization), and exploitation of ground water. In addition,
subsurface geology with poor drainage, systems and loading of unauthorized construction
are also possible contributing factors causing ground subsidence in the study area.
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50. Fárová, K.; Jelének, J.; Kopačková-Strnadová, V.; Kycl, P. Comparing DInSAR and PSI techniques employed to Sentinel-1 data to

monitor highway stability: A case study of a massive Dobkovičky landslide, Czech Republic. Remote Sens. 2019. [CrossRef]
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