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Abstract: Existing approaches that extract buildings from point cloud data do not select the appropriate
neighbourhood for estimation of normals on individual points. However, the success of these
approaches depends on correct estimation of the normal vector. In most cases, a fixed neighbourhood
is selected without considering the geometric structure of the object and the distribution of the
input point cloud. Thus, considering the object structure and the heterogeneous distribution of the
point cloud, this paper proposes a new effective approach for selecting a minimal neighbourhood,
which can vary for each input point. For each point, a minimal number of neighbouring points are
iteratively selected. At each iteration, based on the calculated standard deviation from a fitted 3D
line to the selected points, a decision is made adaptively about the neighbourhood. The selected
minimal neighbouring points make the calculation of the normal vector accurate. The direction of
the normal vector is then used to calculate the inside fold feature points. In addition, the Euclidean
distance from a point to the calculated mean of its neighbouring points is used to make a decision
about the boundary point. In the context of the accuracy evaluation, the experimental results
confirm the competitive performance of the proposed approach of neighbourhood selection over the
state-of-the-art methods. Based on our generated ground truth data, the proposed fold and boundary
point extraction techniques show more than 90% F1-scores.

Keywords: boundary point extraction; building reconstruction; edge point; feature point extraction;
neighbourhood selection

1. Introduction

Estimation of the feature points and lines is a fundamental problem in the field of
image and shape analysis as this estimation facilitates better understanding of an object
in a variety of areas, e.g., data registration [1], data simplification [2], road extraction [3],
and building reconstruction [4]. Specifically, the area of 3D building reconstruction has
a broad range of applications, such as building type classification, urban planning, solar
potential estimation, change detection, forest management, and virtual tours [5–10]. Due
to the availability of 3D point cloud data, from both airborne and ground-based mobile
laser scanning systems, the extraction of 3D feature points and lines from point cloud data
has become an attractive research topic to describe an object shape more accurately.

The airborne Light Detection and Ranging (LiDAR) data from a geographic location
is a set of unordered points. It mainly consists of the parameters from three independent
dimensions with X, Y, and Z coordinates along with other retro-reflective properties
generally in the form of intensities. These parameters and properties together can describe
the topographic profile of the Earth’s surface and object at that location [11]. Therefore,
LiDAR data provide more accurate geometric information than the 2D image and are used
as the main input data for automatic building reconstruction [12,13]. The reconstruction
approaches from LiDAR data can be broadly categorised into two: model-driven and
data-driven [7]. The first approach finds the most similar models previously stored
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in the database to the input data, whereas the second approach tries to generate any
building model from the provided 3D data. The data-driven approach mainly finds
different features, e.g., planer patches, lines, curves, angles, and corners, which represent
the major components of a building structure, from the input building point cloud. By
correctly grouping those features and geometric topologies, the models of the buildings
are generated. To reconstruct the buildings, individual planar patches are firstly identified
using one or more of the different segmentation algorithms such as region growing [14].
After that, the neighbouring segments are identified and the relationship among the patches
are established based on different features such as co-planarity, intersection lines, corners,
and edges [15]. Therefore, feature point extraction to construct feature lines and edges to
establish a relationship among the planar patches in the 3D point cloud data is the main
challenge for building reconstruction techniques in the data-driven approach. While the
model driven approach is limited to the models in the library, the data driven approach
works in general for any building roof shape.

Although various definitions of the 3D object edges can be found in the literature [16–18],
in the area of building reconstruction, many of the authors categorised the 3D edges into
the boundary and fold edges [16,19]. Roof contours and facade outlines are referred to as
boundary edges [19], and fold edges or sharp feature lines are defined as the intersecting
edges of two or more planes [10,20]. Ni et al. [16] considered that boundary elements have
an abrupt angular gap in the shape formed by their neighbouring points and that the points
in the fold edges have an abrupt directionality change between the directions in adjacent
surfaces. Existing research on edge extraction in point clouds mostly considers either statistical
and geometrical methods or the directionality and geometric changes [21]. To measure the
directionality and the geometric changes, the estimation of normal and curvature for each 3D
point in the data is an important factor and should be calculated accurately [22]. However,
estimation of the normal vector along a building edge highly depends on the neighbourhood
employed for each point [21,23], and the inharmonious nature of LiDAR point cloud makes
the calculation of that neighbourhood complex and challenging [22,24]. Moreover, noise
associated in the oblique point cloud data can create serious problems for calculating accurate
normals in the context of affective and automatic building plane reconstruction [25].

Consequently, the k-neighbourhood (also, known as k-nearest neighbours or k-NN)
and r-neighbourhood [26] are two traditional approaches in selecting neighbours of a
given point Pi. The former selects k number of nearest points from Pi, and the latter
contains all points for which the distance to Pi is less than or equal to r. Selecting the value
for k or r is challenging as the local geometry of the object is unknown [17]. A higher
value of k or r may reduce the impact of noise on the estimated normal but information
from several classes or planes can be mixed up in one neighbourhood, thus producing
a wrong estimation [27]. In contrast, a lower value can prevent the capture of enough
shape information [27]. Figure 1 shows that, while a small neighbourhood for P3 may
offer an unstable normal estimation due to local variations (e.g., corrugations on a metallic
roof), a large neighbourhood for P2 can skip the local variations and thus offers a better
estimation. However, large neighbourhoods for P1 and P4 attract points from other planes
and objects. Therefore, a wrong selection of neighbourhoods can result in a seriously faulty
normal estimation. Nonetheless, the aircraft that holds the LiDAR system scans the studied
area in a specific direction; thus, specific scanlines can be observed over the objects in the
area. Figure 1 demonstrates the scanline direction (red arrows) of LiDAR points over a
building roof.

