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Abstract: Several methods have been developed to provide polar maps of sea ice thickness (SIT) from
L-band brightness temperature (TB) and altimetry data. Current process-based inversion methods
to yield SIT fail to address the complex surface characteristics because sea ice is subject to strong
seasonal dynamics and ice-physical properties are often non-linearly related. Neural networks can be
trained to find hidden links among large datasets and often perform better on convoluted problems
for which traditional approaches miss out important relationships between the observations. The
FSSCat mission launched on 3 September 2020, carries the Flexible Microwave Payload-2 (FMPL-
2), which contains the first Reflected Global Navigation Satellite System (GNSS-R) and L-band
radiometer on board a CubeSat—designed to provide TB data on global coverage for soil moisture
retrieval, and sea ice applications. This work investigates a predictive regression neural network
approach with the goal to infer SIT using FMPL-2 TB and ancillary data (sea ice concentration, surface
temperature, and sea ice freeboard). Two models—covering thin ice up to 0.6 m and full-range
thickness—were separately trained on Arctic data in a two-month period from mid-October to the
beginning of December 2020, while using ground truth data derived from the Soil Moisture and
Ocean Salinity (SMOS) and Cryosat-2 missions. The thin ice and the full-range models resulted in a
mean absolute error of 6.5 cm and 23 cm, respectively. Both of the models allowed for one to produce
weekly composites of Arctic maps, and monthly composites of Antarctic SIT were predicted based
on the Arctic full-range model. This work presents the first results of the FSSCat mission over the
polar regions. It reveals the benefits of neural networks for sea ice retrievals and demonstrates that
moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.

Keywords: predictive regression neural networks; sea ice thickness; microwave radiometry; CubeSats

1. Introduction

Arctic sea ice reached its annual minimum extent in mid-September 2020, being the
second lowest on record [1]. Continuous knowledge regarding the distribution of sea ice is
particularly important for polar and mid-latitude climate monitoring [2]. Sea ice volume
is an essential climate indicator that is required to understand the balances of mass and
surface energy, which can be estimated through observations of sea ice thickness (SIT)
and sea ice concentration (SIC). Multi-source data records of annual mean SIT—acquired
from on-ice measurements, airborne and satellite-based observations—have proved that
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both SIT and the amount of multi-year ice in the Arctic have been decreasing by about
one-third during the last 40 years [3]. Space-borne microwave radiometry observations
over polar areas have been available since 1979, and data at low microwave frequencies
can be collected independently of daylight and are widely unaffected by atmospheric
conditions. Brightness temperature (TB) observations at L-band (∼1.4 GHz) are sensitive
to thin sea ice up to ∼0.6 m [4,5]. SIT retrievals above 1 m have been successfully derived
based on sea ice freeboard (Fb) estimates from satellite altimeters [6,7].

The European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission
was launched in 2009 carrying on board the Microwave Imaging Radiometer with Aperture
Synthesis (MIRAS), the first spaceborne L-band interferometric radiometer [8,9]. MIRAS
provides TB data at global coverage with a revisit time at the equator of 1–3 days and
a spatial resolution of ∼40 km. Several methods have been developed to estimate the
distribution of thin SIT at Arctic scale while using SMOS TB data at multiple incidence
angles and polarizations [10,11]. A combined thermodynamic and radiative transfer model
has been used to evaluate the variations of ice-physical properties, including temperature
and salinity [12,13]. TB polarization differences were combined in growth models, along
with empirical assumptions on sea ice properties [14]. A thin SIT product was developed
on the basis of retrievals from the SMOS and the Soil Moisture Active Passive (SMAP)
missions (also operating at L-band) [15]. ESA’s CryoSat-2 mission was launched in 2010
and it provides ice-sheet elevation and Fb estimates from radar altimetry [16]. Since then,
several approaches have been implemented to provide maps of Arctic SIT from CryoSat-
2 altimetry data [17–19]. SMOS and CryoSat-2 observations were merged according to
their sensitivity ranges and uncertainties in a combined method to generate weekly Arctic
full-range SIT [20,21].

Process-based retrieval algorithms to infer SIT rely on strong model assumptions
and empirically determined sea ice properties. These simplifications are required due
to sparsely available validation data and limited knowledge on the distribution of sea
ice, exhibiting large spatio-temporal variability. Passive microwave sensors often do not
capture all of the necessary information about SIT, but they also require ancillary data. The
main uncertainties originate from long revisit times and large spatial resolution of satellites.
Current SIT products show sufficient accuracy during the Arctic freeze-up period from
mid-October to mid-March, but they do not perform well during the Arctic melting season.

