
remote sensing  

Article

Non-Linear Response of PM2.5 Pollution to Land Use Change
in China

Debin Lu 1 , Wanliu Mao 1,2,*, Wu Xiao 1 and Liang Zhang 3

����������
�������

Citation: Lu, D.; Mao, W.; Xiao, W.;

Zhang, L. Non-Linear Response of

PM2.5 Pollution to Land Use Change

in China. Remote Sens. 2021, 13, 1612.

https://doi.org/10.3390/rs13091612

Academic Editor: Luke Knibbs

Received: 11 March 2021

Accepted: 19 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Land Management, Zhejiang University, Hangzhou 310058, China; ludebin@zju.edu.cn (D.L.);
xiaowu@zju.edu.cn (W.X.)

2 Zhejiang Academy of Surveying and Mapping, Hangzhou 311100, China
3 School of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China;

zhangliang0930@zju.edu.cn
* Correspondence: 11922077@zju.edu.cn

Abstract: Land use change has an important influence on the spatial and temporal distribution of
PM2.5 concentration. Therefore, based on the particulate matter (PM2.5) data from remote sensing
instruments and land use change data in long time series, the Getis-Ord Gi* statistic and SP-SDM are
employed to analyze the spatial distribution pattern of PM2.5 and its response to land use change
in China. It is found that the average PM2.5 increased from 25.49 µg/m3 to 31.23 µg/m3 during
2000-2016, showing an annual average growth rate of 0.97%. It is still greater than 35 µg/m3 in
nearly half of all cities. The spatial distribution pattern of PM2.5 presents the characteristics of
concentrated regional convergence. PM2.5 is positively correlated with urban land and farmland,
negatively correlated with forest land, grassland, and unused land. Furthermore, the average PM2.5

concentrations show the highest values for urban land and decrease in the order of farmland >
unused land > water body > forest > grassland. The impact of land use change on PM2.5 is a non-
linear process, and there are obvious differences and spillover effects for different land types. Thus,
reasonably controlling the scale of urban land and farmland, optimizing the spatial distribution
pattern and development intensity, and expanding forest land and grassland are conducive to curbing
PM2.5 pollution. The research conclusions provide a theoretical basis for the management of PM2.5

pollution from the perspective of optimizing land use.

Keywords: particulate matter (PM2.5); land use change; non-linear; spatial regression model

1. Introduction

The city is the densest place for human activities and is the space where air pollutants
are most likely to accumulate [1,2]. Since the 1980s, with the rapid urbanization process
and social and economic development, peoples’ material wealth and living standards have
been improved in China, but this has also brought a series of environmental problems [3,4].
Moreover, it highlights the serious contradiction between accelerating the urbanization
process and abiding by ecological and environmental protection. Developed countries such
as Europe and the United States have experienced air pollution problems for more than
100 years. Pollution increased intensively in China’s economically developed regions in
the past 20–30 years [5–8], especially PM2.5 (Particulate matter with aerodynamic diameter
± 2.5 µm) pollution [9–12]. At present, China has become one of the most polluted areas in
the world in regards to PM2.5 pollution [1,11]. It is particularly prominent in the Beijing-
Tianjin-Hebei region to the east of Hu Line, Yangtze River Delta, Chengdu-Chongqing
Economic Zone, Guanzhong Economic Zone, Central Plains, and Harbin-Changchun urban
agglomeration. They have become the worst-hit areas [1,9]. Furthermore, because PM2.5
can remain in the atmosphere for a longer time than PM10 and total suspended particulate
matter (TSP), and contains sulfates, nitrates, dust, polycyclic aromatic hydrocarbons,
and heavy metals that are toxic to the human body [13], it significantly affects human
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health [14,15], atmospheric visibility [16], climate change [17], and social and economic
development [18]. Therefore, it has become an important environmental issue that prevents
China from achieving urban Sustainable Development Goals (SDGs) by 2035.