Considering the LiDAR point density in addition to the heterogeneous point distribution,
this paper proposes an effective neighbourhood selection method that is free from selecting
any fixed parameter such as k or r. The proposed method finds the best fit 3D lines first and,
then, considers the standard deviation of the fitted points. Based on the point density of the
input data and the distance pattern of scanlines, it selects the minimal number of neighbours
automatically for each point in the point cloud. The direction of the normal is then calculated
for each point to extract the fold feature points of the roof. The terms “fold edge point”, “fold
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feature point”, or “fold point” are used alternatively in this paper to indicate the same thing.
Based on the distance from the mean value of the selected minimal neighbours, a decision
can be made easily about whether a point is a boundary point.

The particular contributions of this paper are as follows:

• In the context of calculating an accurate normal, a new robust method is proposed
for automatic selection of neighbouring points of each point in a LiDAR point cloud
data. This proposed method can select the optimal minimum number of neighbouring
points and, thus, can solve the existing problems of accurate normal calculation of
individual points.

• Based on the calculated direction of the normal, we propose an effective method
for finding the fold feature points. Maximum angle differences of the neighbouring
normal vectors are clustered, and an experimentally selected threshold is adopted to
decide fold edge points.

• To find the boundaries of individual objects, a new method for boundary point
detection is suggested. This method depends on the distance from a point to the
calculated mean of its neighbouring points, selected by the proposed technique of
automatic neighbouring point selection.

The rest of the paper is organised as follows. Section 2 presents a review of the existing
techniques for neighbourhood selection, normal calculation, and feature point extraction
along with their challenges. The proposed method of neighbourhood selection along
with the fold and boundary feature point extraction methods are discussed in Section 3.
Extensive experimentations are presented and discussed in Section 4. Finally, Section 5
exposes the conclusion.

Figure 1. Light Detection and Ranging (LiDAR) points over a building roof with scanning direction (red arrows).

2. Review

The main objective of our work is to extract the feature points from point cloud data
based on the minimal number of neighbourhood for each point. Calculation of the normal
vectors is an important geometric property to find the feature points. Thus, in this section,
firstly, we discuss the state-of-the-art approaches of neighbourhood selection methods.
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Secondly, we discuss existing methods for calculating the normal of a point. Finally, we
discuss the existing methods for feature point extraction techniques.

2.1. Neighbourhood Selection

Most of the existing feature point extraction techniques use the geometric properties
(e.g., curvature, discontinuity, and angle) of a point based on its k or r neighbourhoods in
the input point cloud data. The classical Principal Component Analysis (PCA) can estimate
the important geometric features of a point by collecting its k number of neighbours [23].
The minimal value of k needs to be chosen manually, but in practice, a single global k is
often not suitable for an entire point cloud, where different objects in different regions
may have different geometric structures or point densities [17,23]. A large value of k
over-smooths the sharp feature points, while a small neighbourhood is more sensitive to
local variations and noise [28].

To avoid these issues, some authors proposed adaptive approaches instead of using
the fixed minimal neighbourhood. For example, Elong et al. [29] used a curvature-based
adaptive neighbourhood selection technique to classify point cloud data. Considering
the calculated curvature value of each point, the author divided an input point cloud
into scatter and regular regions. After that, they selected adaptive values of k and r for
scatter and regular regions, 10 ≤ k ≤ 50 and 0.5 m ≤ r ≤ 2.5 m, respectively, within fixed
intervals to reduce the computational complexities. Weinman et al. [30,31] used a Shannon
entropy-based [32] neighbourhood selection method to select k closest neighbours within
a fixed predefined interval, where 10 ≤ k ≤ 100. For different values of k, they found
different entropies for each point and finally chose the value k, which satisfied the minimum
entropy. Wang et al. [23] proposed a self-attention-based normal estimation architecture,
where they claimed that the network could select the minimal number of neighbouring
points according to the local geometric properties that initially provided a large k number
of neighbourhoods of a point. They applied a multi-head self-attention module that selects
the neighbouring points softly according to the local geometric properties. However,
this method worked at the expense of the high computational cost associated with the
Convolutional Neural Network (CNN). Ben-Shabat et al. [28] used a point-wise multiscale
3D modified Fischer Vector (3DmFV) [33] representation to encode the local geometry
(e.g., normal) of a point using a CNN. They found n subsets of points for each point in
the original input point cloud. Each subset was referred to as a scale that contained a
different number of points instead of fixed neighbours. The 3DmFV representation was
then calculated for each scale. All 3DmFVs were provided as input to a CNN to find the
normal of a point. Some authors used a multiscale neighbourhood selection approach
for the classification of point clouds [27,34]. For example, Leichter et al. [27] introduced
and applied a multiscale approach to recover the neighbourhood in an unstructured 3D
point cloud. Both the k and r neighbourhoods were used at different scales with the
aim to improve the classification accuracy. The major drawback of this approach is the
high computational complexity. Besides this, these methods experience drawbacks from
the so-called Hughes phenomenon [35], where the classification accuracy decreases for
growing feature space dimensionality.

