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Abstract: The problem of detecting point like targets over a glistening surface is investigated in this
manuscript, and the design of an optimal waveform through a two-step process for a multipath
exploitation radar is proposed. In the first step, a non-adaptive waveform is transmitted and
a constrained Generalized Likelihood Ratio Test (GLRT) detector is deduced at reception which
exploits multipath returns in the range cell under test by modelling the target echo as a superposition
of the direct plus the multipath returns. Under the hypothesis of heterogeneous environments, thus
by assuming a compound-Gaussian distribution for the clutter return, this latter is estimated in the
range cell under test through the secondary data, which are collected from the out-of-bin cells. The
Fixed Point Estimate (FPE) algorithm is applied in the clutter estimation, then used to design the
adaptive waveform for transmission in the second step of the algorithm, in order to suppress the
clutter coming from the adjacent cells. The proposed GLRT is also used at the end of the second
transmission for the final decision. Extensive performance evaluation of the proposed detector and
adaptive waveform for various multipath scenarios is presented. The performance analysis prove
that the proposed method improves the Signal-to-Clutter Ratio (SCR) of the received signal, and the
detection performance with multipath exploitation.

Keywords: adaptive radar detection; adaptive waveform; multipath exploitation; heterogeneous
environments; Generalized Likelihood Ratio Test (GLRT); constrained optimization

1. Introduction

The detection of radar signals from targets on time-varying surfaces is challenging
due to the low Signal-to-Clutter Ratio (SCR), yet an active field of study in statistical signal
processing. Many early adaptive detection and waveform design algorithms have offered
solutions in homogeneous environments, where the signal of interest is embedded in
a Gaussian noise. However, target detection over a glistening surface, such as the sea
surface, requires disturbance models which take the inhomogeneous characteristics of
the environment into account. Robust and reliable target detection in rich and dynamic
clutter background such as in heterogeneous environments is of wide interest to radar
community. Once we consider the sea surface, the traits of sea clutter returns viewed by
high-resolution radars are non-Gaussian [1]. A proper disturbance model, which reflects
the characteristics of heterogeneous environment, is pivotal to develop coherent detection
and waveform optimization algorithms. Thus, several non-Gaussian disturbance model
have been devised in the last decades [2–7]. Among these disturbance models, Spherically
Invariant Random Vector (SIRV) is the most widely used one. Moreover, with real radar
clutter, the Spherically Invariant Random Processes (SIRPs) are proven to be suitable for
the correct clutter modelling [8].
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The radar signal backscattered from a target over a glistening surface, contains not
only a line of sight component but also multipath returns via many propagation paths.
Thus, return signal needs to be properly modeled, as much as disturbance. Otherwise,
ultimate performance degradation occurs in target detection, localization, and tracking in
such environments [9–12]. In this respect, multipath exploitation techniques, which use a
priori information in order to predict the multipath structure of target return, are resorted
to tackle the performance degradation in the receiver side [13–16].

However, multipath returns, which are present in the signal backscattered from the
target on a glistening surface, have characteristics (e.g., direction of arrival, echo strength
and phase) that are dynamic due to time-varying nature of the reflecting environment.
A sample geometry of the problem showing this phenomenon, which is referred as dif-
fuse multipath, is presented in Figure 1, that at the bottom right shows also the specular
reflection phenomenon. It makes the problem more challenging in particular to predict
the target subspace and the characteristics of multipath returns. A remarkable adaptive
detector, which model multipath echoes as random variables so that enable us to model the
effect of multipath returns on disturbance model, has been proposed as Tunable Adaptive
Matched Filter (T-AMF) in [17,18]. It models the radar target echo as the superposition
of a deterministic signal, representing the direct path component, plus a zero-mean com-
plex normal vector, which is to represent the multipath returns. Thus, it can tackle the
covariance matrix mismatch between the range cell under test (referring as primary data)
and reference data cells (referring as secondary data) in the estimation of primary data
covariance matrix due to diffuse multipath. Note that, the range cell under test may contain
target returns whereas the reference cells are assumed free of useful signal components.
Later, the approach in [17] is extended to partially homogeneous environments by intro-
ducing an unknown power scaling factor to represent the covariance matrix mismatch
between the disturbance component of the cell under test and secondary data [19,20]. Here
in this article, the adopted approach is also based on the idea that covariance matrix is
affected due to the multipath, but, while the existing solutions refer to the case of homoge-
neous and partially homogeneous environments, our proposal considers the problem in
heterogeneous environments.

There are also several studies in literature, which targets the radar signal detection
in non-Gaussian and heterogeneous clutter. Although these studies do not consider the
multipath exploitation, instead examined in our work, it is worth mentioning their valuable
contribution on the technical content of the subject. In particular, target detection with
multiple-input–multiple-output radar in non Gaussian and heterogeneous clutter was
carried out in [21], by using the generalized likelihood ratio test-linear quadratic (GLRT-
LQ) detector. In [22], the authors specified and demonstrated a practical technique for
characterizing non-Gaussian clutter using Over The Horizon Radar (OTHR) data. A priori
knowledge of non-Gaussian clutter has been used in [23] in order to improve the detection
performance when the secondary data are limited. The inverse Gaussian distribution is
used in this case to model the clutter texture in order to characterize the non-Gaussian
characteristics of the clutter.

In addition, adaptive coherent radar detection in non-Gaussian environment is also
investigated in other relevant papers [3,24–26]. In [26], the authors have shown how
a sub-optimal detector, which does not require information about the specific nature
of the non-Gaussian clutter, may be implemented to obtain quasi-optimal performance.
This problem is studied in [3] with a two-step procedure. In the first step, the structure
of the amplitude and the multivariate probability density functions (PDFs) describing
the statistical properties of the clutter is derived. The end product of the first step is a
multidimensional PDF in the form of a Gaussian mixture, which is then used in order to
derive both the optimal and a sub-optimal detection structure for detecting radar targets in
non-Gaussian clutter.
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Figure 1. Problem geometry.

The waveform design is another important issue to be considered in adaptive radar
signal detection, and particularly in radar target environments with time-varying behaviour,
in order to have a fully adaptive approach [27–30]. The adaptive waveform design has
therefore received much attention from the radar community in the modern era of radar
signal processing [31–33]. In [34], an algorithm based on an adaptive waveform design is
proposed for space-based radar, by which targets can be detected effectively in complicated
heavy fast-varying sea clutter. Lately, new paradigms have been derived through the
introduction of cognition inside the radar systems [27,28,35,36]. As a result, new cognitive
architectures, which are able to exploit the design of optimized waveforms, through
a coordinated and continuous feedback between transmitter and receiver, have been
proposed as well [37,38].