The source analysis of PM2.5 pollution was emphasized in previous studies [19–23],
and it was found that urban PM2.5 mainly came from domestic and industrial fire coal and
automobile exhaust emissions [24–27]. However, rapid urbanization has led to changes
in land use patterns and functions. Particularly, a large number of natural surfaces have
been converted into artificial surfaces, lots of farmland and forest land are exploited,
and land use types and patterns have undergone tremendous changes in several major
urban agglomerations [28], such as the Beijing-Tianjin-Hebei region, Yangtze River Delta,
Pearl River Delta, and Chengdu-Chongqing Economic Zone. Consequently, sources of
atmospheric pollutants increased [29–32]. Meanwhile, changes in hydrothermal conditions
can significantly affect the spatial and temporal distribution pattern of PM2.5 [33,34]. On
the one hand, the land is the underlying surface of the atmosphere. The composition
and pattern of land use types can directly affect PM2.5 [35,36] because different land use
types carry different intensities of human activities, which also means different pollution
emissions. Further, changes in the landscape structure can cause changes in the local
climate [37], thereby affecting the migration and conversion of PM2.5. Significantly, land
use changes at the regional or macro scale can affect climate conditions. Therefore, the land
is the foundation for carrying everything, and land use change has a significant impact on
regional energy flow, substance circulation, and biological processes. This is an important
reason for a series of urban environmental problems [38,39].

At present, the studies on the relationship between PM2.5 and land use change mostly
focus on large developed cities or a more microscopic scale [40,41]. Due to the atmo-
spheric transport of atmospheric pollution, urban PM2.5 pollution is not only related to
local emissions, but also to regional and long-range transport, which has a certain con-
tribution [31,35,42,43]. Local and regional land use changes will directly or indirectly
affect the local PM2.5. In addition, PM2.5 and influencing factors constitute a complex
non-linear dynamic system. There are multi-level scale structures and local changes in the
time domain [44,45]. The complex process of non-linear interaction and response cannot
be revealed in traditional linear analysis methods. However, non-linear numerical mod-
eling methods are used in other studies to study air pollution diffusion and distribution
patterns [46–48]. Land use is utilized as a predictive factor, and the response of PM2.5 to
land use changes is not the focus of their research. Therefore, it is necessary to develop
a non-linear model to study the response mechanism of PM2.5 to land use changes in a
large area.

Thus, based on the PM2.5 dataset (from remote sensing instruments and not from
ground-based measurement networks) and land use change data in long time series, the
Getis-Ord Gi* statistic (Pronounced G-i-star) and the semi-parametric spatial Durbin model
(SP-SDM) are employed to analyze the spatial distribution pattern of PM2.5 and its response
to land use change. The resultant z-scores and p-values of the Getis-Ord Gi* statistic can
reveal spatial clusters of PM2.5 with either high or low values, and the SP-SDM model
shows the non-linear characteristics of PM2.5 response to land use change. It provides
a theoretical reference to improve urban air quality by optimizing land use methods to
promote the realization of Chinese cities’ SDGs by 2035.

2. Materials and Methods
2.1. Data
2.1.1. PM2.5 Dataset

China Regional Estimates (V4.CH.03) PM2.5 dataset was downloaded from (http:
//fizz.phys.dal.ca/~atmos/martin/?page_id=140 accessed on 1 March 2020). This dataset
was produced by the Atmospheric Environmental Analysis Group of Dalhousie University.
The spatial resolution is 0.01◦ × 0.01◦ (where the 0.01 arc division is about 1 km measured at
the equator), and the time span is from 2000 to 2016. It has good data quality and can verify
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that R2 is 0.81 [9]. Van Donkelaar et al. estimate PM2.5 by combining Aerosol Optical Depth
(AOD) retrievals from the NASA’s Medium Resolution Imaging Spectrometer (MODIS),
Multi-angle Imaging Spectrometer (MISR), and Wide Field Ocean Observation Sensor
(SeaWiFS) satellite instruments and coincident aerosol vertical profiles with the GEOS-
Chem (http://geos-chem.org/, accessed on 10 March 2021) chemical transport model,
and subsequently calibrated to regional ground-based observations using Geographically
Weighted Regression (GWR) [49]. Ground-based PM2.5 measurements over mainland
China were obtained from http://beijingair.sinaapp.com/, accessed on 10 March 2021,
Taiwanese PM2.5 measurements were downloaded from https://taqm.epa.gov.tw/taqm/
tw/YearlyDataDownload.aspx. For further details, see references [50,51]. These have been
effectively applied to national and regional scale air pollution studies [9,52].