2.2. Normal Vector Calculation

The normal vectors of points in a point cloud are important geometric properties
that have been widely used by many authors to find the fold and boundary points, and
high-quality surfaces [17,21,24,36,37]. Although there are several methods for estimating
normal vectors in a point cloud, they are mainly proposed for 3D geometric models
that have less noise with high point densities and most of the models contain smooth
surfaces. In the case of buildings in a typical urban environment, the situation is complex.
LiDAR data often have low point density and nonuniform sampling rate and contain a
lot of noise [25]. Therefore, the accurate calculation of normal vectors in this situation
is challenging.
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The literature on estimating normal vectors can be divided into two major approaches:
combinatorial and numerical [37]. The combinatorial approach uses mainly Delaunay and
Voronoi properties [38]. Although this approach can work in the presence of noise, in
general, it becomes infeasible for large datasets. The numerical approach considers the
neighbours of an interest point that may represent the surface locally, and the calculated
normal of the surface is treated as the estimated normal of the point of interest. Finding
a proper local neighbourhood and a best-fit plane for a point is the main issue in the
numerical-based approach [30]. The PCA and its variations, for example, the Weighted
PCA [39], Moving Least Square (MLS) Projection [40], Robust PCA (RPCA) [41], and
Diagnostic-Robust PCA (DRPCA) [42], were used by different authors for calculating
normal vectors by finding the best fitted plane. Considering specifically the oblique
building point cloud data in urban environments, Zhu et al. [25] proposed an effective
normal estimation method to handle the noise in building a point cloud through a local to
global optimisation strategy. Instead of calculating the normal of individual points, they
proceeded in a hierarchical fashion and merged similar points into supervoxels considering
a planarity constraint to exclude outliers. Nurunnabi et al. [37] removed outliers using their
proposed Maximum Consistency with Minimum Distance (MCMD) algorithms and then
applied PCA to find normal vectors in a point cloud. Dey et al. [43] proposed an improved
approach and solved the limitations of the MCMD to construct more accurate planes.
Recently, Sanchez et al. [24] proposed a robust normal estimation technique through an
iterative weighted PCA [39] and the robust statistical M-estimators [44]. In the weighted
PCA, the neighbouring points are assigned different weights based on their distance to Pi.
Smaller distance points are assigned bigger weights in this approach. The M-estimators
allow users to fit a model onto points by rejecting outliers. Chen et al. [17] proposed a
method to extract the fold points based on the minimal number of clusters of the unit
normal vectors using effective k-means clustering [45]. Using the k-neighbourhood, they
calculated the normal vectors for each adjacent triangular plane constructed using any two
points from the neighbours and the point itself. The directions of the unit normal vectors
were calculated using a minimum spanning tree algorithm proposed by Guennebaud and
Gross [46].

The major challenge in calculating the normal vectors for feature point extraction is
selecting the minimal number of neighbouring points that directly influence the extraction
process. The present literature mainly selects the minimal number of neighbours empirically,
which is a manual process and does not consider the point cloud density and other factors.
Besides this, the performance of these methods degrades in the presence of noise in the
input point cloud data.

2.3. Feature Point Extraction

Existing 3D feature point extraction techniques can be broadly categorised into indirect
(by converting 3D point clouds into images first) and direct (by extracting 3D edge
points from the 3D-point cloud directly) approaches [11,47]. Indirect approaches take
the advantages of traditional 2D edge point detection algorithms. The 3D point clouds
are converted into 2D images first, and after that, the extracted lines or edge points from
the 2D images are projected back to the 3D space [48–50]. Moghadam et al. [51] extracted
feature points for the edge and boundary of an object to construct the 3D feature lines
using corresponding 2D line segments of each part of the object. For each extracted 3D
planar part, all of the 3D points were projected on a 2D plane [47]. Contours were extracted
from the 2D segments and then projected back onto the 3D plane to obtain the 3D edge
points and lines. These techniques fail to extract perfect 3D edges because of information
loss during the 3D to 2D conversion and vice-versa and, thus, degrade the extraction
accuracy [52].

The direct approach can also be subdivided by plane-based and direct point geometry-
based approaches. Plane-based methods consider the intersections of two or more separate
roof planes as the feature lines of a building. It is suitable because most buildings are a
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combination of different piecewise-planar roof planes [7,12,53]. Determination of planar
surfaces is the main key point of this category. In this method, planar points are firstly
separated from the non-planar feature points and then individual roof segments are
extracted using different clustering and region growing approaches. Points of the intersecting
roof plane segments are taken into consideration to form the feature lines [12]. For example,
Ni et al. [16] proposed an easy-to-use 3D feature point extraction method namely Analyzing
Geometric Properties of Neighbourhoods (AGPN). The authors defined the 3D edges as “3D
discontinuities of the geometric properties in the underlying 3D-scene”. They combined the
RANdom SAmple Consensus (RANSAC) [54] and angular gap metric [55] to extract edge
feature points. This method can extract two kinds of feature points, i.e., boundary elements
and fold edges, which actually include all types of edges in a point cloud data. Although
the plane fitting-based methods show good extraction results for the cases of fold points,
most of the time, they show less accuracy for boundary point extraction [17]. Besides this,
the extraction of feature points using existing plane fitting-based methods does not perform
well as it loses the sharp features when the intersecting planar patches are too small [17,47].

The direct point geometry-based approach can detect both boundary and inside
sharp feature points based on different geometric properties such as azimuth angles [17],
normal directions [21,56], and curvature variations [21]. For example, Chen et al. [17]
considered the directions of the calculated normals and azimuth angles. For a fold point,
they considered the direction of all the unit normal vectors of adjacent triangular planes
and aggregated them into two different clusters. The directions of the unit vectors in each
of the groups are very close to each other but far from each other. To detect the boundary
points, they considered the azimuth angles. Statistical approaches, such as covariance and
eigenvalues, and the combination of features derived from the PCA were also used in
some cases [18,37]. In this paper, we focus on the direct point geometry-based approach to
avoid the problems of image and plane fitting-based methods and concentrate on accurate
normal estimation to extract the feature points.

Many authors used the following 3× 3 covariance matrix Cov[P, P] of a point P to extract
the point cloud feature points as a direct approach. The features are calculated based on different
combinations of eigenvalues (λ1 ≥ λ2 ≥ λ3) and eigenvectors of Cov[P, P] [10,37,52,57].
Among different measures of feature point extraction from point-cloud data, the linearity and
planarity measures are widely used [58]. These two properties of any point can be defined by
Equations (1) and (2), respectively.

L =
λ1 − λ2

λ1
. (1)

P =
λ2 − λ3

λ1
. (2)

The main problem of feature point extraction based on the eigenvalues are the
empirical determination of the thresholds and the selection of the neighbourhood [37].

3. Proposed Method

This paper suggests a new approach for selecting neighbouring points in the context
of calculation of normal vectors and roof features. In this section, we present the proposed
method for neighbourhood estimation followed by the proposed fold point extraction and
boundary point detection.

3.1. Estimating Minimal Neighbourhood

The calculation of the normal vector is widely employed for extracting planes, boundaries,
and edge features from LiDAR point cloud data. Most of the existing methods mainly
considered high-density point cloud data with low noise, and their normal calculations are for
3D geometric models (e.g., statues and mechanical parts) having artificial or smooth surfaces.
However, the nature of the aerial LiDAR data over an urban environment is different in the
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sense that they often contain noise, have low point density, and are heterogeneous in positions
compared to the point cloud data over the 3D geometric models used by the existing methods.