Hereafter the organization of the manuscript. After a brief notation paragraph, in
Section 2, we briefly explain our approach and proposed solution towards the problem. In
Section 3, the assumptions are described with the model adopted for the target and the
disturbance parameters. The statistics of the clutter and their estimation are presented in
Section 4, for adaptive radars. Section 5 describes the detection strategy. The design of the
adaptive waveform for sub-dwell two is presented in Section 6, while Section 7 assesses
the performance of the devised detector with an adaptive waveform. Lastly, conclusions
are highlighted in Section 8.

Notation

In this article we adopt the following notation: We use upper case boldface for matrices
A, and lower case boldface for vectors a. The symbol (·)† is for the complex conjugate
transpose, and | · | symbol is for the determinant of the square matrix argument. I denotes
the identity matrix, and reader can determine its size from the context. diag a represents
the diagonal matrix whose diagonal entries are the elements of a. CN ,CN , K,HN are the
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sets of N-dimensional complex value vectors, NxK dimensional complex matrices and
NxN Hermitian matrices, respectively. λ(X) is the eigenvalue vector of X ∈ HN . The
curled inequality symbol denotes generalized matrix inequality, i.e., A � 0 means that A
is a positive definite matrix, where A ∈ HN . ‖x‖ is for the Euclidean norm of vector x.
‖A‖2 denotes the spectral norm of matrix A, where A ∈ CN,M. Last, E[·] is for statistical
expectation. Finally, P represents the optimization problem.

2. Proposed Solution

In this study, with respect to the work present in the literature, an adaptive waveform
design in the case of multipath, and for heterogeneous environments, is introduced. A
cognitive architecture is conceived for improving the SCR in the range bin under test
by not only exploiting the multipath returns of useful target echo but also suppressing
the clutter coming from the adjacent radar cells. While the former is achieved using the
constrained GLRT detector, the latter is accomplished by the adaptive waveform design. In
order to do these, a radar system which transmits Np pulses from Na uniformly spaced
and identical sensors is considered. The transmitted waveform consists of two sub-dwells,
where each sub-dwell is represented by Np/2 number of pulses. During the sub-dwell
one, Np/2 number of pulses are transmitted and received back through Na sensors. At
the end of sub-dwell one, the clutter in the range cell under test is estimated via the Fixed
Point Estimate (FPE) algorithm [39,40], which utilizes the data collected from the out-of-bin
cells (referring as secondary data). Then, a constrained GLRT detector [41–44] is deduced
which exploits diffuse multipath returns of target [17,20]. Later, an adaptive waveform is
constructed based on the clutter statistics previously obtained in the sub-dwell one and
transmitted at the second sub-dwell in order to suppress the unwanted signal coming from
the out-of-bin cells. Finally, the deduced GLRT detector is used for final decision at the end
of sub-dwell two. The block diagram of the proposed algorithm, as above described, is
presented in Figure 2, where, as we will see later, r and rk are respectively the primary data
and the secondary dataset, y and yk are the matched-filtered output, M is the estimated
speckle covariance matrix of the primary data and τk represents texture components of
adjacent cells.

An initial implementation of this algorithm has been analyzed in [45]. Yet, in this
manuscript, a great extension of our study is presented with a more detailed derivation
and analysis of the detector optimization problem, and through a deep performance
evaluation of the proposed detector and the derived adaptive waveform in the case of
various multipath scenarios. Namely, we can summarize the main novel contributions of
the present manuscript as below:

• the introduction section has been extended to provide the interested reader a better
understanding of the state of the art in the research field of adaptive detection and
waveform design;

• the contribution on adaptive target detection in heterogeneous environments with
multipath exploitation radar and an optimal waveform, designed through a two-step
process for the deduced detector, has been emphasized;

• the GLRT detection section includes a very detailed derivation and proof of the
optimization problem and decision rules, so to allow interested readers to follow the
derivation of the receiver thoroughly;

• a more detailed performance analysis has been carried out in terms of waveform and
adaptive detectors, in particular:

– both non-adaptive Linear Frequency Modulation (LFM) and Phase Modulated
(PM) waveform cases in the sub-dwell one have been included;

– in addition to the performance analysis for the case of LFM waveform in sub-
dwell one and Adaptive PM waveform in sub-dwell two, the performance anal-
ysis with LFM waveform in both sub-dwell one and two has been included, in
order to show the performance improvement of the adaptive waveform clearly;
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– the performance comparison of the proposed detector with the Adaptive Matched
Filter (AMF) [46] has been discussed, in addition to Adaptive Coherence Estima-
tor (ACE) [47], in order to show the performance improvement with multipath
exploitation in heterogeneous environments.

Figure 2. Block diagram of the proposed algorithm.

3. Theoretical Model and Assumptions

In this section, we formulate the detection problem with the assumption of a radar
system, which transmits Np pulses from Na identical and uniformly spaced sensors. The
proposed model consists of two sub-dwells, where each sub-dwell is represented by Np/2
number of pulses. Thus, the system transmits half of the Np pulses, and receives them back
through Na sensors during each sub-dwell. As a consequence, the radar receiver has data
from N channels during each sub-dwell, where N equals to (Np × Na)/2. Accordingly the
corresponding detection problem can be formulated as the following hypothesis testing:

H0 :

{
r = c + ∑K

k=1 ck

rk = ck

H1 :

{
r = αp + s + c + ∑K

k=1 ck

rk = ck

(1)

where

• r ∈ CN is the received signal from the range cell under test (RCUT).
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• rk ∈ CN , k ∈ [1, K], (K ≥ N) is the secondary data set which is assumed to be free
of target response.

• p ∈ CN , ‖p‖2 = 1, is the target steering vector, and known for the line of sight path.
• α ∈ C is an unknown deterministic parameter accounting for both the line of sight

channel propagation factor and target response to the incident wave.
• c and ck represent clutter, which is due to large number of independent scattering

centers, in the primary and the secondary data, respectively. They are assumed to
zero mean SIRVs, where SIRV is a special case of a compound-Gaussian process. It is
defined as the product of independent zero-mean circular complex Gaussian vector,
which is called speckle, and a non-negative scalar random variable, which is called
texture [4,5]. Their respective covariance matrices are defined below.