2.1.2. Land Use Dataset

Land use data originate from the CCI-LC global land cover product developed by the
European Aviation Agency (http://maps.elie.ucl.ac.be/CCI accessed on 4 June 2020, 2020).
The dataset covers the world with a time span of 1992–2018, of which the 2000–2015 data
format is TIFF, the 2016–2018 data format is netCDF, the spatial resolution is 300 m, and
the coordinate system is WGS-1984. ArcGIS 10.3.1 software and Chinese administrative
boundaries are employed to tailor CCI-LC products and extract the land use data during
2000–2016. As the CCI-LC maps are designed to be globally consistent, the type of land
counts 22 classes, and each class is associated with a ten values code. In this study, we
re-combine the types of land use according to research needs. The classification rules are:
urban areas of CCI-LC maps are reclassified into new urban land; water bodies of CCI-LC
maps are reclassified into new water bodies; grassland of CCI-LC maps is reclassified into
new grassland; cropland, rainfed and cropland, irrigated or post-flooding of CCI-LC maps
are merged into new farmland; permanent snow and ice, bare areas, lichens and mosses of
CCI-LC maps are merged into unused land; and the rest are classified as forest land.

2.2. Methods
2.2.1. Hot Spot Analysis (Getis-Ord Gi*)

The hot spot analysis employed the Getis-Ord Gi* [53,54] statistic to produce a hot
(high PM2.5 values) and cold (low PM2.5 values) spot PM2.5 pollution map. It is widely
used in the analysis of the spatial agglomeration of geographic features. Getis-Ord Gi* is
formulated as:

G∗
i =

∑n
j=1 wi,jxj − X ∑n

j=1 wi,j√
∑n

j=1 x2
j

n−1 −
(
X
)2

√ [
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(1)

where xj is the PM2.5 values for city j; wi,j is the spatial weight between city i and j, the
wi,j are constructed using the rook’s case method (polygon features that share a boundary
are neighbors); X is the arithmetic average of xj; and n is equal to the total number of cities.
The Gi* statistic returned for each city is a z-score. For statistically significant (p-value)
positive z-scores, the larger the z-score is, the more intense the clustering of high PM2.5
values (hot spot). For statistically significant (p-value) negative z-scores, the smaller the
z-score is, the more intense the clustering of low PM2.5 values (cold spot). The p-value is
a probability representing confidence levels [55], and in this study we set p-value equal
to 0.05.

2.2.2. Semi-Parametric Spatial Durbin Model (SP-SDM)

The spatial lag model, spatial error model, and spatial Durbin model (SDM) are
commonly used as spatial analysis tools [56,57]. As emissions from other neighboring areas
affect PM2.5 pollution levels, SDM can be applied to effectively measure its impact [31,56].
It can also be employed to measure the indirect effects of exogenous variables such as initial
conditions and control variables in a region. Therefore, SDM is utilized in this manuscript
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to analyze the relationship between PM2.5 and land use change. However, the homogeneity
of the investigated parameters is assumed in the traditional SDM [58]. The effects of
explanatory variables on the explained variables are the same in all regions, and the spatial
heterogeneity and non-linearity of regional growth behavior cannot be recognized [59]. In
order to measure whether there are spatial heterogeneity and non-linear characteristics,
two different forms of spatial econometric models are constructed through the generalized
additive models (GAM) [60] and SDM for comparisons. g1(µ) is an ordinary non-linear
model, and g2(µ) is SP-SDM, with the calculation formula as follows:

g1(µ) = β +
m

∑
i

s(αi) + εi = 1, 2, · · ·m (2)

g2(µ) = β +
m

∑
i

s(αi, Wαi) + s(WPM2.5) + ε i = 1, 2, · · ·m (3)

where g(µ) is a link function, µ = E(PM2.5/α1, α2, . . . . . . , αm), β represents autoregres-
sive coefficient, αi represents the land use type, W is n*n order spatial weight matrix, and
K = 4, Wαi and WPM2.5 is the αi and PM2.5 spatial lag variables, respectively, ε is a ran-
dom error, and s(·) is the smooth function of connecting explanatory variables. The spdep
and mgcv packages in the R 3.6.3 version [61] (a free software environment for statistical
computing and graphics) are used to calculated SP-SDM.