The selection of the number of neighbouring points to calculate the normal vector is
a great challenge. If we choose a high number of neighbours, then points from multiple
planes can be aggregated (see Figure 1). If a low number of neighbouring points are chosen,
they may be selected from a single straight scanline. In both cases, the calculation of the
normal will be erroneous. While a small neighbourhood may be sensitive to the small
variation in roof material, a large neighbourhood can attract outliers. In addition, the
aerial LiDAR data come with a vertical accuracy of 15 to 30 cm. This accuracy issue can
affect any size neighbourhood. Therefore, calculation of the normal using a dynamically
selected minimal number of neighbourhood for each point is more suitable to circumvent
these issues.

For each Pi on a plane, the proposed neighbourhood selection method iteratively
selects a larger neighbourhood and fits a 3D line L3 to the neighbouring points. If all or most
of these points are from the same scanline, then the line fitting error, for example, in terms of
the standard deviation, will be low. In contrast, if they come from different scanlines, then
the error will be high. A high error shows that the corresponding neighbourhood is large
enough, it includes points from multiple scanlines and these points are minimal to form a
normal of the plane. Figure 2 illustrates the flow diagram of the proposed neighbourhood
estimation method that follows the steps below.

Figure 2. The workflow of the proposed variable neighbourhood selection method: Td is the
threshold, σi is the standard deviation, ε is the distance error, and δ is the neighbourhood increment.
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• The proposed method first selects a minimal number of neighbouring points (say,
k = 3 since a minimum of 3 points are necessary to calculate a plane normal) for Pi
using the k-NN algorithm. Let the set of neighbouring points be Sp including the
point Pi.

• A best fit 3D line L3 is constructed using Sp. The distance from each point of Sp to L3
is calculated.

• The standard deviation σi of the calculated distances is compared with a selected
distance threshold Td. If σi < Td, the value of k is increased (say, k = k + δ) and the
procedure is repeated with the updated Sp. Ideally, δ = 1 is set to iteratively find a
minimal value of k for Pi. However, to avoid a large number of iterations, δ = 5 is
selected and, once a minimal k is found, a smaller minimal k is obtained by testing its
previous δ− 1 values.
Td is equal to the distance between two neighbouring points in the case of regular
distribution of LiDAR points and can be calculated using Equation (3) according to
Tarsha-Kurdi et al. [59], where ϑ represents the input point density. The mean area
occupied by a single LiDAR point is in a square form, and the area of the square is
equal to the inverse of the point density in a regular distributed point cloud data. The
side length of the square represents the mean distance between two neighbouring
points that satisfies Equation (3).

Td =
1√
ϑ

(3)

• If σi ≥ Td, Sp is the estimated minimal neighbourhood for Pi. The green points in
Figure 3a show that the above steps successfully define the minimal neighbourhood
for all points on a building roof. However, when there are unexpectedly a large
number of points residing along a portion of a scanline, then these steps fail to define
the neighbourhood, as in this case, all or most of the points in Sp are obtained from the
same scanline using the k-NN algorithm (see Figure 3b). Since points are not selected
from two or more scanlines, the 3D line is repeatedly formed on the scanline that
offers a low σi value.

• To avoid the above issue, this paper proposes a new neighbourhood search procedure
for Pi (see Figure 3c). First, depending on the input point density ϑ, when the number
of points in Sp is larger than Aϑ, where A is the area of the smallest detectable plane,
points that are very close (e.g., ε = 0.01 m) to L3 are removed from Sp (blue points
remain). Second, a line L passing through Pi and perpendicular to L3 (scanline) is
generated. Third, a new rectangular neighbourhood C1C2C3C4 (green shaded in
Figure 3c) for Pi is formed. C1C2C3C4 is long along L but short along L3, and thus, the
idea is to reduce the neighbouring points from the current scanline (blue points) and
to include more points from outside the scanline (green points) and even from the
next scanlines (yellow points). Finally, only six points closest to four corners and two
midpoints (C1, C2, C3, C4, M1, and M2) from within C1C2C3C4 and Pi are assigned
to an empty Sp and σi is again estimated to L3. If the condition (σi ≥ Td) is still not
satisfied, the rectangle is enlarged (orange shaded) along L to include more points
from outside L3, i.e., four more points closest to corners C5, C6, C7, and C8 are added
to Sp. It is experimentally observed that, when (mostly in the second iteration) points
from the next scanlines are considered in Sp, the condition is satisfied. Figure 3d
shows that all points on the roof now have minimal neighbourhoods.

Airborne LiDAR data over a building roof follow the pattern of specific scanlines.
The threshold Td for the standard deviation σi provides the guarantee that points from
at least two scanlines are selected for a minimal neighbourhood irrespective of the point
density (e.g., abrupt high or diluted points). Thus, the calculated normal will be accurate as
a true plane can be formed using the selected minimal neighbouring points. The variable
nature of the proposed neighbourhood estimation solves existing issues with the normal
calculation in the literature.
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Figure 3. New neighbourhood search across the scanline: (a) a successfully defined minimal neighbourhood in a building
where points are regularly distributed, (b) the red points indicate that minimal neighbourhoods could not be defined, (c) a
rectangular neighbourhood is iteratively formed, and (d) a successfully defined neighbourhood after applying the technique
described using (c).

3.2. Finding Fold Points

The weighted PCA algorithm [60] is adopted to calculate the normal at each input
point Pi. The points within the minimal neighbourhood estimated above for Pi are used
to calculate its normal. This paper proposes the following method to determine the
fold points.