E[cc†] = τ M andE[ckc†
k ] = τk M (2)

where M is the covariance matrix of the speckle. It is assumed to be same for each
range cell. Random variables τ, τ1, . . . , τk are texture components representing rel-
atively slow variations on the surface that can modulate the local mean power of
the speckle. These texture components are assumed to be unknown deterministic
parameters. Note that, the scattered clutter echoes from secondary data, which are
assumed adjacent to and accordingly increase the disturbance power in the interested
cell, are also considered while modeling the received signal from RCUT.

• s ∈ CN is i.i.d. zero mean complex Gaussian vector with unknown covariance
matrix, Σ � 0, and represents the diffuse multipath component of target response in
multipath environment.

In case Doppler and angle processing are not present, one can perceive the match
filtered signal at the receiver side as a convolution of the radar received signal with the
auto-correlation function of the transmitted signal [31–33]. Thus, the output of the matched
filter for primary and secondary data are formulated as the following hypothesis testing,
including auto-correlation function of the transmitted signal.

H0 : yi = rizs[i] + ∑K
k=1 rkzs[k]

H1 : yi = rizs[i− i0] + ∑K
k=1 rkzs[k]

where

• yi ∈ CN , i = 1, . . . , Ns, is the matched-filtered output at the ith range bin.
• Ns is the length of the transmitted signal.
• i0 is the index of the range bin that contains the target if target is present.
• zs is the auto-correlation function of the transmitted signal at lag m, and it is defined

as the following equation.

zs[m] =
Ns

∑
n=1

t[n]t∗[n−m], |m| < Ns (3)

Here, t represents the transmitted signal.

4. The Model for the Clutter

Proper clutter model, which yields the statistical parameters characterizing the hetero-
geneous environment, is pivotal to develop coherent detection and waveform optimization
algorithms. In this study, we use a SIRP, which is also proven to be suitable for clutter
modelling [8], in order to model our heterogeneous clutter, where statistical parameters are
assumed to be unknown and need to be estimated. In this respect, we utilize the secondary
data set, which is defined in Section 3. We resort the FPE algorithm for the secondary data
set in order to estimate the clutter covariance of the primary data.
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The random texture component of the SIRV model is assumed to be unknown and
deterministic for each single element of the secondary data set. Accordingly, PDF of ck,
where k = 1, . . . , K, in hypothesis testing (1) can be expressed as

p(ck; τk, M) =

exp
(
−c†

k M−1ck
τk

)
πNτN

k |M|
.

The clutter covariance in primary data is estimated via maximizing the following
likelihood function with respect to M and the τk, for k = 1, . . . , K.

K

∏
k=1

p(rk; τk, M) =
K

∏
k=1

exp
(
−r†

k M−1rk
τk

)
πNτN

k |M|
(4)

The unknown parameters are estimated via FPE algorithm by using an iterative ap-
proach. Namely, τ

(t+1)
1 , . . . , τ

(t+1)
k are obtained by maximizing the likelihood function when

M equals to M(t). Later, M(t+1) is calculated using the estimated values of τ
(t+1)
1 , . . . , τ

(t+1)
k .

Therefore, the recursive formula, which is used to estimate M, is obtained as

M(t+1)
=

N
K

K

∑
k=1

rkr†
k

r†
k(M(t)

)−1rk

. (5)

This iterative process continues until the estimates of M begin to converge. The rate of
convergence depends on the parameters N and K [39]. In this study, we choose the initial
value of M as the sample covariance matrix of the normalized data (NSCM). At the end of
these iterations, having reached convergence, we use the final set of τ

(t+1)
1 , . . . , τ

(t+1)
k for

the adaptive waveform design in the second sub-dwell, which is elaborated in Section 6.

5. A Constrained GLRT Detector

In this section, we devise a constrained GLRT detector, which is capable of exploit-
ing multipath phenomena, for the final decision regime at the end of sub-dwell two. It
is assumed that the primary data covariance matrix in the target present case is in the
neighborhood of the covariance matrix, which is estimated through the secondary data.
Estimating the total covariance matrix of the RCUT from secondary data set may give
accurate results when the received signal has only a line of sight component. However, in
the case of diffuse multipath, whose direction of arrivals are not predictable, huge perfor-
mance degradation is expected due to mismatch between two covariance matrices. The
degree of mismatch, from the opposite perspective similarity, between the two covariance
matrices is up to both multipath and clutter returns [17,20]. Accordingly, received signal r
in hypothesis testing (1) is modeled as including i.i.d. zero mean complex Gaussian vector
s, which accounts for the target response with diffuse multipath, and also including ck for
clutter returns coming from adjacent cells. In this case, the total covariance matrix of the
primary data in the target present case can be represented as

M = (τ|zs[i− i0]|2 + β)M + Σ|zs[i− i0]|2 (6)

where β represents the clutter returns coming from adjacent cells, and it is given as

β =
K

∑
k=1

τk|zs[k]|2.
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In addition, the covariance matrix of the primary data in the target absent case can be
expressed as

M = (τ|zs[i]|2 + β)M = τ0M. (7)

Note that the scattered clutter from adjacent cells β, which increases the clutter power
in RCUT, and the auto-correlation function zs are both included in Equations (6) and (7)
together with the scaling factor of noise covariance τ, since they all affect the overall
covariance matrix. In addition, the covariance matrix of the diffuse multipath returns Σ
is included in equation (6), since it causes covariance matrix mismatch. Thus, in order to
solve the overall detection problem, a constrained GLRT detector as in [19] is deduced by
the following decision rule.

max
α∈C, M∈Ψ

p1(y; α, M)

max
τ0=τ̂0, M=MFPE

p0(y; τ0, M)

H1
>
<
H0

η1 (8)

where

p1(y; α, M) =
1
|πM| exp−(y− αp)† M−1(y− αp) (9)

p0(y; τ0, M) =
1

|π(τ0M)| exp−y†(τ0M)
−1y (10)

Here, y is the matched filter output for RCUT, η1 is the detection threshold set accord-
ing to the desired Probability of False Alarm, Pf a. MFPE is the speckle covariance matrix
estimate obtained via FPE algorithm, and τ̂0 ≈ ∑i+K/2

k=i−K/2 τ̂k. Under H1 hypothesis, the
following similarity constraint is used with the assumption of M is in the neighborhood of
M̂ = MFPE.

Ψ =


‖M̂

1/2
M−1M̂

1/2 − τx I‖2 ≤ ε
M � 0
τx > 0
ε > 0

(11)

where τx is a substitute parameter, and given as

τx =
1

τ|zs[i− i0]|2 + β
.