3. Results
3.1. Spatial and Temporal Pattern of PM2.5
3.1.1. PM2.5 Time Change Trend

The mean value of PM2.5 in each city in China from 2000–2016 was calculated by the
zonal statistics as table tool of ArcGIS 10.3.1 software. We consider the city-level vector
boundary in China as the input feature zone data and the grid PM2.5 data is used as the
input value raster, with the statistics type set to mean. Finally, the mean value of the PM2.5
concentration values of 369 cities was calculated from 2000 to 2016. The annual mean PM2.5
for the whole of China is the average for all cities. Analysis results show the average value
of PM2.5 increased from 26.75 ± 24.65 µg/m3 in 2000 to 31.23 ± 25.08 µg/m3 in 2016, with
an average annual growth rate of 0.97%. The minimum value appeared in 2000, and the
maximum value of 38.46 ± 31.40 µg/m3 appeared in 2014 in China.

With reference to the criterion value for the annual average concentration of PM2.5,
the target values for the three stages of a transition period, and the Chinese ambient air
quality standards (GB3095-2012) set in the Air Quality Guidelines issued by the World
Health Organization (WHO) in 2005, the annual average PM2.5 is divided into five grades
of <10 µg/m3, 10–15 µg/m3, 15–25 µg/m3, 25–35 µg/m3, >35 µg/m3. According to PM2.5
classification rules, the PM2.5 concentration values are classified and calculated to obtain
the proportion of cities in different grades of PM2.5 values, as shown in Figure 1. From 2000
to 2016, the proportion of cities with an annual average PM2.5 concentration of less than
10 µg/m3 (criterion value) was 2.43–5.12%. The proportion of cities with an average yearly
PM2.5 concentration between 10 and 15 µg/m3 (IT-3: the annual average limit of target 3 in
WHO transition period) was 3.77–8.63%. The proportion of cities with an average yearly
PM2.5 concentration between 15 µg/m3 and 25 µg/m3 (IT-2: the annual average limit of
target 2 in WHO transition period) was 17.25–20.22%. The proportion of cities with an
average yearly PM2.5 concentration between 25 µg/m3 and 35 µg/m3 (IT-1: the annual
average limit of target 1 in WHO transition period) was 23.18–25.34%. The proportion of
cities with an annual average PM2.5 concentration greater than 35 µg/m3 was 43.40–47.71%.
The analysis showed that China’s PM2.5 governance had achieved certain results, but
further efforts are needed to reduce PM2.5 pollution and achieve sustainable development
goals by 2035.
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3.1.2. Spatial Distribution Pattern of PM2.5

As can be seen from Figure 2, the spatial distribution of PM2.5 shows concentrated
regional convergence, with obvious spatial heterogeneity. High PM2.5 values are shown in
the densely populated and relatively economically developed central and eastern regions
and the Taklimakan Desert in Xinjiang. In contrast, low PM2.5 values are mainly distributed
in the west & central areas and south Fujian with low population density and relatively
backward economic development. Except for natural factors, the spatial distribution
pattern of PM2.5 is roughly consistent with that of the population and economic patterns,
indicating that human socio-economic activities significantly impact PM2.5 concentration.