To decide if Pi is a fold point, the maximum angle difference θmax between its normal
and the normals of its adjacent neighbours is found. Adjacent neighbours are simply
obtained by using the k-NN algorithm from the selected neighbours Sp for each point Pi.
An alternative to find the adjacent neighbours may be the Delaunay triangulation [61]. We
consider at least 8 adjacent neighbours in this case. If the selected adjacent points from Sp
are less than 8, then we select the remaining adjacent points from the original point cloud.
Figure 4 shows some cases to decide fold points with k = 8. These cases are decided as
follows by comparing θmax with an angle threshold Tθ :

• When two planes physically intersect, as shown in Figure 4a, and if θmax > Tθ for
Pi (red dot) but θmax for its neighbours (green dots) can be clustered into two major
groups, where the clusters are not close to each other, Pi is a fold point.

• When Pi is a planar point, as shown in Figure 4b, θmax ≤ Tθ for Pi and all its neighbours.
• When Pi is on a curved surface, as shown in Figure 4c, θmax > Tθ for Pi and θmax for

its neighbours are very close to Tθ .
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• When Pi is on a step edge, as shown in Figure 4d, there can be one of two situations.
The adjacent vertical plane may have no or a small number of points. When there are
no points on the vertical plane, then the fold points may be completely undetermined
if the two planes (top and bottom) are parallel. If there is a large slope difference
between these two planes, then the case in Figure 4a applies and fold points will be
determined. When there are points reflected from the vertical plane, the fold points
(between vertical and top planes and between vertical and bottom planes) can also be
determined using the case in Figure 4a.

Figure 4. Cases to decide fold points Pi (red dots). Their adjacent points are shown by green dots.
Arrows indicate normal directions. (a) Gable roof, (b) planar surface, (c) curved surface, and (d) step
edge between planes.

3.3. Determining the Threshold Tθ

To determine the threshold Tθ for θmax, we consider points on a simple building from
the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark
dataset presented in Figure 5. The ground truth for the fold and planar points are manually
generated. A total of 138 points are identified as the fold points, and the rest (3421) of the
points are considered planar points.

We consider different fixed neighbourhoods (k = 9, 20, 30, 45, and 60) and the variable
neighbourhood proposed in Section 3.1. For each neighbourhood considered, we estimate
θmax for all the points. In Figure 5, these points are shown in different colours depending
on their θmax values. As can be seen, while a small (k = 9) or large (k = 60) value of k
misses many true fold points between the two building planes, a moderate value (k = 45)
of k determines most of the fold points but also wrongly identifies many planar points
as fold points. In contrast, the proposed variable neighbourhood determines most of
the fold and planar points truly. Table 1 shows that the proposed neighbourhood offers
better F1-score [53] than the fixed neighbourhoods when we consider θmax ≥ 20◦ for the
fold points.
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We observe that θmax values of the ground truth fold points lie in the last two angle
groups (20◦ to 30◦ and 30◦ to 90◦) of Table 1. The calculated F1-scores, considering only
these two groups, as shown in the last row of the table, are highest among all possible
combinations of groups of θmax for each neighbourhood. The planar points have θmax
between 0◦ to 20◦. Therefore, we decide Tθ = 20◦.

Figure 5. Calculated θmax for different neighbourhoods: (a) k = 9, (b) k = 20, (c) k = 30, (d) k = 45, (e) k = 60, and (f) the
proposed neighbourhood.

Table 1. Comparison of different fixed neighbourhoods with our proposed method.

θmax
Number of Neighbouring Points

Proposed Method
9 20 30 45 80

0–2◦ 783 2602 2793 2895 2851 2465
2–10◦ 2378 620 380 285 331 765

10–20◦ 178 109 224 276 371 161
20–30◦ 58 167 152 103 6 135
30–90◦ 162 61 10 0 0 23

F1-Score 0.71 0.75 0.77 0.68 0.50 0.90
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To prove this selection of Tθ is insensitive to the input point density, we selected some
representative buildings from different datasets with different point densities (i.e., five
buildings from the ISPRS Vaihingen area, five from Hervey Bay, and five from Aitkenvale
areas; see Section 4.1) and a synthetic cube shape point cloud (see Section 4.3). Besides
this, we also generated different point densities by resampling the original point cloud [62].
Figure 6 shows the average values of θmax for the fold points under different point densities.
It can be observed that Tθ = 20◦ is a reasonable choice irrespective of different cases of
point densities and datasets.

Figure 6. Average θmax values for the fold points under different point densities.

3.4. Detection of Boundary Points

We propose a simple but effective procedure for detection of the boundary points using
the minimal neighbouring points Sp for each Pi. To make the decision about whether Pi is
on boundary, we first calculate the mean (S̄) of Sp. Then, the Euclidean distance (di) from S̄
to Pi is calculated. In practice, when Pi is an inner point on the plane, S̄ resides close to Pi
since the neighbouring points surround Pi (see Figure 7a). However, when Pi resides on the
boundary, then S̄ resides away from Pi (i.e., the boundary) since there are no neighbouring
points outside the boundary. Therefore, we use a threshold to distinguish the boundary
and non-boundary points. Pi is considered a boundary point when di ≥ Td

2 , where Td is the
threshold calculated based on the density of point cloud using Equation (3). Figure 7 shows
the detected boundary points on two different roof point clouds. In Figure 7b, the proposed
method can also extract the proper boundary points because Sp rejects the much closed
points and accepts only the suitable points for Pi, as described in Section 3.1 using Figure 3c.
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Figure 7. Boundary point detection examples with (a) the usual point density on all planes and (b) the unexpectedly very
high point density on some planes. In the magnified images of (a), di indicates the distance between Pi and the mean S̄ of
the neighbours Sp.

4. Experimental Results

Focusing on the extraction of feature points over the building roof, the proposed
methods are applied on real point cloud datasets. We chose the extracted buildings from
two different datasets. The first one is the Australian benchmark [7], and the second one
is the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark
dataset [62,63]. Buildings from two different sites of Australian datasets and three sites
of the ISPRS datasets were selected for the evaluation. To extract and justify the point
clouds over the building roof, we employed the results of the extracted building roofs from
Dey et al. [7,53]. Moreover, to demonstrate and compare the quantitative evaluation of
our methods with the existing state-of-the-arts techniques, we manually generated the
ground truth for two areas from the two different datasets. A short description of the
datasets and the ground truth is given below followed by the results of the comparative
analysis and outline generation. Finally, the applicability of the proposed methods are
also demonstrated on the point cloud generated or captured by different media, such as,
artificially generated or terrestrially scanned data.

