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Abstract: Coastal land cover mapping (CLCM) across image domains presents a fundamental and
challenging segmentation task. Although adversaries-based domain adaptation methods have
been proposed to address this issue, they always implement distribution alignment via a global
discriminator while ignoring the data structure. Additionally, the low inter-class variances and
intricate spatial details of coastal objects may entail poor presentation. Therefore, this paper proposes
a category-space constrained adversarial method to execute category-level adaptive CLCM. Focusing
on the underlying category information, we introduce a category-level adversarial framework to
align semantic features. We summarize two diverse strategies to extract category-wise domain labels
for source and target domains, where the latter is driven by self-supervised learning. Meanwhile, we
generalize the lightweight adaptation module to multiple levels across a robust baseline, aiming to
fine-tune the features at different spatial scales. Furthermore, the self-supervised learning approach
is also leveraged as an improvement strategy to optimize the result within segmented training. We
examine our method on two converse adaptation tasks and compare them with other state-of-the-art
models. The overall visualization results and evaluation metrics demonstrate that the proposed
method achieves excellent performance in the domain adaptation CLCM with high-resolution
remotely sensed images.

Keywords: coastal; land cover mapping; domain adaptation; category-wise; adversarial learning;
self-supervised learning

1. Introduction

Coastal land cover mapping (CLCM) provides a detailed and intuitive presenta-
tion of ground objects in the land—sea interaction zone, which is the necessary and suffi-
cient premise for land investigation, resource development, and eco-environment protec-
tion [1-3]. In the past decade, the continuous evolution of space and sensor technologies
has made remote sensing enter into the Big Data era [4]. An intuitive advance is the
favorable circumstance to achieve mass production of land cover while meeting large-scale
and high-resolution needs. However, high-resolution remotely sensed (HRRS) images
acquired in various scenarios are easily affected by irresistible factors, e.g., seasonal cli-
mates, regional conditions, and sensor models. Unfortunately, these discrepant factors may
result in remarkable data divergences in the appearance distribution for scenes and ground
objects. Therefore, it is yet a challenging task to achieve large-area and high-precision
CLCM production automatically.
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Recently, owing to the powerful capability of characterizing nonlinear features, deep
convolutional neural networks have demonstrated a wide impact in image classification,
pixel-level segmentation, and object recognition [5]. Numerous representative semantic
segmentation models such as FCN [6], U-Net [7], PSPNet [8], and Deeplab systems [9-11]
have been applied to conduct land cover mapping and have achieved superior perfor-
mances. Despite this, such fully supervised approaches are extremely hungry for dense
annotated data. Excellent models trained in one scene (source domain) will entail signifi-
cant performance degradation when generalizing them to other scenarios (target domains).
On the other hand, pixel-level manual labeling is prohibitively tedious and expensive. In
such cases, developing a comprehensive algorithm that integrates domain shift to the land
cover mapping becomes increasingly important.

As a special case of transfer learning, unsupervised domain adaption (UDA) has been
taken to narrow the performance divergences introduced by the mismatch between the
source and target domains [12]. Its core matter utilizes the unlabeled data from the target
domain to circumvent the expensive annotation work as the labeled data are available in
the source space. Along this line, the related UDA research mainly involves two branches.
Conventional methods [13,14] leverage the manual-extracted features to minimize the
domain gap. Another exploited workaround is carried out with deep learning technology;,
where the maximum mean discrepancy (MMD) [15,16] and adversarial framework [17,18]
present the more common strategies. For the latter, adversarial learning seeks to minimize
an approximate domain discrepancy distance through an adversarial objective to the
domain discriminator. Besides, generative adversarial approaches [19] closely connected
with them show a powerful image or feature generation capability, in which adversarial
loss guides feature transformation from the source to the target domain.

Inspired by the advancement, it has become a popular trend to integrate domain
adaptation and generative adversarial learning to conduct dense segmentation, and it
has made fascinating achievements. FCNs in the wild [20] first employed adversarial
learning to perform global alignment at feature-level, ultimately executing the adaptive
segmentation work. After that, minimizing the distance of potential features between
the data domains generalizes to a popular workaround [21-24]. Another research line
focuses on pixel-level adaptation [25-27], aiming to address the domain shift problem
by performing data augmentation in the target domain. These methods consistently
expand from other extra image-to-image translation or style transfer frameworks [28,29].
For instance, CyCADA [25] transferred the source images to the target domain with
pixel-level constraint via CycleGAN [28], followed by a feature alignment. Nevertheless,
aligning the marginal distribution does not necessarily lead to satisfactory performance
as there is no explicit constraint on the prediction in the target domain. Category-level
adaptation [30-32] and entropy minimization [33,34] have recently been introduced to
enhance the consistency of local semantics in the procedure of global alignment. Among
them, CLAN [30] paid attention to the class-level joint distribution that made each class
consistent with the adaptive adversarial loss. ADVENT [33] imposed entropy minimization
to match data distribution by searching for weighted self-information in an adversarial
flow. However, in general, adversarial adaptation always adjusts the global statistics with
a naive discriminator, ignoring the underlying category information of the target domain.
Even though FADA [35] proposed a fine-grained discriminator to alleviate this problem,
its domain label from a single strategy may bring about adverse effects. Moreover, the
majority of reports generally focus on segmentation work for diverse driving scenarios.
Their limitation may give rise to performance degradation in high-resolution coastal
scenes since the ground objects show remarkable low inter-class variances and multi-scale
characteristics with intricate spatial details.

In this work, we propose a novel category-space constrained adversarial network
(CsCANet) for cross-domain CLCM. The central formulation is to implement the feature
alignment with generative adversarial learning while generalizing it to multiple levels
via a robust baseline model. Specifically, the method consists of a segmentation module
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and multiple adaptation modules, where the former is divided into feature extractor and
pixel-level classifier. Following alternate training, the hybrid framework learns from the
source space in a supervised way and transforms it into the target domain for our specific
segmentation task. The primary contributions of this paper are summarized as follows:

1.  Referring to the characteristics of HRRS images in coastal areas, we propose a
category-level UDA approach to achieve land cover mapping across image domains,
which emphasizes the advance of adversarial learning in generating and aligning
the feature spaces.

2. For the category-level adaptation framework, we focus on the underlying category
space of the target domain and introduce a category-wise discriminator to fine-
tune the segmentation network. In light of heterogeneous situations, two different
strategies are adopted to extract domain labels for the discriminator.

3. With the lower-level features concerning local details and higher-level ones encoding
global context presentations, we integrate the adaptation modules with a similar
architecture to each feature stack, aiming to align the semantic features at multiple
spatial scales.