The hot spot analysis method was employed to identify the hot spots (high PM2.5
values) and cold spots (low PM2.5 values) of PM2.5 distribution in China and further analyze
the clustering characteristics of PM2.5. It is demonstrated that the spatial distribution of
PM2.5 in China conforms to the characteristic analysis and clustering. Hot spots (high
PM2.5 values) are mainly distributed in Kashgar, Aksu in western Xinjiang, the Beijing-
Tianjin-Hebei region, Shandong Peninsula, the Central Plains, the middle reaches of the
Yangtze River, the Yangtze River Delta, and other central and eastern urban agglomerations,
especially the northern regions. They have experienced rapid industrialization and coal
burning in winter, which has deteriorated air quality. Cold spots (low PM2.5 values) are
mainly distributed in the north slope of the Tianshan Mountains, the Qinghai-Tibet Plateau,
the west coast of the Taiwan Straits, the Yunnan-Guizhou Plateau, Hainan Province, and
the border area between the three northeastern provinces and Inner Mongolia. From
2000 to 2016, most of the hot spots remained stable and only a few areas changed. The
Chengdu-Chongqing Economic Zone and Lanzhou-Xining Urban Belt changed from hot
spots to insignificant regions, indicating that air pollution has improved. The continuous
expansion of cold spots (low PM2.5 values) in the urban agglomerations on the west coast
of the Taiwan Straits, central Yunnan, and central Guizhou indicates that significant results
have been achieved in air pollution control in these regions.

The spatial distribution of PM2.5 has strong heterogeneity due to different emission
intensities of pollution gas and meteorological conditions in different areas of China,
and different contributions by different types of PM2.5 precursors. PM2.5 pollutants in
Xinjiang and Qinghai Qaidam Basin mainly came from sand dust aerosol. However, PM2.5
pollutants in eastern China and urban agglomerations mainly came from anthropogenic
emissions. The reaction between nitrogen dioxide and sulfur dioxide in water absorbed by



Remote Sens. 2021, 13, 1612 6 of 13

PM2.5 is the main formation path of sulfate during fog and haze. Nitrogen oxides not only
lead to an increase of PM2.5 concentration, but aerosols from high emissions of agriculture,
industrial production, and airborne dust also results in the rapid generation of sulfates by
their unique chemical pathways [38], which is one of the main reasons for the increased
PM2.5 concentration.
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3.2. PM2.5 Response to Land Use Change
3.2.1. Relationship between PM2.5 and Land Use Change

Land use space is the underlying surface of the atmospheric environment, which can
directly or indirectly affect the temporal and spatial distribution pattern of PM2.5. We
calculated the land use area of different types in each city from 2000 to 2016 by ArcGIS
software. The Spearman correlation coefficient method [62] is employed to determine the
correlation between PM2.5 and land use types.

It is found that PM2.5 was positively correlated with urban land, farmland, and water
bodies, and the correlation coefficients were 0.34 (p = 0.01), 0.047 (p = 0.01), and 0.067
(p = 0.01), respectively. PM2.5 was negatively correlated with forest land, grassland and
unused land, and the correlation coefficients were −0.438 (p = 0.01), −0.265 (p = 0.01) and
−0.441 (p = 0.01) respectively. Land use data were resampled to make its spatial resolution
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consistent with the grid PM2.5 data. Then, the mean concentration of PM2.5 on different land
types was calculated by using the resampled land use data of 2016. As shown in Figure 3,
the average PM2.5 concentrations show the highest values for urban land and decrease in
the order of farmland > unused land > water body > forest > grassland. Because the unused
land includes sandy land, dust in the desert is the cause of high PM2.5 concentrations. The
highest value being under urban land indicates the city as a major source area of PM2.5
in China.
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Figure 3. PM2.5 values under different land use types.

3.2.2. Non-Linear Response of PM2.5 to Land Use Change

The constructed SP-SDM was employed to measure the non-linear characteristics of
PM2.5 and land use change. To make the data more stable, logarithmic transformation was
undertaken for land use types. The results are shown in Table 1. It was demonstrated
that the two models have passed the 1% significance level test in terms of the estimated
and referenced degrees of freedom. R2 of model 2 is 0.86, which is significantly greater
than that of model 1 (0.66). However, this shows the contrary values in Generalized Cross-
Validation (GCV) [63]. The smaller the value of GCV, the better the performance of the
model, indicating that the impact of land use change on PM2.5 is statistically significant,
and the fitting degree of SP-SDM is superior to that of the ordinary non-linear model. It
can also be seen from Table 1 that the p-value of the spatial lag variables of PM2.5 (WPM2.5)
is significant, indicating that PM2.5 has a spatial spillover effect [56]. The degree of freedom
for model 1 is greater than 1, showing that the function is a non-linear curve equation
(when the degree of freedom is 1, the function is a linear equation) [60]. Moreover, the more
significant non-linear relationship indicates the non-linear response of PM2.5 concentration
to land use changes.