4.1. Datasets

The Australian datasets contain three sites from two different areas: Aitkenvale
and Hervey Bay. Two sites from Aikenvale area (AV) have high point densities 12 to
40 points/m2. The first one (AV1) covers a 66 m × 52 m area and contains 5 different
buildings. The second site (AV2) contains 63 different buildings covering an area of
214 m × 149 m. Hervey Bay (HB) has 28 different buildings covering 108 m × 104 m
area by a medium point density (12 points/m2). The ISPRS benchmark datasets have
three different sites from the Vaihingen area (VH), containing a total of 107 buildings with
different complexities and shapes. Point density of the datasets is low, 2.5 to 3.9 points/m2.



Remote Sens. 2021, 13, 1520 14 of 25

The first site (VH1) of this area is mainly the inner city consisting of historic buildings. The
second site (VH2) contains high-rising buildings, and the third site (VH3) is a residential
area. Figure 8 shows the selected sites from two different datasets.

Figure 8. Used datasets for experiments. The first row shows the selected three sites from Australian
datasets: (a) AV1, (b) HB, and (c) AV2. The second row indicates the three areas from the International
Society for Photogrammetry and Remote Sensing (ISPRS) benchmark dataset: (d) VH1, (e) VH2 and (f)
VH3. Buildings enclosed by the red line areas are taken into consideration for the ISPRS benchmark.

It is hard to collect the ground truth from the point cloud data. Hence, we selected
AV1 and VH3 only because these two sites are purely residential with detached houses.
The roof of the buildings of these two sites contain multiple planes; thus, sufficient fold
points exist for the ground-truth generation and evaluation. We manually categorised the
roof points of each building into three different categories: fold edge points, boundary
points, and inner planar points. For a fold edge point, we kept the point within a maximum
distance from the intersection line: 0.15 m for AV1 and 0.3 m for VH3. These two distances
are estimated based on the point density according to the Equation (3).

4.2. Comparison

To calculate and compare the processing time of the proposed neighbourhood selection
method, we chose all buildings from both AV1 and VH3 sites. Table 2 compares and
summarises the average processing time per building of the proposed method for each
datasets with different fixed-size neighbourhood. For AV1, the proposed method takes
an average of 0.232 s to find the minimal neighbourhood for all points in a building,
whereas the k-NN algorithm takes 0.058 s considering k = 45. For VH3 sites, the average
processing time for the proposed method is 3.120 s. The influence of the variation of
k on the processing time is negligible, as shown in Table 2. Due to the existence of an
abrupt point density in several buildings, the average processing time increases for VH3
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datasets. For example, the building we considered from VH3 in Figure 7b takes 42.94 s to
find its minimal neighbourhood for all points using our proposed method. Finally, despite
the considerable difference between the processing time values between the fixed-size
and proposed variable-size neighbourhood selection methods, the processing time for the
proposed minimal variable-size neighbourhood selection approach is still in the acceptable
range. All experiments were performed in MATLAB 2020 platform using an Intel(R)
core(TM) i5-7500 CPU at 3.40 GHz with 16 GB RAM.

Table 2. Average processing time (in seconds) of neighbourhood selection techniques for each building.

Datasets k-NN (k = 30) k-NN (k = 45) k-NN (k = 60) Proposed

VH3 0.090 0.091 0.093 3.120
AV1 0.058 0.058 0.060 0.232

To demonstrate the comparison, the performance of the proposed fold point extraction
and the proposed boundary point extraction using the proposed neighbourhood selection
method is compared with the existing state-of-the-art methods. Both qualitative and
quantitative results are presented and compared.

4.2.1. Fold Points

To compare the performance of the proposed fold point extraction method, we chose
the AGPN method proposed by Ni et al. [16] and the fold point extraction method proposed
by Chen et al. [17]. Because they are not publicly available, we implemented these methods
using MATLAB to evaluate and compare their performance on our datasets. To ensure
reproduction of the implementation, we carefully followed the original articles and checked
the results using similar data. We obtained almost the same results. Moreover, we were
provided with partial codes and some sample data from the authors of the original articles
(e.g., Figures 16 and 17). The general comparison between these two and the proposed
methods is summarised in Table 3. Figure 9 shows the extracted fold edge points using
these two methods along with our proposed method for two sample buildings from AV1
and VH3 sites for a qualitative comparison. It is clearly visible that the proposed method
identifies the points belonging to the fold edge better than the AGPN and Chen methods.
The AGPN method slightly outperforms the Chen method. This is because the AGPN
extracts the fold points based on a model fitting and region growing approach and, thus,
is more suitable for the objects containing planar parts. However, both of the existing
methods extract a lot of false-positive (FP) fold points. In this case, our proposed method
extracts more precise and accurate fold points, which are clearly visible in Figure 9d,h.

Table 3. Comparison of different methods for fold edge point extraction.

AGPN [16] Chen [17] Proposed

Neighbourhood Fixed k-NN Fixed k-NN Variable

Extraction approach Plane fitting
and angular gap

Minimal number of clusters of
neighbouring normal vectors

Maximum angle difference of
the calculated normal vectors

Normal estimation RANSAC Weighted PCA Weighted PCA

Geometric property The RANSAC and
angular gap metric

Direction of k-nearest
normal vectors

Maximum angle differences
among k-nearest normal

Plane fitting Required Not required Not required
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Figure 9. Extracted fold edge points: (a,e) original building point cloud, (b,f) Analyzing Geometric Properties of
Neighbourhood (AGPN) method [16], (c,g) Chen method[17], and (d,h) Proposed method.