4.  Experiments in two coastal datasets demonstrate that the proposed method enables
the cross-domain CLCM to be realized and achieves excellent performance compared
with other state-of-the-art models.

The remainder of this paper is arranged as follows. The background is reported in
Section 2. Section 3 introduces our proposed method and presents its implementation
details. Then, Section 4 describes the experimental procedures and results on two bench-
mark datasets, while we discuss the effectiveness of various designed modules in Section 5.
Finally, our work and future research are concluded in Section 6.

2. Background
2.1. Adversarial Learning

Adversarial learning has recently become popular and has been explored in generative
tasks since Goodfellow et al. [19] proposed the Generative Adversarial Nets (GAN) as a
pioneering report. Adversarial learning essentially presents a dynamic mini-max game
where the generative adversarial method is always divided into two antagonistic modes:
a generative module G and a discriminative module D. Within the iterative training, G
strives to generate imitative samples to deceive the discriminator by capturing the data
distribution. Meanwhile, the target of D is to distinguish the generated distribution from
real ones via a binary domain label. The whole process seeks G to minimize the divergence
while updating D to maximize the separation, which can be formulated as follows:

G* = argmcinmgx{Exwpdm [log D(x)] + Eyp,[log(1 — D(x))] } 1)

where Py, and Pg, respectively, indicate the real and generated distribution.

The advance of GAN over other generative approaches is that there is no complex
sampling and inference [17]. After that, numerous variants have served a breadth of
visual tasks, e.g., image generation, style transfer, and image labeling. Using the deep
fully convolution framework, DCGAN [36] provides pioneering guidance for complex
mapping when CGAN [37] denotes an extension that makes it possible to link additional
information such as the category relation of training samples. Presented as an excellent
work, CycleGAN [28] performs the unpaired image-image translation by adopting the
bi-directional consistency losses and adversarial losses. In summary, with its outstanding
performance, the generative adversarial approach has now become a fundamental strategy
for unsupervised domain adaptation.

2.2. Self-Supervised Learning

Even though deep supervised learning has made outstanding successes in the past
decade, there is a fatal flaw with excessively relying on manual annotations. As an alternative,
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self-supervised learning (SSL) adopts input data itself to dig supervision information for
training. Precisely, SSL captures pseudo labels via a semi-automatic process or a partial
prediction by leveraging the rest of the data. There are three summarized objective-based
types: generative, contrastive, and generative-contrastive [38]. Generally, this strategy of SSL
benefits various downstream tasks without the need for expensive supervision information.

Denoted as a branch of semi-supervised learning, SSL has been used in various image-
related tasks [39—41]. For instance, a broad span of domain adaptation applications [35,41]
leverage SSL to learn the decision boundary between source and target data. These ap-
proaches enable the promotion of the global feature matching of the different data domains
while performing well in class-wise alignment. The SSL approach is also employed to
carry out pixel-level annotating when the ground truth is not accessible. Under this sce-
nario, the related methods [12,31] are often guided by the cross-entropy loss between the
dense prediction and generated pseudo label. In our work, we leverage SSL to execute
the pixel-level segmentation task in an unsupervised way. Note that the SSL strategy is
simultaneously applied in our domain adaptation framework and segmentation module.
First, we denote the dense predictions from the target data as the discriminator labels to
update the adversarial adaptation network in training iterations. Second, the pseudo labels
from the above adaptative predictions are regarded as the ground truth to fine-tune the
segmentation network for target images. To a certain extent, SSL overcame the defect of
missing annotations and has achieved distinguished contributions.

3. Materials and Methods
3.1. Problem Setting

Having access to the source image set with dense annotations and the target image
set without any references (Figure 1a), we focus on the problem of unsupervised domain
adaptation for the CLCM with HRRS images. The goal is to learn a pixel-level segmentation
network in a supervised way and then achieve correct predictions for the target images
in an unsupervised manner. Due to the divergence of marginal and joint distribution in
both datasets (domains), deep convolutional models trained on source data always fail to
generalize to the target space.

b + Category A & Source sample A Category B & Source sample - Adversarial loss

+ Category A e Target sample A Category B € Target sample N o — Classifier boundary

(@)

Figure 1. [llustration of conventional and our proposed unsupervised domain adaptation method. (a) Data samples from the

source and target domain. (b) Conventional adversarial learning with global domain discriminator. (c) Our category-space

constrained adversarial learning with multi-level category-wise discriminator.

To address the adverse effect of domain shift, we resort to a generative adversarial
framework that learns the feature mapping between the source and target domain. Con-
ventional adversaries-based methods commonly leverage the global discriminator as the
domain judge, which only aligns the global marginal distribution. In such cases, it may
lead to the misclassification of categories within the target domain (Figure 1b). Considering
the underlying semantic structure, we fuse the category information into the multi-level
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adversarial procedure by replacing the single naive discriminator with our multi-level
category-wise discriminators. As illustrated in Figure 1c, this strategy implements the
local domain matching for category features at multiple scales while performing the global
domain alignment.

3.2. Network Architecture
3.2.1. Overall Formulation

The proposed CsCANet serves the cross-domain CLCM task via a multi-level adver-
sarial framework and an extra self-supervised learning module (Figure 2). Specifically,
the whole architecture comprises three fully convolutional networks: feature extractor F,
pixel-level classifier C, and category-wise discriminators D;, wherei=1, 2, ..., n, presents

. S
the level of adversarial adaptation scheme. Source images Xg = { X% }fio with annotated

labels Yg = {Yg}ﬁfo and target images X1 = {XlT}lI\iTO are given as the inputs of the
network, where NS and NT indicate the number of respective samples. Then, the shared
baseline network F generates multiple feature stacks (i.e., F;(Xs, 6) and F;(Xr, 8)) for both
the source and target domain at different spatial scales. Our target is to make the multi-level
semantic features F;(Xg, 8) and F;(Xr, 6) close to each other. Hence, four category-wise
discriminators with the analogous architecture are designed to achieve category-level
domain adaptation for aligning the features in specific scales. Note that source label Yg
and target prediction C(F;(Xt, ), u) are, respectively, denoted as the domain labels to
discriminators. Furthermore, the prediction of the shared classifier C is presented as the
result of the CLCM, which also forwards to optimize the feature extractor and classifier via
the segmentation losses.

A

\

\
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I
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Figure 2. An overview of the proposed category-space constrained adversarial network for cross-domain coastal land cover

mapping. The procedure is mainly composed of source flow and target flow that are drawn in different colors.