The vertical axis in Figure 4 is the linear prediction value of PM2.5, and the two
horizontal axes are the land use type and its spatial lag variables respectively, reflecting
the change characteristics of PM2.5 concentration under the interaction of different land
use scales and its spatial lag. In China, water bodies are mostly shown as long and narrow
strips. Except for the northwest’s sandy land, the unused land has a small distribution
area in other places, especially on the urban fringe. This causes these two types of land
to be prone to be polluted by adjacent land types. Therefore, the visual mapping is only
performed for urban land, farmland, forest land, and grassland. It can be seen from
Figure 5 that the PM2.5 concentration value increases with the expansion of urban land and
farmland and decreases with the expansion of forest land and grassland, indicating that
the urban land and farmland have a positive contribution to PM2.5 pollution. Forest land
and grassland have a negative contribution to PM2.5 pollution.
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Table 1. Estimation results in SP-SDM.

Edf/Coef Ref.df F p-Value R2 GCV

Model-1

β1 37.946 / / <2×10−16 ***

0.66 97.695

s(urban) 8.420 8.906 51.69 <2×10−16 ***
s( f armland) 8.816 8.989 128.39 <2×10−16 ***

s( f orest) 8.206 8.813 387.09 <2×10−16 ***
s(grassland) 8.691 8.963 119.73 <2×10−16 ***

s(water) 8.535 8.935 19.68 <2×10−16 ***
s(unused land) 8.873 8.994 88.11 <2×10−16 ***

Model-2

β2 37.946 / / <2×10−16***

0.86 41.438

s(urban, W urban) 26.662 28.65 18.945 <2×10−16 ***
s( f armland, W f armland) 28.266 28.95 34.535 <2×10−16 ***

s( f orest, W f orest) 27.706 28.88 101.210 <2×10−16 ***
s(grassland, Wgrassland) 27.848 28.89 42.595 <2×10−16 ***

s(water, Wwater) 25.543 28.25 9.445 <2×10−16 ***
s(unused land, Wunused land) 27.229 28.78 21.305 <2×10−16 ***

WPM2.5 8.039 8.76 471.029 <2×10−16 ***

Note: *** means p-value < 0.001.
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This is consistent with the above correlation analysis results. Generally, PM2.5 de-
creases with the increase of the spatial lag of urban land, forest land, and grassland, while
PM2.5 increases with the increase of the spatial lag of farmland. Specifically, when the spa-
tial lag of urban land expands, the PM2.5 concentration almost decreases linearly. After the
spatial lag of urban land reaches a high value, as the urban land continues to expand, the
PM2.5 concentration appears again rising trend. Unlike construction land, when the spatial
lag of forest and grassland increases, the PM2.5 concentration shows a trend from decline
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to rise. When the spatial lag of forest and grassland reaches a high value, PM2.5 shows
a downward trend as the forest and grassland expand. It indicates that the expansion
of urban land, forest land, and grassland in the surrounding area can suppress regional
PM2.5 pollution. However, as the local urban land scale expands, the construction scale in
the surrounding regions also expands. This will increase PM2.5 pollution. Air pollution
in urban agglomerations in China is a typical phenomenon, indicating that urban land
scale has an Environmental Kuznets Curve effect on PM2.5 pollution. Reasonable control of
the scale of urban land can achieve good environmental effects. Expansion of the forest
land and grassland can not only suppress PM2.5 pollution in the region, but it also has
an inhibitory effect in adjacent areas. Moreover, the larger the scale of forest land and
grassland, the more obvious the inhibitory effect. The large-scale and green production of
farmland will help curb PM2.5 pollution. The impact of land use scale on PM2.5 pollution is
a non-linear process, and different land use scales have different effects.