Machine learning algorithms can often perform better on complex problems for which
traditional approaches miss out hidden links between the model parameters among large
amounts of data. They have been successfully applied to segment sea ice based on the
distribution of surface signatures of satellite observations to recognize patterns of sea ice
properties among different scales [22–24]. Data-driven approaches, such as neural net-
works (NN), were developed decades ago, and they can adapt to new ice conditions such
as changing sea ice types and intermittent periods of freeze up and melting. Before Arctic-
wide L-band observations from SMOS were available, NNs were used to infer SIT based on
SIC maps from satellite radiometry observations at higher bands, and ancillary geophysical
parameters, such as surface air temperature and ice drift velocity [25]. The time series of
SIC maps were analyzed on the basis of NNs to forecast SIC by assessing the time-varying
characteristics of previous observations [26,27]. Snow depth is an important factor with
regard to the inference of SIT from both microwave radiometry and freeboard observa-
tions, and its estimation is particularly complicated due to the complexity of the radiation
properties of the snow layer. Therefore, regression NN approaches have been developed
to invert snow depth using data from multi-frequency satellite microwave radiometer
measurements, including the Special Sensor Microwave Imager (SSM/I), the Scanning
Multi-channel Microwave Radiometer (SMMR), the Advanced Microwave Scanning Ra-
diometer 2 (AMSR2), and SMOS [28–31]. NNs are efficient and often easy to implement.
They have the advantage to be capable of recognizing the principal forcing mechanisms
contained in the non-linear relationships between geophysical parameters, and they can
provide similar or better results when compared to those of conventional models.
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There are only few satellite missions available that are suitable for providing sufficient
coverage to retrieve SIT at polar scale. The new Copernicus Imaging Microwave Radiome-
ter (CIMR) mission, which is expected to be launched after 2025, is planned to follow up
the SMOS and SMAP missions providing data continuity with at least daily revisit in the
polar regions [32,33].

Today, nanosatellite technology has reached the maturity to perform scientific missions, and
the number of deployed instruments has grown steadily over the past decade [34,35]. CubeSats
are miniature satellites that are composed of small unit cubes (U) of 10 × 10 × 10 cm3, with a
maximum weight of 1.33 kg. Their payloads have an advantage over those carried by traditional
missions (i.e., large passive optical and microwave payloads), due to their smaller dimensions in
terms of size, mass, power consumption, and downlink capability. Markedly reduced expenses
in development, construction, and satellite launch make them more accessible to universities
and research institutes, and their use is on the rise to expand the field of applications in Earth
observation. Commercial companies, such as ’Planet’ and ’Spire’, operate constellations of
hundreds of 3-U CubeSats (∼30 × 10 × 10 cm3), carrying optical imagers or GNSS-Radio
Occultation payloads [36,37].

The FSSCat mission, launched on 3 September 2020, is formed by two federated Cube-
Sats, with one of them (3Cat-5/A) carrying the Flexible Microwave Payload-2 (FMPL-2) on
board, a combined Reflected Global Navigation Satellite System (GNSS-R) radiometer and
the first radiometer operating at L-band ever deployed on a CubeSat [38]. It is designed
to provide maps of sea ice extent (SIE) and SIT over both poles on a five-day basis and
soil moisture over land at low-moderate resolution, and it is the first CubeSat mission con-
tributing to the Copernicus system (Land and Marine Environment Monitoring Services).
Both of the FMPL-2 instruments have been successfully validated in orbit and the first set
of nominal acquisitions are available from 1–13 October 2020 [39].

This work investigates predictive regression NN frameworks to infer SIT based on the
first FMPL-2 TB acquisitions provided by the FSSCat mission. To do so, two separate NNs
were implemented to generate Arctic and Antarctic SIT maps by combining FMPL-2 TB data
from the FSSCat mission with ancillary maps of SIC from the European Organisation for
the Exploitation of Meteorological Satellites (EUMETSAT), and skin temperature provided
by the European Centre for Medium-Range Weather Forecasts (ECMWF). The first model
is devoted to model thin SIT up to 0.6 m while using a thin sea ice product derived from
SMOS (SITSMOS) as ground truth. The second network is designed to model full-range SIT.
Input data are further complemented by CryoSat-2 Fb estimates to extend the previous
model, using a merged product derived from CryoSat-2 and SMOS (SITCS2SMOS) as ground
truth. Both of the SIT models are trained during the period from 15 October to 4 December
2020, and allowed to generate weekly composite maps of Arctic thin and full-range SIT. The
Arctic dataset that was used to train the full-range model was compared to the same set of
observations collected over Antarctic sea ice in terms of its variable ranges and densities.
Because the Arctic training data encompasses most parts of the Antarctic dataset, the
prediction of Antarctic sea ice based on the Arctic model was considered to be reasonable
in statistical terms. The full-range model was applied to Antarctic data in an initial attempt
to provide monthly composite maps of Antarctic SIT.