With the proposed network, the joint loss objective for the hybrid adaptation task can
be formulated from two primary modules:

L= Lseg(XS/ XT) + )\adeudv(XSr XT) @)

where Ls,, consisted of Lsseg and L;—reg denotes the cross-entropy losses between the prediction
and label (truth or pseudo) in the source and target domains. L4, indicates the adversarial
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Source image

losses that align with the category-wise data distribution. Besides, A4, presents the weight
coefficient to promote backward propagation steadily. For the target domain, the loss LSTeg
is individually used for self-supervised learning to fine-tune the segmentation network

toward better adaptation.

3.2.2. Domain Labels Extraction Module

For cross-domain dense segmentation, each image contains numerous pixels that
represent multiple instances. Exploring adversarial learning for domain adaptation in the
right way is a vital premise. The majority of global adaptation approaches adopt the single
binary values (either “0” or “1”) as the opposite domain labels (Figure 3a), ignoring the
category-space constraints in the target domain. Our developed architecture introduces a
category-wise discriminator for adaptively aligning the semantic features. For this purpose,
extracting the category-wise domain labels denotes a crucial component module.

Source label -

Target image

L.

v

! I
1 I
! I
1 I
I
! |
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;01 ! 12345 &
I I
I 1
I !
] 1
I I I
| SIS e S | N
;01 L 12345 L1 12345 #
1 I
(a) ! (b) (©

Figure 3. Illustration of domain label extraction module using different strategies. (a) Binary label. (b) Category-wise hard

label. (c) Category-wise soft label. The elements drawn in blue present the source flow, while the orange ones indicate the

target flow.

We seek the category information contained in both domains to construct the domain
label for each sample. The constraint that the ground truth in the target domain is not
accessible is contradictory to expect category-level alignment via the target category in-
formation. Referring to self-supervised learning, treating the target label as a learnable
hidden variable is a feasible choice. We use the prediction of C as the domain label to
supervise the discriminator since the target domain shares the same semantic categories
as the source data. In general, there are two summarized strategies for extracting domain
labels, whose outcomes are divided into category-wise hard and soft labels. For the former
shown in Figure 3b, executing the one-hot encoding is a straightforward solution, which
can be formulated as follows:

1, k= argmkaxP(i'k)

hllk) = ®)

0, others

where i € (N = H x W) presents the pixel position, and P(X) gives the softmax probability
prediction of the kth category. In this plan, we try to generate domain labels from the
most confident predictions and hope that they are mostly correct. As a result, the method
only adopts the category with the highest confidence for domain adaptation. This strategy
enormously depends on the predicted outcomes of C.

Focusing on the adaptation problem to each category, we leverage the category-wise
soft label as an alternative strategy (Figure 3c). Unlike the hard one, the latter utilizes
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the probability prediction of all the channels to implement category-level adaptation,
denoted as: U
1K) — exp(PUH) @)
Y1 exp(PUH)

where j € (N = H x W) presents the pixel position, and PU%) indicates the logits probability
prediction of the kth category.

In our proposed architecture, we simultaneously employ two diverse strategies to
extract category-wise domain labels instead of a single one. For the source data, the
hard process is selected where we use the available ground truth as the domain label. In
fact, this operation can offer the highest confidence rather than the probability prediction
of C. On the other hand, we adopt the soft label from dense prediction per iteration to
execute adversarial learning for the target domain. In essence, this belongs to a process of
self-supervised learning.

3.2.3. Single-Level Adaptation Adversarial Framework

With the generative adversarial learning, the domain adaptation flow is generally
executed by alternately updating the segmentation network G and discriminator D. To be
specific, G is composed of feature extractor F and pixel-level classifier C, where G = (F — C).
Our single-level adaptation framework that focuses on the output last feature stack from F
also follows the above two procedures.

In our category-space constrained adaptation, we divide the output from D and
extracted domain labels into k channels, aiming to encourage category-wise adversarial
learning. It enables D to model more complex underlying structures between categories.
During the training iterations, D is optimized to distinguish the features from cross domains.
The training objective can be written as:

Hw K (ik) (i,k,0)
LiXs Xr) = — X L ()" log(D(F(Xs))
N=HxW K . , ©)
- L (s)" log(D(F(Xr) i*1)
=1 k=1

where 1100 and s10), respectively, indicate the label for source pixel i and target pixel ;.
As an antagonistic procedure, G is trained with the segmentation loss Lsseg from the

source domain and the adversarial loss L,4, on the target space. This stage seeks to update

F and C with the fixed D. We begin by defining the cross-entropy loss L$,, to enforce the

prediction close to the annotated ground truth, observed in:

seg

N=HxW K

LS, (Xs 2 2 Ys) P 1og ((Ps) ™)) ©6)

where Y and Pg denote the ground truth and dense predictions for source samples.

Second, under the assumption that we do not diverge far from the target solution,
the adversarial loss L,4, encourages F to learn domain-invariant features by confusing D,
which can be achieved as follows:

5104 log (D (P (X7) %) @

Mw

N=Hx
Ladv XT Z
=1 k

1

3.2.4. Multi-Level Adaptation Adversarial Framework

Although high-level features contain rich semantic information, there are equally
critical contexts and spatial details in the low-level features, such as the position rela-
tion, contour information, and small-scale objects. Notably, it is significant for coastal
HRRS images. In the background of segmentation models, integrating multi-level features
has demonstrated an astonishing performance [42,43]. Motivated by these distinctive
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approaches, we embed additional domain adaptation modules in the low-level feature
stacks to enhance adaptability at multiple spatial scales. The overall objective function can
be extended from Equations (6) and (7):

n

L(XS/ Xr) = )\Si’gLsSeg(X5> + Z Afzdefzdv(XT> ®)
i=1

where i denotes the level of feature stacks, Asqg and )tfl 4 are the weights to balance the losses.

Our ultimate goal is to minimize the dense segmentation losses in G = (F — C) for
both domains and maximize the probability of target features considered the source one.
The min-max flow follows the formulation:

i L(Xs, X 9
minmax (Xs, Xr) ©)

3.3. Implementation
3.3.1. Subdivided Modules

Our CsCANet is built on the fully convolution architecture subdivided into a feature
extractor, a pixel-level classifier, and four category-wise domain discriminators. It should
be noted that the discriminators denote a similar structure with different channel numbers.
Below, we elaborate their detailed compositional structures.

Feature extractor: According to our multi-level adaptation framework, the Resnet-
101 [44] module pre-trained on the ImageNet [45] is adopted as the backbone network
that works to extract features at multiple scales. The same as several advanced re-
ports [3,30], we substitute for the down-sampling layers in the last two residual blocks
with dilated convolutional layers. This strategy led to the size of the output feature map
1/8 of the input image, aiming to retain more spatial details without changing the scale
of pre-trained parameters.