In (11), τx and ε parameters both control the size of the covariance uncertainty region
due to the clutter and the multipath return, respectively. Note that ε is a priori information
for multipath exploitation whereas τx is an unknown parameter which is estimated. The
effect of ε parameter is investigated in the performance analysis sections of [17,20] in detail.

The decision rule in (8) can be reduced to the following, [17,20].

max
α̃∈C, M∈Ψ̃

[
log det(X)−(ỹ−α̃p̃)†X(ỹ−α̃p̃)+N log(τ̂0) +

‖ỹ‖2

τ̂0

]H1
>
<
H0

η2 (12)

with the constraint set Ψ̃, which is defined as

Ψ̃ = {X � 0, τx > 0 : ‖X − τx I‖2 ≤ ε}

where

• X = M̂
1/2

M−1M̂
1/2

,
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• ỹ = M̂
−1/2

y, p̃ =
M̂
−1/2

p
‖M̂

−1/2
p‖

, and α̃ = α‖M̂
−1/2

p‖.

First we fix τx to τ̄x. Then, we can find the optimal solution to the given decision
statistics in (12) by solving the following optimization problem.

P


max
X ,α̃

log det(X)−(ỹ−α̃p1)
†X(ỹ−α̃p1)

s.t. X ∈ Ψ̃
α̃ ∈ C,

(13)

An optimal solution (X?(τ̄x), α̃?) to problem P is given by:

α̃? = p̃†ỹ

X?(τ̄x) = V0diag (λ?(τ̄x))V †
0

where V0 is a unitary matrix as in [17], and λ? = [λ?
1(τ̄x), . . . , λ?

N(τ̄x)] is the eigenvalue
vector of X and its optimum value is given as follows [20];

λ?
i (τ̄x) =

{
τ̄x + ε, 0 < i < N
min(τ̄x + ε, max(τ̄x − ε, 1

γ )), i = N

where γ = ‖ỹ‖2 − |p̃†ỹ|2.
Next, it remains to maximize the unknown noise level parameter τx. Resorting to the

affine mapping property [48], τx can be maximized exactly as in [20], and the detector can
be written as the following.

t(ε) = gε(γ) + γ0

H1
>
<
H0

η3. (14)

where

• gε(γ) = (N − 1) log(τ?
x + ε) + log(τ?

x − ε)− γ(τ?
x − ε)

• γ0 = N log(τ̂0) +
‖ỹ‖2

τ̂0
.

The optimum solution of τx, which is represented with τ?
x , is expressed as in [20].

τ?
x =

N +
√

N2 + 4γε(γε− N + 2)
2γ

.

6. Design of the Waveform

In this section, a detailed description of the waveform design is given. First the ith
range, at the end of sub-dwell one, is considered, since all bins in the range cells contribute
to the out-of-bin clutter except the ith bin itself. In order to minimize the clutter effect from
out-of-bin cells the waveform in sub-dwell two is designed such that its auto-correlation
function takes the values close to zero at those bins where the clutter is estimated to have
the highest energy.

The FPE algorithm which estimates the clutter in the primary data, provides also an
estimate of the texture τk, k ∈ [i− [K− 1], i + [K− 1]] that is considered for the waveform
design. To create a waveform whose auto-correlation function is negligibly small where τk
is large, let’s consider an uni-modular phase modulated (PM) waveform [31–34], given by:

s2(t) = exp(jψ(t)), 0 < t < Ts (15)
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where the phase modulation is expanded in range in terms of an orthogonal set of basis
functions ψi as

ψ(t) =
Ns

∑
i=1

λiψi(t) (16)

and

ψi(t) =

{
1, (i− 1)∆Ts < t < i∆Ts

0, otherwise

Here, Ts and ∆Ts are the pulse duration and the sampling interval, respectively. In
order to eliminate the effect of clutter in the RCUT, we need to design the waveform s2(t),
which will optimize the matched filter output. To do so, we need to solve the following
optimization problem which finds the λi values that minimize the auto-correlation function
where τk is large.

min
λ

∑
Zτ

|zs2 [m]|2 (17)

where Zτ is the set of out-of-range bins for which the texture values are large and zs2 [m] is
the auto-correlation function of s2(t) given by:

zs2 [m] =
1

Ns

Ns−m

∑
i=1

[cos(λm+i − λi) + jsin(λm+i − λi)] (18)

The optimization problem as expressed in (17) can be solved through a Newton-
Raphson method.

7. Simulation Setup and Performance Analysis

In this section, we present the simulation setup, and later the performance analysis of
the proposed adaptive detector along with designed adaptive waveform with probability of
detection (Pd) versus signal-to-interference-plus-noise ratio (SINR) graphs. Non-adaptive
Linear Frequency Modulated (LFM) and Phase Modulated (PM) waveforms were included
in performance comparison to analyze the improvement due to designed adaptive wave-
form. We also present the performance of the proposed multipath exploited adaptive
detector AMF and ACE. Note that the ACE detector is invariant to the scaling of the
noise covariance matrix [47]. Hence, it is suitable for the comparison in a heterogeneous
environment. On the other hand, AMF is suitable for the comparison in the presence of
multipath since it is classified as a robust receiver against steering vector mismatches.

The pulse duration of the waveforms in sub-dwell one and sub-dwell two were
chosen as 1 µs. The frequency sweep of LFM is chosen as 100 MHz and bit duration of
PM was chosen as 0.01 µs. Additionally, the sampling frequency was set as 100 MHz
so that the number of samples for a pulse to be 100. While constructing the adaptive
waveform described in Section 6, we used 100 orthogonal set of basis functions (ψi) in
order to equalize the time bandwidth product of the adaptive waveform to the other two
non-adaptive waveforms.

In order to avoid computational burden, Np = 8 number of pulses were transmitted
in each sub-dwell, and the sensor number was chosen as one. Besides, K = 16 secondary
data were used. For the waveform design in sub-dwell 2, we used the largest eight
texture estimates out of K secondary data to define Zτ in the Equation (17). During the
performance analysis of the multipath exploited detection algorithm with the proposed
adaptive waveform, we made use of Monte Carlo counting techniques. The Pf a value was
preassigned to 10−2 and the threshold of the GLRT was evaluated resorting to 100/Pf a

independent trials. In addition, each value of Pd was evaluated by using 104 independent
realizations of the decision statistics.
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The interference covariance matrix M of the primary data covariance was calculated
as the following, where σ2

n = 1 is the thermal noise power, σ2
c > 0 is the clutter power, and

ratio between them, σ2
c /σ2

n , is 24 dB.