2. Data and Methods

This section describes the satellite input features, and the implementation of the
predictive regression NN models. In Section 2.1, the FSSCat mission and the Flexible
Microwave PayLoad (FMPL-2) TB data are presented. The selected set of ancillary data
comprising SIC, surface temperature (TS), sea ice Fb, and the ground truth SIT datasets are
described in Sections 2.2. Section 2.3 explains the processing of the input features and the
architecture of the NNs, which are separately trained under the optimization of the model
hyperparameters to predict both thin SIT over the Arctic, and full-range SIT over the Arctic
and Antarctic.
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2.1. FMPL-2 Brightness Temperature Data from FSSCat

FSSCat is a tandem mission of two federated 6U CubeSats (3Cat-5/A and 3Cat-5/B)
that was proposed by the Polytechnic University of Catalonia (UPC), and designed to
retrieve geophysical data on SIE and SIT over polar areas, and low-resolution soil moisture
content over land [38]. It was the winner of the 2017 ESA Small Sentinel Satellite Challenge
and the overall Copernicus Masters Competition [40]. The two CubeSats were successfully
launched on the VEGA Small Spacecraft Mission Service (SSMS) Proof of Concept (PoC)
flight on 3 September 2020. Both of them comprise an Radio-Frequency (RF)/optical
inter-satellite link payload and the 3Cat-5/A CubeSat carries the FMPL-2, a dual passive
microwave remote sensing instrument that encompasses a Software-Defined Radio (SDR)-
based GNSS-Reflectometer and an L-band radiometer with a nadir-pointing antenna and a
footprint of ∼350 × 500 km2.

The radiometer acquires the antenna temperature, which represents the apparent TB
at almost global coverage at latitudes that range from ∼86 ◦S to 86 ◦N. All of the mission
characteristics and the instrument and processing specifications are described in detail
in [38,39]. TB maps are constructed from single tracks under evaluation of the antenna
pattern, and swath data were projected and regridded onto a 12.5 km Equal-Area Scalable
Earth Grid (EASE-Grid 2.0) for both hemispheres using k-d-tree sampling—a fast nearest
neighbor interpolation method to resample remote sensing images [41].

The major part of sea ice in the Northern Ocean occurs at 65 ◦N northwards, whereas,
in the Southern Ocean, excluding the Antarctic continent, it roughly extends between 60 ◦S
and 70 ◦S, with fluctuating sea ice margins. Because 3Cat-5/A is a polar orbit satellite, its
passes become denser towards the poles and produce more frequent overlaps. TB maps
can be acquired with sufficient coverage (>80 % after filtering usable tracks) in less than
five days and two complete consecutive maps can be obtained within three weeks. This
allows for the production of weekly Arctic and monthly Antarctic SIT composite maps of
the ice-covered areas, respectively. It is noteworthy that the revisit time could be further
decreased if the satellite was able to operate with a larger duty cycle, or in the case more
3Cat-5/A-like CubeSats were added to the existing constellation. After the commissioning
phase, data are available from 1 October to 4 December 2020. The observed period falls
into the beginning of the Arctic freeze up, after sea ice having reached its annual minimum
extent on 15 September 2020. Hereby, sea ice mainly consists of the remaining multi-year
ice with an increasing amount of thin first-year ice. In contrast to the Arctic, the Southern
Ocean melts and re-freezes almost completely on a yearly basis and it consists mainly of
first-year ice. Sea ice around Antarctica had passed its maximum extent in September 2020,
and it is declining during the observation period [42].

2.2. Ancillary Data

Ancillary data are included to assist the network in capturing useful information on
the sea ice conditions at higher resolution. This enables the model to better address local
SIT variability, which is supposed to be contained in the relationship between the input
features. The availability of maps with sufficient temporal resolution with polar coverage
and from both hemispheres was one requirement. Figure 1 visualizes maps of TB and
ancillary data as an example from 11 November 2020.