Pixel-level classifier: Referring to the Deeplab system [10,11], we leverage the ASPP
module as an efficient pixel-level classifier that leverages four convolutional layers with a
kernel size of 3 x 3 and a dilation of {6, 12, 18, 24} to form the network. The innovative
structure successfully expands the receptive field to capture long-range context. For the
module, the weights and biases are initialized with the Xavier [46] method.

Domain discriminators: We implement the category-space constraint domain adapta-
tion with a category-wise discriminator. The network consists of three convolutional layers
with a kernel size of 3 x 3 and channel numbers of {128 x 27,32 x 2/, N¢}, wherei=1,2,...,
n, presents the level of the adversarial learning scheme and N¢ gives the category number.
Except for the last one, each convolutional layer is followed by the Leaky-ReLU [47] with a
negative slope of 0.2. Besides, a bilinear up-sampling is used to reconstruct the resolution at
the end of the discriminators. Additionally, similar to the classifier, we also use Xavier [46]
to initialize the discriminators.

3.3.2. Training Details

In this section, our expected goal is to gain a well-trained adaptive segmentation
network for CLCM. Alternate adversarial training is driven by the objective function L,
in which the segmentation loss Lfeg and adversarial loss sz 4o Tespectively, serve for the
dense prediction and multi-level domain adaptation task. The proper scheduling of these

two modules is crucial for network performance. Thus, there is a greater weight for L;Seg,

i.e., Aseg = 1. For the multi-level sz 4o We employ smaller weights for them, i.e., Afl do =
{0.0001, 0.0002, 0.0005, 0.001}, since the low-level features carry less semantic information.

Furthermore, to train our proposed CsCANet, we find that performing segmented
training with self-supervised learning is an effective strategy to accelerate network param-
eter convergence. Within the front four-fifths of iterations, we begin by jointly training the
source-based segmentation network and domain discriminators to conduce adversarial

learning in one stage. In detail, source images are first forward to optimize F and C with
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LS.
g .
put to G and D; with the source labels Y5 for optimizing L! ; . As for the rest of the itera-
tions, the self-supervised learning adopts the generated pseudo target labels Y; to fine-turn
the segmentation network for the target domain with LL,. Algorithm 1 gives the necessary

seg*
training process for our hybrid framework.

The dense predictions Pr are then generated from target images, which are forward

Algorithm 1. Training process for the hybrid framework.

Input: Source images X, source annotations Y, target images Xr, threshold T.
Initialized feature extractor F, pixel-level classifier C, and discriminators D;.
Output: Well-trained F, C, and D; for adversarial learning.
Well-trained F and C for self-supervised learning.
for k = 1 to max iterations (M) do
if k < 4/5 M (adversarial learning)
forward Xg, Ys to Fand C
update F, C with Lssgg
forward Xt to F, C
update predictions Pt (score >T) =T
forward Xr, Ys, Prto F, C, D;
update F, C, D; with szdv
get pseudo label Y;
else k > 4/5 M (self-supervised learning)
forward Xt, Y; to Fand C
update F, C with Lg;_,g
end if
end for

4. Experimental Results
4.1. Datasets Description

Two benchmark datasets, namely Shanghai and Zhejiang, are selected as the experi-
mental data. As illustrated in Figure 4, corresponding study areas are located in typical
coastal regions, and both of them are characterized by multi-scale land cover categories
with low intra-class variances. Their appearances reflect the unique geographical character-
istics of the coastal zone. Obviously, data diversity exists in spatial distribution between
the Shanghai and Zhejiang datasets, where the former possesses more detailed information.
Furthermore, due to the influences of seasonal factors and sensor modes, there are signifi-
cant domain differences in spectral characteristics, which meets our experimental needs.

Shanghai dataset: The benchmark dataset is located in Xiaoshan District, Zhejiang
Province, where the adopted remotely sensed images were acquired in 2017 with a spatial
resolution of 0.8 m/pixel. In addition, the original images cover a scale of approximately
46 square kilometers with a spatial extent of 11,776 x 6144 pixels, composed of three bands
of red (R), green (G), and blue (B). The images are further clipped into small patches with a
size of 256 x 256 by employing a sliding window. As a result, there are 1104 images in the
Shanghai dataset, where the ratio of training set to validation set is approximately 2:1 to
the number of 736 and 368.

Zhejiang dataset: This dataset is located in Fengxian District, Shanghai, while the
corresponding satellite images from the WorldView system were collected on 26 December
2016, with a high resolution of 0.5 m/pixel. It has been widely accepted that special ground
objects in remote sensing images have a constant scale range [48]. Thus, the images are
resampled to obtain a consistent spatial resolution as the Shanghai dataset. Besides, the
same as the Shanghai dataset, the images only contain RGB channels and cover a region
of approximately 61 square kilometers with a size of 12,800 x 7424 pixels. Similarly, the
dataset contains 1450 images with a spatial extent of 256 x 256, and the numbers of training
and validation sets are 967 and 483, respectively.
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Figure 4. Overall presentation for our coastal datasets with respect to source locations and high-resolution remotely sensed
images.

For both benchmark datasets, six land cover categories are defined and annotated at
pixel-level (Figure 5). Specifically, the categories are composed of cropland (Cropland),
impervious surfaces (Imp. Surf.), water areas (Water), vegetative cover (Veg.), bare land
(Bareland), and roads (Road). Table 1 gives the pixel statistics of each dataset. It is hugely
unbalanced for all the land cover categories that produce a more significant challenge to
conduct dense segmentation work. As an example, the proportions of Cropland and Imp.
Surf. are markedly larger than Bareland and Road.

-Veg., -Water Bareland -Cropland -Road -Imp. Surf.

Figure 5. Representative examples of the Shanghai and Zhejiang datasets. (a) Images and corresponding annotated ground
truth of the Shanghai dataset, (b) Images and corresponding annotated ground truth of the Zhejiang dataset.
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Table 1. Pixel statistics among categories for Shanghai and Zhejiang datasets.

Category Shanghai Dataset Zhejiang Dataset
Cropland 32.29% 46.03%
Imp. Surf. 26.45% 20.65%
Water 11.44% 13.46%
Veg. 20.07% 7.86%
Bareland 3.96% 7.77%
Road 5.79% 4.23%

4.2. Experimental Setting

To verify the feasibility and robustness of the proposed method, two independent
but opposite experiments are implemented on the above datasets. The unpaired images
from the source and target domain are randomly taken as the network inputs, and the
annotation is verifiable for the source data. In addition, data augmentation methods [49],
i.e., mean subtraction and normalization, are leveraged on the training sets, which adjust
the input images to accelerate the convergence of weights and biases.