M = σ2
c M1 + σ2

n I

The (n, m)-th entry of M1 is given below, where σd = 0.995 is the one-lag correlation
coefficient [49].

M1(n, m) = e−(n−m)2/(2σ2
d )

In addition, the texture parameter τ of the compound Gaussian model had gamma
distribution with the shape parameter 0.5 and scale parameter 1. In the simulation of
diffuse multipath environment for the cell under test, we assumed NML = 4 main lobe and
NSL = 4 sidelobe scatterers were coming from glistening points. The amplitudes of the
scattered components were assumed to be dependent on the amplitude of the line of sight
component with following equation.

αi = α
xi√

L
, i = 1, . . . , NML + NSL

where x is an independent zero-mean circular symmetric complex normal random variable
with unit variance, and L represents path loss in decibels.

The path loss was set to several values in the presented figures. The ε value, which
was used as a priori information about the multipath severity, was set as 0.75. Moreover,
SINR in the simulations was defined as the ratio of the target signal power to the total
power of the interference in the range cell under test which is given by

SINR = |α|2 p† M−1 p.

It is also important to note that we investigated the performance gain of the detectors
related to the proposed adaptive waveform, thus we did not make use of techniques like
clutter suppression to increase the SINR values.

First, the Pd-SINR curves of the detectors were obtained at the end of sub-dwell
1 with the transmitted non-adaptive LFM and PM waveforms. Later, PD-SINR curves
were obtained at the end of sub-dwell 2 after transmitting the adaptive phase modulated
(APM) waveform. The performance analysis in Figures 3–5 was conducted to observe
the performance of detectors under diffuse multipath conditions with arranging severity
of the multipath by setting L parameter. In Figure 3, the performance of the detectors
was observed when diffuse multipath condition was assumed to have L = 10 dB. Then,
in order to make the effects of the multipath less severe, we increased the value of L in
Figures 4 and 5, where L = 20 and L = 30 respectively.

One can observe that ACE gave lower Pd results compared to the proposed detector
and AMF under multipath conditions. This was an expected result since ACE has selective
characteristics. It was also observed that performance difference between non-adaptive
and adaptive waveforms was quite small during high or low end SINR levels. Besides,
the detection performance of AMF was observed as not changing significantly between
sub-dwell one and two with L values, namely 10, 20 and 30 dB. On the other hand, the
proposed detector and ACE performed better when APM waveform used in the second
sub-dwell. The performance improvement of ACE with APM waveform can better be
observed in Figure 4. It is also important to note that LFM waveform with the proposed
detector showed performance degradation with respect to PM waveform when diffuse
multipath was less severe, i.e., L = 30 in Figure 4.
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Figure 3. Pd versus SINR curves at the end of Sub-dwell 1 (LFM) and using adaptive phase
modulated waveform design in Sub-dwell 2 (APM); N = 8, K = 16, Pf a = 10−2, L = 10.

The interference covariance matrix M of the primary data covariance is calculated as
the following where σ2

n = 1 is the thermal noise power, σ2
c > 0 is the clutter power, and

ratio between them, σ2
c /σ2

n , is 24 dB.

M = σ2
c M1 + σ2

n I

The (n, m)-th entry of M1 is given below, where σd = 0.995 is the one-lag correlation
coefficient [? ].

M1(n, m) = e−(n−m)2/(2σ2
d )

In addition, the texture parameter τ of the compound Gaussian model has gamma
distribution with the shape parameter 0.5 and scale parameter 1. In the simulation of
diffuse multipath environment for the cell under test, we assumed NML = 4 main lobe
and NSL = 4 sidelobe scatterers are coming from glistening points. The amplitudes of the
scattered components are assumed to be dependent on the amplitude of the line of sight
component with following equation.

αi = α
xi√

L
, i = 1, . . . , NML + NSL

Figure 3. Pd versus SINR curves at the end of Sub-dwell 1 (LFM) and using adaptive phase modulated
waveform design in Sub-dwell 2 (APM); N = 8, K = 16, Pf a = 10−2, L = 10.

In order to obtain results in Figure 6a, the Pd-SINR curves for three detectors were
calculated by transmitting N = 16 identical non-adaptive LFM pulses first. In other words,
the dwell was not divided into two sub-dwells, and no adaptive waveform is used. The
results were compared with the performance of the proposed adaptive waveform algorithm
which transmitted N = 8 LFM pulses in sub-dwell one followed by N = 8 adaptive phase
modulated (APM) pulses in sub-dwell two. In Figure 5b, the same procedure was applied
using non-adaptive PM waveform instead of LFM. It was well expected to observe that
non-adaptive LFM and PM waveforms with the proposed detector performed better then
the non-adaptive waveform results in Figures 3–5 due to integration of more pulses, namely
two times. However, ACE exhibited performance degradation when N = 16 non-adaptive
waveform was transmitted rather than N = 8. The selectivity probability of ACE may have
caused this performance loss since much more interference was coming to the reference
cell from the adjacent cells when N = 16 pulses were transmitted.
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Figure 4. Pd versus SINR curves at the end of Sub-dwell 1 (LFM) and using adaptive phase
modulated waveform design in Sub-dwell 2 (APM); N = 8, K = 16, Pf a = 10−2, L = 20.

In addition, the texture parameter τ of the compound Gaussian model has gamma
distribution with the shape parameter 0.5 and scale parameter 1. In the simulation of
diffuse multipath environment for the cell under test, we assumed NML = 4 main lobe
and NSL = 4 sidelobe scatterers are coming from glistening points. The amplitudes of the
scattered components are assumed to be dependent on the amplitude of the line of sight
component with following equation.

αi = α
xi√

L
, i = 1, . . . , NML + NSL

where x is an independent zero-mean circular symmetric complex normal random variable
with unit variance, and L represents path loss in decibels.

The path loss is set to several values in the presented figures. The ε value, which is
used as a priori information about the multipath severity, is set as 0.75. Moreover, SINR in
the simulations is defined as the ratio of the target signal power to the total power of the
interference in the range cell under test which is given by

SINR = |α|2 p† M−1 p.

Figure 4. Pd versus SINR curves at the end of Sub-dwell 1 (LFM) and using adaptive phase modulated
waveform design in Sub-dwell 2 (APM); N = 8, K = 16, Pf a = 10−2, L = 20.