2.2.1. Sea Ice Concentration (SIC)

FMPL-2 TB observations at the ocean-ice boundaries can be ambiguous, because their
values partially consist of open water and sea ice. This often leads to an underestimation of
thin ice, especially at low-concentrated areas around sea ice margins. The Ocean and Sea
Ice Satellite Application Facility (OSI-SAF) OSI-401-b product by EUMETSAT provides SIC
maps using a dynamic tie-point algorithm applied to TB data from the Special Sensor Mi-
crowave Imager/Sounder (SSMIS) at 19 GHz and 37 GHz vertical, and at 37 GHz horizontal
polarization [43]. The SIC maps are available on a daily basis at a 10 km Polar Stereographic
grid projection true at 70 ◦N/S for both hemispheres, respectively, and images can be
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downloaded from http://osisaf.met.no/p/ice/, (accessed on 07 February 2021). These
maps were regridded to a 12.5 km EASE-Grid 2 to build a sea ice coverage mask. Only
input data with a SIC > 15 % were considered for training the network.

Figure 1. Maps of the input features for 11 November 2020, comprising (a) FMPL-2 TB, (b) OSI-SAF OSI-401-b SIC,
(c) ECMWF Skin temperature, and (d) CryoSat-2 sea ice Fb (weekly composite).

2.2.2. Surface Temperature (TS)

At microwave frequencies below 117 GHz, Planck’s law of electromagnetic radiation
can be simplified using the Rayleigh–Jeans approximation, resulting in TB being the product
of the physical temperature (TPh) and the ice emissivity with an error of <1 % [44]. Hereby,
the emissivity contains the actual information about the sea ice composition—including
SIT—of the radiating layer. Figure 2 shows the relationship between TB and SIT as a
function of TPh and sea ice types that are based on a radiative transfer model considering
two nadir-pointing observations at frequencies corresponding to L-band (1.4 GHz) and
P-band (500 MHz), respectively. The model assumes a horizontally-layered column of sea
ice above water (without snow on top) using empirically determined values for sea ice
properties, such as salinity and surface roughness [45]. While the L-band signal already
saturates around 0.6 m, the model reveals that observations at P-band contain information
on SIT beyond 1.5 m and, in principle, they can be used to extent the sensitivity range
of current retrieval algorithms. TPh can strongly vary among the pole areas and it has a
gradient along the ice profile, which influences the penetration depth of the emitted signal
at L-band. Additional physical properties, such as density and ice type, can further depend

http://osisaf.met.no/p/ice/
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on the distribution of temperature, which makes a direct correction of TPh based on TB
complicated. The skin temperature (TS) product provided by the ECMWF represents the
temperature value of the uppermost surface layer that satisfies the surface energy balance
equation [46]. Daily TS maps were considered to be relevant input features for model
training. They were linearly interpolated to a 12.5 km EASE-Grid 2.0 for Northern and
Southern hemispheres.

Figure 2. Relationship between TB and sea ice thickness (SIT) as a function of TPh of sea ice and sea ice types. Estimations
are obtained using a radiative transfer model based on empirically determined values for salinity, density, and surface
roughness. The curves represent circular-polarized emissions obtained with a nadir-pointing antenna at two frequencies, (a)
at L-band (1.4 GHz, similar to TB observations of the FMPL-2 radiometer) and (b) at P-band (500 MHz).

2.2.3. Sea Ice Freeboard (Fb)

The CryoSat-2 mission, which was launched by ESA in 2010, carries the Synthetic
Aperture Radar (SAR) Interferometric Radar Altimeter (SIRAL) operating at Ku-band
(∼13.6 GHz) to detect and monitor topograhical fluctuations and trends over land and
sea ice [6,16]. A combination of elevation data with ancillary data, including sea ice type
and snow depth and density, enables the estimation of sea ice Fb, i.e., the height of sea ice
above sea level [47]. Cryosat-2 altimetry data have shown to be sensitive to SIT above 1 m,
with increasing uncertainty for thinner ice [6]. Because Fb data contain information on
the sea ice variability, predominantly thicker ice, it was considered to be a relevant input
parameter to complement the L-band observations. Time series of the CryoSat-2 Level-2
SIRAL Geophysical Data Record 2 (GDR) full-orbit segments were projected onto a 12.5 km
EASE-Grid 2.0 to generate daily Fb maps. The data are available for both hemispheres and
they can be downloaded from https://science-pds.cryosat.esa.int/ (accessed on 7 February
2021) [48].