We implement the proposed CsCANet on the PyTorch Toolbox [50] written as a
deep learning framework. All experiments are conducted on a machine with an Intel
Core i7-9700k (six cores), 16 GB of memory (RAM), an NVIDIA GeForce GTX 1080 GPU
(8 GB), and an NVIDIA GeForce RTX 2080 GPU (8 GB). In the training procedure, we
set 100 K iterations to obtain an overall convergence with a batch size of 1. For training
the segmentation network, SGD [51] is used as the optimizer, whose momentum and
weight decay are set by 0.9 and 0.0005. The learning rate is initialized to 2.5 x 10~* with a
“poly” decay policy multiplied by (1-iter_step/total_step)??. To train the discriminators,
we leverage the Adam [52] with momentums of 0.9 and 0.99 as the optimizer. The initial
learning rate is 10~% and decreases with the same policy as the segmentation network.

4.3. Evaluation Metrics

We take the CLCM with domain adaptation as a pixel-level and multi-category seg-
mentation task, whose experimental results are generally evaluated via the generated
confusion matrix. Referring to it, TP, FP, TN, and FN denote the numbers of true positives,
false positives, true negatives, and false negatives [53,54]. Having access to these indexes,
the following four metrics, i.e., per-class accuracy, overall accuracy, balanced F (F1) score,
and intersection-over-union (IoU), are given to prove the validity effectiveness of our
proposed CsCANet. Their detailed formulations are shown in Table 2, where C presents the
number of categories in both datasets. For all the metrics, the higher value demonstrates a
better segmentation result to a certain degree.

Table 2. Evaluation metrics for the experimental results.

Per-class Accuracy PA. = %
c c
C
Overall Accuracy OA=1ly TP.+TN,
= C & TRAFTNAFFPAFN:
o=

iy — TP, _ TP,
Mean F1 Score precision = 7T%+‘ch,recall = TP iIN
_ 1 precision xrecall
mky = C 212 X precision—+recall

c=

Mean IoU TP

C
_1
mlou = ¢ 21 TP.+FP.+FN;
c=

4.4. Results and Analysis

In the experiments, several state-of-the-art methods devoted to cross-domain segmen-
tation work are introduced and compared with our proposed CsCANet. They are driven
by two different baseline networks: VGG16 [55] and ResNet101 [42], both of which are
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pre-trained on ImageNet [43]. For the former, the representative models, i.e., FCNs in
the wild (FCNs ITW) [20] and CyCADA [25], are presented. Instead, ResNet101-based
others are provided by AdaptSegNet [21], CLAN [30], ADVENT [33], BDL [12], and
FADA [35]. We perform fair comparisons on two adaptive CLCMs: Shanghai — Zhejiang
and Zhejiang — Shanghai.

Partial representative examples from the above converse tasks are illustrated in
Figures 6 and 7. Given as a pioneering work, FCNs ITW undoubtedly gains the worst re-
sults using a primitive feature alignment in the final representation layer (Figures 6a and 7a).
It is apparent from Figures 6c and 7c that AdaptSegNet enables better performance than
FCNs ITW by adopting the model in the output space. With pixel-level adaptation, the results
of CyCADA and BDL are seriously affected by the early style transformation that results in
the emergence of a large misclassification area, as shown in Figure 6b,f and Figure 7b,f. Even
though CLAN and ADVENT further optimize the segmentation outcomes via the category-
level adaptation and entropy minimization, there are still shortcomings in recognizing
the ground objects with low inter-class variances (Figure 6d,e and Figure 7d,e). Besides,
as shown in Figures 6h and 7h, FADA effectively solves the recognition issue of objects
with similar characteristics. However, it presents poor ability in classifying the ground
objects on a small scale, like other methods mentioned above. As we expected, the pro-
posed method produces impressive segmentation results, as shown in Figures 6g and 7g.
In practical terms, our CsCANet not only successfully recognizes the ground objects with
similar appearance but also performs well in adapting the multi-scale features.

On the other hand, Tables 3 and 4 give the competitive evaluation metrics to other
competitive methods on both segmentation tasks under domain adaptation, including
per-class accuracy (PA), overall accuracy (OA), mean F1 score (mF1) and mean Iou (mloU).
The comparison results demonstrate that our proposed CsCANet achieves an excellent
performance against other algorithms. CsCANet acquires the highest OA, mF1, and
mloU of 80.48%, 71.56%, and 57.69% in Shanghai — Zhejiang, while the corresponding
values of 70.55%, 65.33%, and 49.64% also present the best ones in Zhejiang — Shanghai.
Compared with the well-known category-level CLAN, CsCANet achieves 7.35% and
4.55% improvement in mloU, which verifies the advance of our category-level adversarial
framework. Furthermore, CsCANet still presents excellent representations on the per-class
accuracy. For instance, it provides increases of 12.16% and 17.80% over the fine-grained
FADA in Bareland and Road within the task Shanghai — Zhejiang.
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Figure 6. Representative examples of land cover mapping on the task Shanghai — Zhejiang: (a) FCNs ITW, (b) CyCADA,
(c) AdaptSegNet, (d) CLAN, (e) ADVENT, (f) BDL, (g) FADA, (h) our CsCANet. RGB images and the corresponding ground

truth are presented in unison. We circle the negative results in white ellipses.
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Figure 7. Representative examples of land cover mapping on the task Zhejiang — Shanghai: (a) FCNs ITW, (b) CyCADA,
(c) AdaptSegNet, (d) CLAN, (e) ADVENT, (f) BDL, (g) FADA, (h) our CsCANet. RGB images and the corresponding ground
truth are presented in unison. We circle the negative results in white ellipses.
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Table 3. Comparison results on the task Shanghai — Zhejiang (%). We study the performance using the Shanghai dataset as
annotated source data and the Zhejiang training set as the unlabeled target domain. The best results are highlighted in bold.

Shanghai — Zhejiang
Method Veg. E::;Z Water  Imp.Surf. Crop Land Road OA mF1 mloU
FCNs ITW [20] 40.93 1243 40.56 59.18 79.20 10.16 58.76 40.96 28.52
CyCADA [25] 66.48 8.96 69.02 76.34 74.78 80.00 66.33 57.34 43.27
AdaptSegNet [21] 68.14 30.07 82.97 64.19 76.17 64.83 70.21 63.57 47.99
CLAN [30] 74.25 15.05 81.11 75.10 83.97 60.38 7491 64.19 50.34
ADVENT [33] 69.77 33.05 89.13 69.43 81.55 66.45 75.03 67.90 52.94
BDL [12] 7217 33.56 72.04 77.98 81.98 77.10 75.19 68.00 53.29
FADA [35] 59.88 27.32 80.98 74.62 89.89 63.98 77.42 68.15 53.93
Our CsCANet 42.41 39.48 76.50 80.92 94.69 81.46 80.48 71.56 57.69

Table 4. Comparison results on the task Zhejiang — Shanghai (%). We study the performance using the Zhejiang dataset as
annotated source data and the Shanghai training set as the unlabeled target domain. The best results are highlighted in bold.