It is evident from the figures that the proposed detector with adaptive waveform had
performance improvement than the non-adaptive waveform case of the same detector
in each scenario. Besides, the proposed detector with and without adaptive waveform
had Pd gain with respect to the ACE and the AMF detectors. The later is because the
proposed detector also exploited multipath, and thus had more robust characteristics in
diffuse multipath environments.
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Figure 5. Pd versus SINR curves at the end of Sub-dwell 1 (LFM) and using adaptive phase
modulated waveform design in Sub-dwell 2 (APM); N = 8, K = 16, Pf a = 10−2, L = 30.

It is also important to note that we investigate the performance gain of the detectors related
to the proposed adaptive waveform, thus we did not make use of techniques like clutter
suppression to increase the SINR values.

First, the Pd-SINR curves of the detectors are obtained at the end of sub-dwell 1
with the transmitted non-adaptive LFM and PM waveforms. Later, PD-SINR curves
are obtained at the end of sub-dwell 2 after transmitting the adaptive phase modulated
(APM) waveform. The performance analysis in Figures 3-5 is conducted to observe the
performance of detectors under diffuse multipath conditions with arranging severity of
the multipath by setting L parameter. In Figure 3 , the performance of the detectors are
observed when diffuse multipath condition is assumed to have L = 10dB. Then, in order
to make the effects of the multipath less severe, we increase the value of L in Figures 4 and
5, where L = 20 and L = 30 respectively.

One can observe that ACE gives lower Pd results compared to the proposed detector
and AMF under multipath conditions. This is an expected results since ACE has selective
characteristics. It is also observe that performance difference between non-adaptive and
adaptive waveforms are quiet small during high or low end SINR levels. Besides, the
detection performance of AMF is observed as not changing significantly between sub-dwell
one and two with L values, namely 10, 20 and 30 dB. On the other hand, the proposed

Figure 5. Pd versus SINR curves at the end of Sub-dwell 1 (LFM) and using adaptive phase modulated
waveform design in Sub-dwell 2 (APM); N = 8, K = 16, Pf a = 10−2, L = 30.
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Figure 6. Pd versus SINR curves using N = 16 LFM pulses, and N = 8 LFM chirps followed by N = 8
adaptive phase modulated (APM) waveforms; Pf a = 10−2, L = 30.

detector and ACE performs better when APM waveform used in the second sub-dwell.
The performance improvement of ACE with APM waveform can better be observed in
Figure 4. It is also important to note that LFM waveform with the proposed detector shows
performance degradation with respect to PM waveform when diffuse multipath is less
severe, i.e L = 30 in Figures 4.

In order to obtain results in Figure 6.a, the Pd-SINR curves for three detectors are
calculated by transmitting N = 16 identical non-adaptive LFM pulses first. In other words,
the dwell is not divided into two sub-dwells, and no adaptive waveform is used. The
results are compared with the performance of the proposed adaptive waveform algorithm
which transmits N = 8 LFM pulses in sub-dwell one followed by N = 8 adaptive phase
modulated (APM) pulses in sub-dwell two. In Figure 5.b, the same procedure is applied
using non-adaptive PM waveform instead of LFM. It is well expected to observe that
non-adaptive LFM and PM waveforms with the proposed detector performs better then the
non-adaptive waveform results in Figures 3-5 due to integration of more pulses, namely
two times. However, ACE exhibits performance degradation when N = 16 non-adaptive
waveform is transmitted rather than N = 8. The selectivity probability of ACE may cause
this performance loss since much more interference is coming to the reference cell from the
adjacent cells when N = 16 pulses are transmitted.

Figure 6. Pd versus SINR curves using N = 16 LFM pulses, and N = 8 LFM chirps followed by N = 8
adaptive phase modulated (APM) waveforms; Pf a = 10−2, L = 30.

8. Conclusions

An adaptive detector with an adaptive waveform design has been proposed in order to
increase SINR ratio on glistening surfaces. The advantage of the detector is to exploit diffuse
multipath returns of the target while suppressing the clutter coming from the adjacent
cells. In this respect, a constrained GLRT detector is used for multipath exploitation and
an adaptive waveform structure is introduced to suppress clutter. In particular, a radar
system that consists of two sub-dwells, where each dwell is represented by the number of
pulses, has been considered. At the end of sub-dwell one, the clutter in the range cell under
test is estimated via the FPE algorithm while the constrained GLRT detector is used for pre-
detection. The FPE algorithm is also used to design the adaptive waveform for the second
dwell in order to suppress the clutter. At the end of sub-dwell two, the constrained GLRT
detector is used for the final decision. In conclusion, we devise a cognitive architecture
improving the SCR in the range bin under test by not only exploiting the multipath returns
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of useful target echo but also suppressing the clutter coming from the adjacent radar cells.
The simulation results indicate that devised cognitive architecture can improve the SINR
in the range bin under test by suppressing the clutter coming from the adjacent radar cells.
It is also shown that conceived detector is more robust to multipath effect compared to
conventional adaptive detectors not exploiting multipath returns.

It is worth adding that we recognize the necessity and importance of using real data
to analyze and verify the performance of the proposed technique, but constructing such
an experimental study or using real data is outside the scope of this current manuscript.
However, it is our future work plan to acquire real data and test the proposed technique.
The actual detection strategy presented in this manuscript provides promising results
to improve the detection performance via multipath exploitation and waveform design
in heterogeneous clutter and diffuse multipath environment. Thus, this current work
is a necessary theoretical approach and it represents a starting point towards further
experimental studies.

Author Contributions: All the authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Farina, A.; Gini, F.; Greco, M.V.; Verrazzani, L. High resolution sea clutter data: Statistical analysis of recorded live data. IEE

Proc.-Radar, Sonar Navig. 1997, 144, 121–130. [CrossRef]
2. Farina, A.; Russo, A.; Scannapieco, F. Radar detection of target signals in non Gaussian clutter-Theory and applications. In

Proceedings of the International Conference on Radar, Toronto, ON, Canada, 11–15 August 1986; pp. 442–449.
3. Sangston, K.J.; Gerlach, K.R. Coherent detection of radar targets in a non-gaussian background. IEEE Trans. Aerosp. Electron. Syst.

1994, 30, 330–340. [CrossRef]
4. Conte, E.; Longo, M. Characterisation of radar clutter as a spherically invariant random process. IEE Proc. Commun. Radar Signal

Process. 1987, 134, 191–197. [CrossRef]
5. Conte, E.; Longo, M.; Lops, M. Modelling and simulation of non-Rayleigh radar clutter. IEE Proc. Radar Signal Process. 1991,

138, 121–130. [CrossRef]
6. Conte, E.; Lops, M.; Ullo, S. A new model for coherent Weibull clutter. Radar 89 1989, 2, 482–487.
7. Conte, E.; Longo, M.; Lops, M.; Ullo, S.L. Radar detection of signals with unknown parameters in K-distributed clutter. IEE Proc.