2.2.4. Sea Ice Thickness (SIT)

Two separate SIT products are selected as ground truth data in the neural network,
covering the respective ranges of thin sea ice up to 0.6 m, and full-range SIT. Hereby,
daily SMOS Level-3 SIT maps (SITSMOS) are used for thin SIT retrieval [12], and weekly
composites of the merged SMOS and CryoSat-2 Level-4 SIT maps (SITCS2SMOS) were
used to yield full-range SIT [21]. Both of the maps are obtained from SMOS L-band TB
measurements on the basis of a thermodynamic and a radiative transfer model considering
the variations of ice-physical properties [10]. In the latter product, daily SMOS-derived
SIT is combined in an optimal interpolation scheme with the weekly CryoSat-2 SIT. The
SITCS2SMOS product contains information on surface height and sea ice Fb included in the
different modes of the SIRAL Level-1b data. Both of the datasets are available from 2010
onwards at Arctic scale from mid-October to mid-April on a 25 km EASE-Grid 2.0 and they
are provided by the Alfred Wegener Institute (AWI) for Polar and Marine Research. The
data can be downloaded from https://smos-diss.eo.esa.int/socat/L3_SIT_Open, (accessed
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on 7 February 2021) and https://smos-diss.eo.esa.int/socat/L4_SIT_Open, (accessed on 7
February 2021).

2.3. Implementation of the Regression NN

The goal of this study is to estimate Arctic and Antarctic SIT from the selected set of
input features. Targeting continuous values of SIT based on the relationship between the
input features represents a regression task. Linear regression models typically adjust a
number of model parameters to a set of training data in an iterative process by minimizing
a cost function, which eventually converges to an optimal fit. The Gradient Descent method
is a common technique to find the optimum solution. It computes the local gradient with
respect to the model parameters and a cost function, following the direction of descending
gradient until reaching convergence [49]. In a first attempt, a simple regression model
without hidden layers was selected, but the model did neither converge nor generalize
well on the test set. This implied that the input features are not linearly separable, but
rather non-linearly related.

Neural networks (NN) can manage complex regression tasks and they are more
adequate than traditional approaches when dealing with non-linear relationships between
the variables. In its basic structure, a NN consists of an input layer, an output layer, and
interposed hidden layers, with each layer consisting of a number of neurons [50]. The
observations for training are assigned to the input layer with the number of neurons being
the number of input features. The output layer of a regression task has a single neuron that
represents the retrieved continuous target parameter. At least one hidden layer between
the input and output layer makes the model different from a simple regression framework
by enabling the network to learn the relationships that are contained in the dataset. In this
work, the networks were built as sequentially dense layers, i.e., each neuron of the previous
layer is fully connected to all neurons of the following layer. The specific model set-up
was adjusted during the training and Figure 3 illustrates the final network architecture
for the thin and full-range model. Similar to the coefficients in a linear regression, each
connection (lines) between neurons represents the weight of the output of the neuron in the
previous layer. The output value Y of each neuron is determined by forward propagating
the weighted sum of the inputs coming from the neurons i of the previous layer with the
weights ω and an additive bias b

Y = f
(

∑
i
(ωi ∗ inputi) + b

)
with f (x) = max(0, x). (1)

The activation function f of each hidden layer introduces the non-linearity between
the input features and the target variable, without which the regression network would be
entirely linear. ReLU (Rectified Linear Unit), representing the activation function defined
above, is a commonly used function in regression tasks, and it has the advantage of being
computationally efficient and it does not saturate for positive values [51]. The weights
and biases of the neurons are updated according to the final error of the cost function via
back-propagation. The number of hidden layers and neurons per layer can be increased to
capture more feature interactions, depending on the complexity of the problem.

The specific model set-up was adjusted during the training. Adaptive Moment (Adam)
estimation was selected as an optimizer [52]. Model parameters (ω, b) were randomly
initialized and a small learning rate of 0.001 was chosen to obtain smooth convergence. The
entire feature set was split into a training set (80%) and a test set (20%). The training set was
further split into a reduced training set (80%) and validation set (20%). The performance
of the different models was quantified using the Mean Absolute Error (MAE) as a cost
function, being defined as the average sum of absolute differences between ground truth
and predicted SIT. The MAE value indicates the training and validation loss at each epoch
of the training. The best performing model with the lowest MAE on the validation set
was trained on the entire training set, and the resulting model was evaluated with the
remaining test set.

https://smos-diss.eo.esa.int/socat/L4_SIT_Open
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Figure 3. Principle architecture of the implemented neural networks (NN) consisting of a multiple-input normalization
layer adapted to the number of input features, i.e., TB, SIC, TS, and Fb (in case of the full-range model), a number of
non-linear hidden layers with a number of neurons per layer, and a linear single-output layer yielding continuous values of
SIT. The final network architecture contains 2 or 3 hidden layers with 64 neurons per layer regarding the thin or full-range
model, respectively.