Zhejiang — Shanghai

Method Veg. E:;Z Water SI‘I;I; Crop Land Road OA mF1 mloU
FCNs ITW [20] 21.26 17.89 53.24 90.26 25.47 5.43 43.18 31.91 20.57
CyCADA [25] 8.09 47.92 51.19 79.58 73.74 71.76 64.31 55.43 41.69
AdaptSegNet [21] 42.40 67.33 64.75 90.70 55.43 65.70 63.31 60.19 43.99
CLAN [30] 34.58 46.25 57.93 89.66 72.83 64.67 66.37 61.22 45.09
ADVENT [33] 46.57 44.29 59.48 89.36 57.30 77.36 64.37 61.23 45.48
BDL [12] 39.26 50.96 46.11 83.29 76.09 74.85 66.10 60.20 4418
FADA [35] 36.98 30.25 71.88 94.81 67.55 66.03 67.44 61.61 46.13
Our CsCANet 48.35 38.75 60.62 86.53 78.26 74.63 70.55 65.33 49.64

5. Discussion

Whereas deep neural networks have driven the progress of land cover mapping, their
performance fundamentally relies on the network architecture and optimization strategies.
In this section, we conduct several ablation studies and effectiveness analysis for the above
two primary factors. Note that all the comparative experiments are carried out on the
CLCM task of Shanghai — Zhejiang.

5.1. Ablation Studies for Network Architecture
5.1.1. Design of Domain Adaptation Framework

Our anticipated goal is to develop a hybrid framework for land cover mapping across
image domains. Considering the complex characteristics of coastal ground objects, we
proposed a multi-level adaptation framework to adapt semantic features at different scales.
Several comparative studies are executed to verify the effectiveness of our multi-level
adversarial scheme. For all the methods, we use the pre-trained Deeplab v2 [9] as the
baseline network.

As shown in Table 5, the domain adaptation approach achieves significant improve-
ment in cross-domain land cover mapping. Compared with the baseline without any
adaptation operation, our single-level CsCANet increases the value by 11.76% for mloU.
Additionally, the framework with multi-level generalization denotes significant results up
to 77.52%, 69.25%, and 54.78% in terms of OA, mF1, and mIoU. On the other hand, Figure 8
visualizes partial representative outcomes. There is no doubt that the baseline method gives
poor presentations because of the domain divergence within different datasets. In addition,
multi-level CsCANet illustrates the better recognition ability in ground objects with low
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RGB images

intra-class variance and a small scale against the single-level approach. The aforementioned
contrastive studies strongly prove the feasibility and effectiveness of the domain adaptation
method in coastal land cover mapping, especially our multi-level adaptation framework.

Table 5. Performance comparisons of CsCANet with different domain adaptation frameworks in
evaluation metrics. The best results are highlighted in bold.

Domain

Method Adaptation OA (%) mF1 (%) mloU (%)
Baseline No 68.61 55.86 40.81
CsCANet Single-level 76.76 67.44 52.57
CsCANet Multi-level 77.52 69.25 54.78

—_
o
Rl

(b)

round truth

T

G

Bareland [l Farmland [ Road Imp. Surf.

Figure 8. Representative examples of land cover mapping on the task Shanghai — Zhejiang: (a) baseline, (b) single-level
CsCANet, (c) multi-level CsCANet. RGB images and the corresponding ground truth are presented in unison. We circle the

negative results in white ellipses.

5.1.2. Design of Domain Labels Extraction Module

A conventional discriminator always employs a global adversarial loss to imple-
ment feature alignment via a binary domain label. Paying attention to the underlying
category-space in the target domain, we introduced a category-wise discriminator with two
summarized modules to extract domain labels. Moreover, a mixed strategy was leveraged
in our method where the category-wise hard and soft labels were, respectively, applied
to the source and target domain. In this subsection, we conduct ablation experiments to
prove the superiority of our modules.

Table 6 gives the comparison results on different domain label extraction modules.
The single strategy concerning category-wise hard and soft labels, respectively, achieves
an increased mloU of 2.83% and 2.65% compared to the naive one with a binary label.
Notably, our data-based approach further improves network performance while achieving
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the highest values of 77.52%, 69.25%, and 54.78% in the evaluation metrics. Meanwhile,
Figure 9 offers specific references in per-class accuracy as additional verifications. As can
be seen, the mixed method presents better results in most categories, such as the Bareland,
Road, Cropland, etc. In summary, extracting domain labels with reasonable modules can
lead to outstanding presentation for network performance, although it is determined by
the data structure itself.

Table 6. Performance comparisons of CsCANet with different domain label extraction modules in
evaluation metrics. S and T present the source and target domain. The best results are highlighted
in bold.

Method Binary Category-Wise Cat‘;i(;ry- OA mF1 mloU
Label Hard Label Soft Label (%) (%) (%)
CsCANet S, T 74.43 66.00 50.75
CsCANet s, T 76.93 68.17 53.58
CsCANet S, T 76.40 68.26 53.40
CsCANet S T 77.52 69.25 54.78

85

75

65

Accuracy (%)

55

45

35

—eo— CsCANet (BL+BL)
—e— CsCANet (HL+HL)
—e— CsCANet (SL+SL)
—e— CsCANet (HL+SL)

Veg. Bareland Water Imp.Surt. Cropland Road

Figure 9. Per-class accuracies for land cover mapping. BL, HL, and SL, respectively, denote the binary label, category-wise
hard label, and soft label. For all the categories, each method with a specific extraction module for domain labels corresponds
to a broken line with a particular color.

5.2. Effectiveness Analysis of Improvement Strategy

To further optimize the segmentation results, we employed the self-supervised learn-
ing approach as an improvement strategy to perform segmented training. Therefore, two
comparative experiments under contrary settings are carried out to analyze its effectiveness.
They are based on our multi-level adaptation framework and mixed approach to domain
label extraction.

The comparison results from Table 7 confirm that self-supervised learning led to a
remarkable improvement, where the values of OA, mF1, and mloU increased by 2.96%,
2.31%, and 2.91%. We also illustrate the internal specific variation of IoU for each category,
as shown in Figure 10. Compared with the original one, it is apparent that the CsCANet
with self-supervised learning presents further improvements to all the object categories,
especially the Imp. Surf., Road and Bareland. These pieces of ample evidence indicate the
effectiveness of our improvement strategy with self-supervised learning.