Radar Signal Process. 1991, 138, 131–138. [CrossRef]
8. Conte, E.; De Maio, A.; Galdi, C. Statistical analysis of real clutter at different range resolutions. IEEE Trans. Aerosp. Electron. Syst.

2004, 40, 903–918. [CrossRef]
9. Hayvaci, H.T.; De Maio, A.; Erricolo, D. Diversity in receiving strategies based on time-delay analysis in the presence of multipath.

In Proceedings of the 2011 IEEE Radar Conference (RADAR), Kansas City, MI, USA, 24–27 October 2011; pp. 1040–1045.
[CrossRef]

10. Hayvaci, H.T.; De Maio, A.; Erricolo, D. Performance analysis of diverse GLRT detectors in the presence of multipath. In
Proceedings of the 2012 IEEE Radar Conference, Atlanta, Georgia, 7–11 May 2012; pp. 0902–0906. [CrossRef]

11. Hayvaci, H.T.; Setlur, P.; Devroye, N.; Erricolo, D. Maximum likelihood time delay estimation and Cramér-Rao bounds for
multipath exploitation. In Proceedings of the 2012 IEEE Radar Conference, Atlanta, Georgia, 7–11 May 2012; pp. 0764–0768.
[CrossRef]

12. Hayvaci, H.T.; Erricolo, D. Improved radar target time-delay estimation with multipath exploitation. In Proceedings of the
2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Italy, 9–13 September 2013;
pp. 1232–1235. [CrossRef]

13. Fertig, L.B.; Baden, M.J.; Kerce, J.C.; Sobota, D. Localization and tracking with Multipath Exploitation Radar. In Proceedings of
the 2012 IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 1014–1018. [CrossRef]

14. Hayvaci, H.T.; De Maio, A.; Erricolo, D. Improved detection probability of a radar target in the presence of multipath with prior
knowledge of the environment. IET Radar Sonar Navig. 2013, 7, 36–46. [CrossRef]

15. Kumbul, U.; Hayvaci, H.T. Knowledge-Aided Adaptive Detection with Multipath Exploitation Radar. In Proceedings of the
2016 Sensor Signal Processing for Defence (SSPD), Edinburgh, Scotland, 22–23 September 2016; pp. 1–4. [CrossRef]

16. Kumbul, U.; Hayvaci, H.T. Multipath exploitation for knowledge-aided adaptive target detection. IET Radar Sonar Navig. 2019,
13, 863–870. [CrossRef]

17. Aubry, A.; De Maio, A.; Foglia, G.; Orlando, D. Diffuse Multipath Exploitation for Adaptive Radar Detection. IEEE Trans. Signal
Process. 2015, 63, 1268–1281. [CrossRef]

http://doi.org/10.1049/ip-rsn:19971107
http://dx.doi.org/10.1109/7.272258
http://dx.doi.org/10.1049/ip-f-1.1987.0035
http://dx.doi.org/10.1049/ip-f-2.1991.0018
http://dx.doi.org/10.1049/ip-f-2.1991.0019
http://dx.doi.org/10.1109/TAES.2004.1337463
http://dx.doi.org/10.1109/RADAR.2011.5960694
http://dx.doi.org/10.1109/RADAR.2012.6212265
http://dx.doi.org/10.1109/RADAR.2012.6212240
http://dx.doi.org/10.1109/ICEAA.2013.6632444
http://dx.doi.org/10.1109/RADAR.2012.6212286
http://dx.doi.org/10.1049/iet-rsn.2012.0081
http://dx.doi.org/10.1109/SSPD.2016.7590605
http://dx.doi.org/10.1049/iet-rsn.2018.5221
http://dx.doi.org/10.1109/TSP.2014.2388439


Remote Sens. 2021, 13, 1628 17 of 18

18. Rong, Y.; Aubry, A.; De Maio, A.; Tang, M. Diffuse Multipath Exploitation for Adaptive Detection of Range Distributed Targets.
IEEE Trans. Signal Process. 2020, 68, 1197–1212. [CrossRef]

19. Hayvaci, H.T.; Gulen, S.H. Adaptive Detection with Diffuse Multipath Exploitation in Partially Homogeneous Environments.
In Proceedings of the 2019 Sensor Signal Processing for Defence Conference (SSPD), Brighton, UK, 9–10 May 2019; pp. 1–5.
[CrossRef]

20. Hayvaci, H.; Gulen, S.H. Multipath Exploitation Radar with Adaptive Detection in Partially Homogeneous Environments. IET
Radar Sonar Navig. 2020, 14, 1475–1482. [CrossRef]

21. Zhang, Z.J.; Liu, J.; Zhao, Y.; Cao, Y. False alarm rate of the GLRT-LQ detector in non-Gaussian and heterogeneous clutter. Aerosp.
Sci. Technol. 2015, 47, 191–194. [CrossRef]

22. Gustafson, S.C.; James, E.A.; Terzuoli, A.J.; Weidenhammer, L.N.; Barnes, R.I. Non-Gaussian clutter characterization applied to
OTHR using a mixture of two Rayleigh probability density functions. Adv. Space Res. 2009, 44, 663–666. [CrossRef]

23. Xue, J.; Xu, S.; Shui, P. Knowledge-based target detection in compound Gaussian clutter with inverse Gaussian texture. Digit.
Signal Process. 2019, 95, 102590. [CrossRef]

24. Farina, A.; Russo, A.; Studer, F.A. Advanced Models of Targets, Disturbances and Related Radar Signal Processors. In Proceedings of
the IEEE International Radar Conference, Washington, DC, USA, 6–9 May 1985; pp. 151–158.

25. Aluffi Pentini, F.; Farina, A.; Zirilli, F. Radar detection of targets located in a coherent K distributed clutter background. IEE Proc.
Radar Signal Process. 1992, 139, 239–245. [CrossRef]

26. Sangston, K.J.; Gini, F.; Greco, M.V.; Farina, A. Structures for radar detection in compound Gaussian clutter. IEEE Trans. Aerosp.
Electron. Syst. 1999, 35, 445–458. [CrossRef]

27. Haykin, S. Cognitive radar: A way of the future. IEEE Signal Process. Mag. 2006, 23, 30–40. [CrossRef]
28. Guerci, G.R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach, 2nd ed.; Artech House: Norwood, MA, USA, 2020.
29. Aubry, A.; Carotenuto, V.; De Maio, A.; Farina, A.; Pallotta, L. Optimization theory-based radar waveform design for spectrally

dense environments. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 14–25. [CrossRef]
30. Zhang, L.; Wei, N.; Du, X. Waveform Design for Improved Detection of Extended Targets in Sea Clutter. Sensors 2019, 19, 3957.