3.2.3. The Impact Mechanism of Land Use Change on PM2.5 Pollution

As shown in Figure 5, as the main driver for air pollution, different land use types,
patterns, and development intensities will obviously result in different distribution patterns
of PM2.5 pollution [64–67]. In fact, the expansion of urban scale and the increase in urban
land area will lead to the imbalance of artificial and natural surface structures. In the process
of this change, the land pattern has also changed. The construction of new residential areas,
commercial areas, or industrial parks has improved the population density and commuting
distance, thus increasing pollution emission sources. Changes in cities’ landscape pattern
structure have also changed the microclimate environment, which is prone to the heat
island effect and increased water evapotranspiration [68]. In addition, the increase in land
use and development intensity, building density, and height enable cities to accommodate
more people. Still, it also increases the urban energy consumption, and the buildings are
built higher and higher in the city. The effect of blocking and friction makes the wind
flow through the city significantly weaker, thereby exacerbating PM2.5 pollution [69]. On
the contrary, the reasonable optimization of the land structure, distribution pattern, and
development intensity can alleviate PM2.5 pollution in the process of urban expansion.
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The area that can be used for newly-built green space and grassland is limited in cities.
It is very difficult to control PM2.5 pollution by optimizing the land use structure alone.
Government administrators will face the problem of where and how much to adjust. The
city’s real objective world is a three-dimensional space, and the distribution pattern and
development intensity also affect the distribution pattern of PM2.5 pollution. Therefore,
policy tools should be utilized for new urban development and urban reconstruction in old
urban areas. Furthermore, the urban greening rate, the land use structure, development
intensity, and distribution pattern should be gradually improved and optimized. The air
duct should be reserved, and scattered ecological land shall be restored into an overall
urban ecological network structure, which will exert a greater scale effect of ecological land.
Thus, these improvements can play a role in reducing urban PM2.5 pollution.

4. Discussion

PM2.5 pollution is affected by both human-made and natural factors [70]. In the
desert areas of northwest China, it is mainly affected by natural wind and dust [69].
However, it is mainly affected by human-made factors in eastern China, especially in urban
agglomerations [3,31]. The empirical method of conditional mean regression has been
employed in most of the existing studies. It cannot essentially reveal the differences in
PM2.5 levels caused by the non-linearity and heterogeneity of different regions. SP-SDM is
thus employed to effectively reveal the heterogeneity and non-linear impact mechanism
of land use on PM2.5 and the interaction of land use and its spatial lag on PM2.5. It is
confirmed that PM2.5 pollution has a spatial spillover effect, and that the effects of different
land use scales on PM2.5 are significantly different. It provides a certain reference for the
management of PM2.5 pollution and the regional joint prevention and control of PM2.5 from
the perspective of land use optimization. However, the “earth-atmosphere” system is a very
complex system, and PM2.5 pollution is the result of the interaction, synergy, and coupling
of natural conditions, human activities, and land use changes. Due to the difficulty in
obtaining high-precision PM2.5 observational data and its complexity response to land use
change, there are still many uncertainties. With the accumulation of high-precision PM2.5,
land use changes, and individual-based social and economic data, the response process
and mechanism of PM2.5 pollution to land use changes should be focused on different time
and space scales in the future.

5. Conclusions

Based on the remote sensing inversion of PM2.5 data and land use change data in long
time series, the Getis-Ord Gi* statistic and SP-SDM are employed to analyze the spatial
distribution pattern of PM2.5 and its response to land use change. The main conclusions
are as follows:

(1) The average PM2.5 increased from 25.49 µg/m3 to 31.23 µg/m3 during 2000–2016,
showing an annual average growth rate of 0.97%. It is still greater than 35 µg/m3 in
nearly half of the cities in China.

(2) The spatial distribution pattern of PM2.5 presents the characteristics of concentrated
regional convergence. PM2.5 is positively correlated with urban land and farmland,
while it is negatively correlated with forest land, grassland, and unused land. Further-
more, the average PM2.5 concentrations show the highest values for urban land and
decrease in the order of farmland > unused land > water body > forest > grassland.

(3) The impact of land use change on PM2.5 is a non-linear process, and there are obvious
differences for different land types. Moreover, it will also affect the surrounding areas.
Thus, reasonably controlling the scale of urban land and farmland, optimizing the
spatial distribution pattern and development intensity, and expanding the forest land
and grassland are conducive to curbing PM2.5 pollution.
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