Using the generated ground truth of the AV1 and VH3 area, we evaluated and
compared the quantitative performance of these three methods. We considered the
precision, recall rates, and F1-score [53] as quantitative measures. Lower precision rates
of the existing methods in Table 4 indicate that their FP rates are higher than that of the
proposed method. The AGPN has a higher true positive rate, but as it considers the
intersection area of two different planes, a wider fold edge is selected; thus, a lot of FP
points are selected. The Chen method can select a narrow edge, but at the same time, it
misclassifies many true planar points as the fold edge, which leads to a lower precision rate.
A lower recall rate of the Chen method for both datasets indicates a higher false negative
rate, which is also visible in Figure 9c,g. The F1-scores show that the proposed method
performs better than both of the existing methods.

Table 4. Quantitative comparison of the extracted fold edge points.

ISPRS Site (VH3) Australian Site (AV1)

Precision Recall F1 Precision Recall F1

AGPN [16] 0.67 0.84 0.75 0.78 0.76 0.77
Chen [17] 0.74 0.79 0.77 0.75 0.73 0.74
Proposed 0.79 0.87 0.83 0.84 0.85 0.84

4.2.2. Boundary Points

The performance of the proposed boundary point extraction method is compared with
the recently proposed approach by Chen et al. [17] and the improved RANSAC method
proposed by Ni et al. [16].

Table 5 summarises the comparison among the methods, and Figure 10 shows the
visual comparison using two sample buildings selected from the VH3 and AV2 sites. The
building in the first row in Figure 10 is selected from the ISPRS benchmark site (VH3) and
has a low point density, while the building of the second row is selected from a high-density
Australian site (AV2). Figure 10a,d represent the results of the Chen method, where we can
see that some boundary points are missed on the bottom roof plane. One possible reason
for misclassifying the boundary points is that the Chen method projects the neighbouring
points into a 2D plane; thus, it cannot differentiate the boundary between two separate
planes in the same building. Again, from Figure 10b,e, we can see that the improved
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RANSAC method can extract the boundary points well, but a lot of non-boundary points
are also classified as boundary points and some true boundary points are missed. The
probable reason behind the misclassification is that the angle between the two projected
vectors has two different values, and sometimes, the method cannot choose the correct
one [17]. Our proposed method is able to correctly extract the boundary points for these
two buildings, as shown in Figure 10c,f. Though some false-positive points are noticeable,
these are much lower than the improved RANSAC method, and there are very few missing
true boundary points.

Figure 10. Extracted boundary points by (a,d) the Chen method [17], (b,e) the improved RANSAC method [16], and (c,f)
the proposed method.

Table 5. Comparison of different boundary point extraction methods.

Improved RANSAC [16] Chen [17] Proposed

Neighbourhood kd-tree Fixed k-NN Variable

Decision of boundary point Substantial angular gap between
vectors in a single plane

Distribution of
azimuth angle

Euclidian distance from mean
point to the point of interest

Plane fitting Required Required Not required

Effect of outliers High sensitive Low sensitive Low sensitive

To demonstrate the quantitative comparison, the extracted boundary points of the
buildings from the AV1 and VH3 areas are evaluated using the generated ground truth.
Table 6 compares the results of the extracted boundary points by three different methods.
The Chen method has a higher precision rate because the FP rate is lower, which means fewer
inner points are identified as boundaries. Again, as the projection of 3D neighbourhood into
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2D limits the detection of some true boundary points, lower recall rate is noticeable for both
datasets by the Chen method. However, it performs better than AGPN and F1-score for
both datasets. The proposed method has a higher recall rate and F1-scores. Thus, the overall
performance of the proposed boundary extraction is much better than the state-of-the-arts.

Table 6. Quantitative comparison of the extracted boundary points.

ISPRS Site (VH3) Australian Site (AV1)

Precision Recall F1 Precision Recall F1

Improved RANSAC [16] 0.80 0.73 0.76 0.85 0.80 0.82
Chen [17] 0.84 0.72 0.78 0.96 0.75 0.84
Proposed 0.82 0.82 0.83 0.94 0.87 0.90

4.2.3. Eigenvalue-Based Features

Although there are several eigenvalue-based features in the literature to classify the
LiDAR points into the fold edge and non-edge points, for simplicity and to demonstrate
the applicability of the proposed neighbourhood selection method, we have chosen the
frequently used parameters linearity (L) and planarity (P). Equations (1) and (2) are used
to calculate these two features. To find the eigenvalues (λ1, λ2, λ3), the covariance matrix
was constructed based on the information of the local neighbourhood. We demonstrate the
qualitative performance of different fixed neighbourhoods against our proposed variable
neighbourhood on a sample building from the ISPRS benchmark datasets.

In Figure 11, we calculated the linearity and planarity for each point. For a fair
comparison, we considered a binary decision where green points indicate L ≥ 0.5 and
red points indicateP ≥ 0.5. Blue points are considered as the original undecided points. It is
clearly visible that, for low k values, both L and P found unexpected results
(Figure 11a,b). A high k value considers the fold edge points as planar too (Figure 11e). It
seems that, among all five k values, k = 45 (Figure 11c) shows an acceptable performance,
where the proposed method allows almost similar performance for linear and planar points.
Moreover, the proposed approach shows a clear distinction of the fold edge points (blue
points in Figure 11f). To show the quantitative performance, F1 scores for the extracted
linear and planar points are demonstrated in Table 7 for a different number of neighbouring
points using the manually generated ground truth for the same building. Both fold and
boundary points are considered as linear for simplicity.

Table 7. Quantitative comparison of linearity and planarity for different neighbourhoods.

Values of
k

No. of Linear Points
L ≥ 0.5

No. of Planar Points
P ≥ 0.5

F1
(Linearity)

F1
(Planarity)

9 2434 1115 0.19 0.15
30 1739 1810 0.61 0.68
45 571 2978 0.84 0.88
60 705 2844 0.71 0.79
90 843 2706 0.75 0.84

Proposed 409 3140 0.91 0.94

4.2.4. Combined Results

Figure 12 shows the combined results of fold (blue), boundary (red), and planar
(yellow) points for a sample complex building roof from the HB datasets. It is clearly
visible that the combination of the proposed boundary, fold, and planar point extraction
describes the building roof structure very well as it is almost similar to the reference 3D
roof. Figure 13 shows the same for the AV1 dataset. Figure 14 also shows the same for some
selected buildings from the AV2, HB, and VH areas. In all examples, a very small number
of points, which are negligible as the total number of input points is a large number, are
misclassified.
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Figure 11. Linear (red), planar (green), and fold edge (blue) points using the fixed k-NN and the proposed variable
neighbourhood: (a) k = 9, (b) k = 30, (c) k = 45, (d) k = 60, (e) k = 90, and (f) the proposed neighbourhood.