[CrossRef] [PubMed]
31. Sira, S.P.; Cochran, D.; Papandreou-Suppappola, A.; Morrell, D.; Moran, W.; Howard, S.D.; Calderbank, R. Adaptive Waveform

Design for Improved Detection of Low-RCS Targets in Heavy Sea Clutter. IEEE J. Sel. Top. Signal Process. 2007, 1, 56–66. [CrossRef]
32. Li, Y.; Sira, S.P.; Papandreou-Suppappola, A.; Cochran, D.; Scharf, L.L. Maximizing Detection Performance with Waveform

Design for Sensing in Heavy Sea Clutter. In Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing,
Madison, WI, USA, 19–26 August 2007; pp. 249–253.

33. Zhang, T.; Kong, L.; Yang, X.; Shuai, X. Adaptive waveform design for detecting distributed target in heavy sea clutter. In
Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; Volume 1, pp.
572–575.

34. Wang, H.; Shi, L.; Wang, Y.; Ben, D. A novel target detection approach based on adaptive radar waveform design. Chin. J.
Aeronaut. 2013, 26, 194–200. [CrossRef]

35. Ullo, S.L. Evolution of Cognitive Radars Toward Intelligent Systems Architectures. In Proceedings of the 2018 5th IEEE
International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018; pp. 334–339.

36. Farina, A.; De Maio, A.; Haykin, S. The Impact of Cognition on Radar Technology; Scitech Publishing: Edison, NJ, USA, 2017.
37. Addabbo, P.; Aubry, A.; De Maio, A.; Pallotta, L.; Ullo, S.L. High Resolution Range Profiling for Stepped Radar via Sparsity

Exploitation. In Proceedings of the 2018 5th International Workshop on Compressed Sensing Applied to Radar, Multimodal
Sensing, and Imaging (CoSeRa), Siegen, Germany, 10–13 September 2018.

38. Addabbo, P.; Aubry, A.; De Maio, A.; Pallotta, L.; Ullo, S.L. HRR profile estimation using SLIM (High Range Resolution Profile
Estimation using Sparse Learning via Iterative Minimization). IET Rarad Sonar Navig. 2018, 13, 512–521. [CrossRef]

39. Conte, E.; De Maio, A.; Ricci, G. Recursive estimation of the covariance matrix of a compound-Gaussian process and its
application to adaptive CFAR detection. IEEE Trans. Signal Process. 2002, 50, 1908–1915. [CrossRef]

40. De Maio, A.; Greco, M. Modern Radar Detection Theory; Electromagnetics and Radar; Institution of Engineering and Technology:
London, UK, 2015.

41. Conte, E.; De Maio, A.; Galdi, C. CFAR detection of multidimensional signals: An invariant approach. IEEE Trans. Signal Process.
2003, 51, 142–151. [CrossRef]

42. Aubry, A.; De Maio, A.; Pallotta, L.; Farina, A. Maximum Likelihood Estimation of a Structured Covariance Matrix With a
Condition Number Constraint. IEEE Trans. Signal Process. 2012, 60, 3004–3021. [CrossRef]

43. Aubry, A.; De Maio, A.; Pallotta, L.; Farina, A. Radar Detection of Distributed Targets in Homogeneous Interference Whose
Inverse Covariance Structure is Defined via Unitary Invariant Functions. IEEE Trans. Signal Process. 2013, 61, 4949–4961.
[CrossRef]

44. Kang, B.; Monga, V.; Rangaswamy, M. Rank-Constrained Maximum Likelihood Estimation of Structured Covariance Matrices.
IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 501–515. [CrossRef]

45. Yilmaz, S.H.G.; Zarro, C.; Hayvaci, H.T.; Liberata Ullo, S. A Two-Step Process for a Cognitive Radar Waveform Design
with Multipath Exploitation. In Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace
(MetroAeroSpace), Pisa, Italy, 22–24 June 2020; pp. 166–170. [CrossRef]

http://dx.doi.org/10.1109/TSP.2020.2967144
http://dx.doi.org/10.1109/SSPD.2019.8751660
http://dx.doi.org/10.1049/iet-rsn.2020.0059
http://dx.doi.org/10.1016/j.ast.2015.09.038
http://dx.doi.org/10.1016/j.asr.2008.08.023
http://dx.doi.org/10.1016/j.dsp.2019.102590
http://dx.doi.org/10.1049/ip-f-2.1992.0030
http://dx.doi.org/10.1109/7.766928
http://dx.doi.org/10.1109/MSP.2006.1593335
http://dx.doi.org/10.1109/MAES.2016.150216
http://dx.doi.org/10.3390/s19183957
http://www.ncbi.nlm.nih.gov/pubmed/31540258
http://dx.doi.org/10.1109/JSTSP.2007.897048
http://dx.doi.org/10.1016/j.cja.2012.12.018
http://dx.doi.org/10.1049/iet-rsn.2018.5102
http://dx.doi.org/10.1109/TSP.2002.800412
http://dx.doi.org/10.1109/TSP.2002.806554
http://dx.doi.org/10.1109/TSP.2012.2190408
http://dx.doi.org/10.1109/TSP.2013.2273444
http://dx.doi.org/10.1109/TAES.2013.120389
http://dx.doi.org/10.1109/MetroAeroSpace48742.2020.9160018


Remote Sens. 2021, 13, 1628 18 of 18

46. Robey, F.C.; Fuhrmann, D.R.; Kelly, E.J.; Nitzberg, R. A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst.
1992, 28, 208–216. [CrossRef]

47. Kraut, S.; Scharf, L.L. The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans. Signal Process. 1999,
47, 2538–2541. [CrossRef]

48. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
49. Barbarossa, S.; Farina, A. Space-time-frequency processing of synthetic aperture radar signals. IEEE Trans. Aerosp. Electron. Syst.

1994, 30, 341–358. [CrossRef]

http://dx.doi.org/10.1109/7.135446
http://dx.doi.org/10.1109/78.782198
http://dx.doi.org/10.1109/7.272259

	Introduction
	Proposed Solution
	Theoretical Model and Assumptions
	The Model for the Clutter
	A Constrained GLRT Detector 
	Design of the Waveform
	Simulation Setup and Performance Analysis
	Conclusions
	References