Remote Sens. 2021, 13, 1493 18 of 21

Table 7. Performance comparisons of CsCANet with different improvement strategies in evaluation
metrics. The best results are highlighted in bold.

Self-Supervised

Method . OA (%) mF1 (%) mloU (%)
Learning
CsCANet 77.52 69.25 54.78
CsCANet Vv 80.48 71.56 57.69
50 m CsCANet m CsCANet (S5L)
70
60
50
*
=40
3
30
20
10
0
Veg. Bareland Water Imp.Surf. Cropland Road

Figure 10. Per-class intersection-over-union (IoU) for land cover mapping. For all the categories, each method corresponds
to a histogram with a particular color.

6. Conclusions

This paper proposes a novel category-level adaptative method to address the cross-
domain CLCM with HRRS images. We take the adversarial framework with a category-wise
discriminator as an alternative to the conventional one, then generalize it to multiple levels.
Several state-of-the-art models are employed and compared to verify the superiority of the
proposed method. The experimental results demonstrate that our approach successfully
learns the transformed features and executes the domain adaptation procedure. In addition,
the multi-level adversarial scheme is confirmed to be efficient in recognizing the ground
objects with low intra-class variances and spatial details, ultimately achieving the optimal
performance in adaptive pixel-level segmentation. Furthermore, massive ablation studies
strongly confirm the effectiveness of our network architecture and improvement strategy.
Nevertheless, our method merely takes the dense annotations from the source domain
as supervised guidance. In future research, we will focus on other effective guidance
information, such as the semantic context and super-pixel, to further improve the network
performance by implementing additional constraints.

Author Contributions: Conceptualization, ].C. and G.Z.; methodology, ].C. and G.C; software, ].C.;
validation, N.Y. and P.Z.; formal analysis, B.E; investigation, P.Z.; resources, B.F,; data curation, P.Z.;
writing—original draft preparation, J.C.; writing—review and editing, G.C. and B.F,; visualization,
N.Y,; supervision, G.Z.; project administration, J.C.; funding acquisition, G.C. All authors have read
and agreed to the published version of the manuscript.

Funding: The project was funded by the National Natural Science Foundation of China under Grant
No. 41674015 and the Scientific Research Project of Hubei Province under Grant 1232039.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this work are available on request from the
corresponding author. The data are not publicly available due to other ongoing studies.



Remote Sens. 2021, 13, 1493 19 of 21

Acknowledgments: The authors would like to acknowledge the following organization, the Hubei
Key Laboratory of Marine Geological Resources (MGR202005), for partly funding this study. The
authors also thank the anonymous reviewers for their constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Congalton, R.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis.
Remote Sens. 2014, 6, 12070-12093. [CrossRef]

2. Scott, G.J.; England, M.R.; Starms, W.A.; Marcum, R.A; Davis, C.H. Training Deep Convolutional Neural Networks for Land—
Cover Classification of High-Resolution Imagery. IEEE Geosci. Remote Sens. 2017, 14, 549-553. [CrossRef]

3. Chen,],; Chen, G.; Wang, L.; Fang, B.; Zhou, P.; Zhu, M. Coastal Land Cover Classification of High-Resolution Remote Sensing
Images Using Attention-Driven Context Encoding Network. Sensors 2020, 20, 7032. [CrossRef]

4. Li, X, Liu, B,; Zheng, G.; Ren, Y,; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining
from ocean remote-sensing imagery. Nat. Sci. Rev. 2020, 7, 1584-1605. [CrossRef]

5. Tsai, Y,; Sohn, K,; Schulter, S.; Chandraker, M. Domain adaptation for structured output via discriminative patch representations.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October-2 November 2019;
pp. 1456-1465.

6. Long,]; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June 2015; pp. 3431-3440.

7. Ronneberger, O.; Fischer, P; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5-9 October
2015; Springer: Cham, Switzerland, 2015; pp. 234-241.

8.  Zhao, H,; Shi, J.; Qi, X.; Wang, X.; Jia, ]. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 2881-2890.

9.  Chen, L,; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. 2017, 40, 834-848. [CrossRef]

10. Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

11.  Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Cham, Switzerland, 8-14 September
2018; pp- 801-818.

12.  Li, Y,; Yuan, L.; Vasconcelos, N. Bidirectional learning for domain adaptation of semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16-20 June 2019; pp. 6936-6945.

13.  Gong, B.; Shi, Y.; Sha, F.; Grauman, K. Geodesic flow kernel for unsupervised domain adaptation. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21 June 2012; pp. 2066-2073.

14. Fernando, B.; Habrard, A.; Sebban, M.; Tuytelaars, T. Unsupervised visual domain adaptation using subspace alignment. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Darling Harbour, Sydney, Australia, 3-6 December
2013; pp. 2960-2967.

15. Tzeng, E.; Hoffman, ].; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014,
arXiv:1412.3474.

16. Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Unsupervised domain adaptation with residual transfer networks. In Proceedings
of the Conference and Workshop on Neural Information Processing Systems (NIPS), Barcelona, Spain, 9-10 December 2016;
pp. 136-144.

17. Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 7167-7176.

18. Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial
training of neural networks. J. Machine Learn. Res. 2016, 17, 2030-2096.

19. Goodfellow, L.].; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. arXiv 2014, arXiv:1406.2661.

20. Hoffman, ]J.; Wang, D.; Yu, E; Darrell, T. FCNs in the wild: Pixel-level adversarial and constraint-based adaptation. arXiv 2016,
arXiv:1612.02649.

21. Tsai, Y.; Hung, W.; Schulter, S.; Sohn, K.; Yang, M.; Chandraker, M. Learning to adapt structured output space for semantic
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Salt Lake City, UT, USA, 18-23
June 2018; pp. 7472-7481.

22. Luo, Y,; Liu, P; Guan, T; Yu, J.; Yang, Y. Significance-aware information bottleneck for domain adaptive semantic segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October-2 November 2019;
pp. 6778-6787.

23. Sankaranarayanan, S.; Balaji, Y.; Jain, A.; Lim, S.N.; Chellappa, R. Unsupervised domain adaptation for semantic segmentation

with gans. arXiv 2017, arXiv:1711.06969.


http://doi.org/10.3390/rs61212070
http://doi.org/10.1109/LGRS.2017.2657778
http://doi.org/10.3390/s20247032
http://doi.org/10.1093/nsr/nwaa047
http://doi.org/10.1109/TPAMI.2017.2699184

Remote Sens. 2021, 13, 1493 20 of 21

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Liu, W,; Su, F. Unsupervised adversarial domain adaptation network for semantic segmentation. IEEE Geosci. Remote Sens. 2019,
17,1978-1982. [CrossRef]

Hoffman, J.; Tzeng, E.; Park, T.; Zhu, |.; Isola, P.; Saenko, K.; Efros, A.; Darrell, T. Cycada: Cycle-consistent adversarial domain
adaptation. arXiv 2017, arXiv:1711.03213.

Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised pixel-level domain adaptation with generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21-26 July 2017; pp. 3722-3731.

Chen, Y,; Lin, Y.; Yang, M.; Huang, J. Crdoco: Pixel-level domain transfer with cross-domain consistency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16-20 June 2019; pp. 1791-1800.
Zhu, J.; Park, T.; Isola, P; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017;
pp. 2223-2232.

Liu, M.; Tuzel, O. Coupled generative adversarial networks. arXiv 2016, arXiv:1606.07536.

Luo, Y;; Zheng, L.; Guan, T.; Yu, J.; Yang, Y. Taking a closer look at domain shift: Category-level adversaries for semantics
consistent domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16-20 June 2019; pp. 2507-2516.

Zou, Y; Yu, Z.; Kumar, B.; Wang, ]. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training.
In Proceedings of the European Conference on Computer Vision, Cham, Switzerland, 8-14 September 2018; pp. 289-305.

Zou, Y.; Yu, Z; Liu, X.; Kumar, B.; Wang, J]. Confidence regularized self-training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Korea, 27 October-2 November 2019; pp. 5982-5991.

Vu, T.; Jain, H.; Bucher, M.; Cord, M.; Pérez, P. Advent: Adversarial entropy minimization for domain adaptation in semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
1620 June 2019; pp. 2517-2526.

Pan, F,; Shin, I.; Rameau, F,; Lee, S.; Kweon, 1.S. Unsupervised intra-domain adaptation for semantic segmentation through
self-supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14-19 June 2020; pp. 3764-3773.

Wang, H.; Shen, T.; Zhang, W.; Duan, L.; Mei, T. Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic
Segmentation. In Proceedings of the European Conference on Computer Vision, Edinburgh, UK, 23-28 August 2020; pp. 642-659.
Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.

Liu, X.; Zhang, F.; Hou, Z.; Wang, Z.; Mian, L.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. arXiv 2020,
arXiv:2006.08218.

Chiaroni, F.; Rahal, M.; Hueber, N.; Dufaux, F. Self-supervised learning for autonomous vehicles perception: A conciliation
between analytical and Learning methods. IEEE Signal Proc. Mag. 2020, 38, 31-41. [CrossRef]

Zhao, Z.; Luo, Z.; Li, J.; Chen, C.; Piao, Y. When Self-Supervised Learning Meets Scene Classification: Remote Sensing Scene
Classification Based on a Multitask Learning Framework. Remote Sens. 2020, 12, 3276. [CrossRef]

Chen, Y.; Chen, W.; Chen, Y,; Tsai, B.; Frank Wang, Y.; Sun, M. No more discrimination: Cross city adaptation of road scene
segmenters. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2229 October 2017;
pp- 1992-2001.

Chen, L.; Yang, Y.; Wang, J.; Xu, W.; Yuille, A.L. Attention to Scale: Scale-aware Semantic Image Segmentation. arXiv 2015,
arXiv:1511.03339.

Sinha, A.; Dolz, J. Multi-scale self-guided attention for medical image segmentation. IEEE ]. Biomed. Health 2020. [CrossRef]
[PubMed]

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 27-30 June 2016; pp. 770-778.

Deng, ].; Dong, W.; Socher, R; Li, L.; Li, K.; Fei, L.F. Imagenet: A large-scale hierarchical image database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255.

Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13-15 May 2010; pp. 249-256.

Maas, A.L.; Hannun, A.Y;; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML
Workshop on Deep Learning for Audio, Speech, and Language Processing, Atlanta, GA, USA, 16-21 June 2013; pp. 1-6.

Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-Scale Object Detection in Remote Sensing Imagery with Convolutional
Neural Networks. ISPRS ]. Photogramm. Remote Sens. 2018, 145, 3-22. [CrossRef]

Zhao, X.; Gao, L.; Chen, Z.; Zhang, B.; Liao, W. CNN-based Large Scale Landsat Image Classification. In Proceedings of the 2018
Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA,
12-15 November 2018; pp. 611-617.


http://doi.org/10.1109/LGRS.2019.2956490
http://doi.org/10.1109/MSP.2020.2977269
http://doi.org/10.3390/rs12203276
http://doi.org/10.1109/JBHI.2020.2986926
http://www.ncbi.nlm.nih.gov/pubmed/32305947
http://doi.org/10.1016/j.isprsjprs.2018.04.003

Remote Sens. 2021, 13, 1493 21 of 21

50.

51.
52.
53.
54.

55.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic
differentiation in pytorch. In Proceedings of the 2017 Conference and Workshop on Neural Information Processing Systems
(NIPS), Long Beach, CA, USA, 4-10 December 2017; pp. 1-4.

Amari, S. Backpropagation and stochastic gradient descent method. Neurocomputing 1993, 5, 185-196. [CrossRef]

Kingma, D.P; Ba, ]. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Fang, B.; Kou, R.; Pan, L.; Chen, P. Category sensitive domain adaptation for land cover mapping in aerial scenes. Remote Sens.
2019, 11, 2631. [CrossRef]

Xu, Z.; Su, C.; Zhang, X. A semantic segmentation method with category boundary for Land Use and Land Cover (LULC)
mapping of Very-High Resolution (VHR) remote sensing image. Int. J. Remote Sens. 2021, 42, 3146-3165. [CrossRef]

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.


http://doi.org/10.1016/0925-2312(93)90006-O
http://doi.org/10.3390/rs11222631
http://doi.org/10.1080/01431161.2020.1871100

	Introduction 
	Background 
	Adversarial Learning 
	Self-Supervised Learning 

	Materials and Methods 
	Problem Setting 
	Network Architecture 
	Overall Formulation 
	Domain Labels Extraction Module 
	Single-Level Adaptation Adversarial Framework 
	Multi-Level Adaptation Adversarial Framework 

	Implementation 
	Subdivided Modules 
	Training Details 


	Experimental Results 
	Datasets Description 
	Experimental Setting 
	Evaluation Metrics 
	Results and Analysis 

	Discussion 
	Ablation Studies for Network Architecture 
	Design of Domain Adaptation Framework 
	Design of Domain Labels Extraction Module 

	Effectiveness Analysis of Improvement Strategy 

	Conclusions 
	References