Figure 12. Combined fold (blue), boundary (red,) and planar (yellow) points compared with the reference 3D building
roof [7] for a complex building from the HB dataset: (a) reference 3D building roof and (b) combined result.

4.3. Applicability in Different Types of Point Clouds

In addition to the performance study using the real aerial point cloud data presented
above, we also chose two other types of point cloud data. Firstly, a cubic object was selected
as an example for artificially generated synthetic point cloud data [64] (Figure 15).

Secondly, a commercial building (Figure 16) and a structure of “3S” (Figure 17) used
by Chen et al. [17] were selected as representatives of terrestrial laser scanning (TLS)
data [17], with an average density of 4000 points/m2. The name of the commercial building
is “Computer World” situated next to Wuhan University, and the “3S” structure is about
7 m tall with several flat and curved components situated within the university area.



Remote Sens. 2021, 13, 1520 20 of 25

Figure 13. Combined fold (blue), boundary (red), and planar (yellow) points compared with the
reference 3D building roof [7] for all five buildings from the AV1 dataset: (a) reference 3D building
roofs and (b) combined results.

Figure 14. Combined fold (blue), boundary (red), and planar (yellow) points compared with the
reference 3D building roof [7] for several buildings from the test datasets. While the first, third, and
fifth rows show the reference information overlaid onto of the building roofs, the second, fourth, and
sixth rows show the extracted results by the proposed method.
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Figure 15. Comparing results on a synthetic cube shape by the (a) AGPN [16], (b) Chen [17], and (c)
proposed methods. Green represents planar points, and red represents fold points.

Figure 16. Comparing results on building data by the (a) AGPN [16], (b) Chen [17], and (c) proposed
methods. Green indicates the planar points, and red represents both the boundary and the fold
edge points.

In both of the cases, all thresholds of the proposed methods are selected in the same
way described in Section 3. For the cube shape, Figure 15 compares the results by the
three methods. To evaluate the quantitative performance, we calculate the number of
actual fold edge points and then evaluate the different methods, which is demonstrated in
Table 8. The total number of points and the true fold edge points in this shape are 9602
and 484, respectively. We chose a neighbourhood size of 20 for both the AGPN and
Chen methods.

Table 8. Comparing results on the cube shape.

Total Extracted Points Precision Recall F1

AGPN [16] 404 0.92 0.80 0.85
Chen [17] 331 0.96 0.67 0.78
Proposed 597 0.82 1.00 0.90

Figures 16 and 17 show the results on the building TLS data by the three methods. We
can see that the existing methods extract a lot of false fold and boundary points. However,
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the proposed method contains less false fold and boundary points.
Tables 9 and 10 demonstrate the quantitative comparison between three methods in terms
of total extracted feature (boundary and fold) points for “Computer World” building and
the “3S” structure, respectively. As ground truths are not available for these two structure,
we follow the comparison technique used by Chen et al. [17] in this situation. The extraction
rate for each structure depicts the performance. For both of the TLS datasets, we chose a
neighbourhood size of 30 for the AGPN and Chen methods.

Figure 17. Comparing the results on the "3S” structure of Wuhan University: (a) original point cloud,
(b) extracted feature points using AGPN [16], (c) extracted feature points using Chen’s method [17]
(d) extracted feature points using the proposed methods. the (e) extracted feature and planar points.
Green indicates the planar points, and red represents both the boundary and the fold edge points.

Table 9. Comparison of the extracted feature (fold and boundary) points using the three methods for
“Computer World” building.

Original Point Cloud Outline Points Extraction Rate

AGPN Method 29,339 5989 20.4%
Chen’s Method 29,339 5097 17.4%

Proposed 29,339 4203 14.3%

Table 10. Comparison of the extracted feature (fold and boundary) points using the three methods
for the “3S” structure.

Original Point Cloud Outline Points Extraction Rate

AGPN Method 53,963 5146 9.50%
Chen’s Method 53,963 9150 16.95%

Proposed 53,963 6061 11.23%
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5. Conclusions

This paper proposes an approach for selecting the minimal variable neighbourhood
for airborne LiDAR point cloud data over the building roof. The proposed approach solves
the problem of accurate normal estimation for finding the fold edge points. To extract
the boundary, an effective boundary point selection method is also proposed using the
suggested neighbourhood selection method. The proposed neighbourhood selection
method is independent of various point densities and the calculation of normal vectors
are not influenced by the heterogenic distribution of the point cloud. Using the generated
ground truth for the two selected areas from the ISPRS and Australian benchmark datasets,
we show the applicability and performance of the proposed method. Two different types
of point cloud data, such as, artificially generated and terrestrially scanned, are also tested
using the proposed methods.

In this research, we focused mainly on feature point extraction from point cloud data,
which follow a specific scanline pattern. Thus, the methods are mainly demonstrated and
most of the experiments are performed on the standard benchmark data of the building
roof point cloud. We considered the building roof point cloud extracted from the original
point cloud datasets in this research. Vegetation, outliers, and other objects were removed
using our previously developed methods of building extraction. However, integrating
some machine learning techniques may improve these proposed methods in terms of
selecting manual thresholds. Tracing feature lines from the extracted feature points is
the next step of 3D reconstruction. In the future, we will investigate the incorporation
of machine learning techniques to extract the feature points and an effective feature line
tracing algorithm to regularise the extracted feature points. Moreover, the applicability of
the proposed methods will also be investigated in different application areas such as 3D
modelling of indoor objects.
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