Although preliminary results of an unconstrained network revealed low MAE for the
known training data, the validation and training loss were not converging in the same
way and the network resulted in different performances on training and validation set.
Therefore, several constraints on the model hyperparameters were introduced to prevent
the model from overfitting and overgeneralization. Regularization is used to prevent the
model from overfitting by constraining the model complexity by keeping many model
parameters close to zero (L2-regularization) or zero (L1-regularization) [53]. Hereby, the
terms L1 and L2 refer to the norm, i.e., the L1-norm being the sum of the absolute values and
the L2-norm being the square root of the squared distances. Weak L1 and L2 regularization
was applied to all of the hidden layers in the regression network and the penalty terms
were added to the cost function. Secondly, an Early Stopping technique prevents the
model from overfitting by interrupting the training at the respective epoch, at which the
validation loss reaches a minimum or stops to improve, i.e., no progress is obtained within
a predefined number of epochs (patience interval). To train the model more efficiently, a
relatively high number of neurons per layer (64) was selected in combination with Early
Stopping regularization [54,55]. A sufficient amount of training data (∼350,000 samples
for thin ice and 60,000 samples for the full-range SIT) allowed to set the batch size up to
1024 to restrain the amplitude of fluctuations of the validation loss and to reduce the total
training time.

The two predictive neural networks were first trained in the Arctic. Subsequently, the
network to estimate thin SIT was applied to the Arctic sea, and the network to estimate
full-range SIT was applied to both Arctic and Antarctic seas. Prior to the training, the input
features were processed to be treatable by the NN. Because the NN was trained using
Gradient Descent method, it was required to scale and normalize the input features. This
included normalization after filtering outliers to keep the variables within the reasonable
ranges of values. Figure 4 shows the Kernel Density Estimation (KDE) charts of input
features after defining their ranges of values, which were eventually used to train the thin
and full-range SIT model, respectively.
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Figure 4. Kernel Density Estimation (KDE) charts of the NN training sets used to train the thin sea ice (a) and the full-range
model (b), including the marginal probability density functions of the filtered datasets. The thin model is based on TB, SIC,
TS and ground truth thin SIT derived from Soil Moisture and Ocean Salinity (SMOS). The full-range SIT model is based on
TB, SIC, TS, Fb, and ground truth SIT derived from CryoSat-2 and SMOS.

An ocean-land mask was applied to all maps to exclude land areas. Additionally, an
ocean-ice mask was applied to preserve data points over areas with a SIC > 15 %, being the
minimum value for which the OSI-401-b SIC product is defined. TB increases monotonically as
a function of SIT and the interval of suitable values is defined between 100 K and 210 K, which
is in agreement with the expected dynamic range of TB when considering a SIT up to 0.6 m
in Figure 2a (also under cold conditions). Only a small amount of larger values was filtered
(<0.1 % after applying the ocean-land and ocean-ice masks), which could be attributed to areas
of possible land-sea contamination. For thin SIT prediction, a cutoff thickness (SITmax = 0.6 m)
was defined as the limit beyond which the sensitivity of TB to SIT is assumed to be negligible.
Regarding sea ice Fb, a threshold of 0.4 m is used as the upper limit for training the full-range
model. As aforementioned, selective scaling and normalization of the input features were
considered in the input layer of the network, according to the individual distribution of the
input features. Table 1 provides the summary statistics representing the final distribution
and dispersion of the input features. After processing the data, a total of 348,009 and
63,330 instances were suitable for training the thin and full-range SIT models, respectively.
Ground truth SITSMOS and SITCS2SMOS are only available from mid-October onwards and
Fb data have a delayed delivery time of about one month. Therefore, the thin SIT model
was trained with data from 15 October to 4 December, and the full-range SIT model was
trained from 15 October to 21 November 2020, respectively. The thin and the full-range
NN models were both trained based on Arctic TB and ancillary data, and the model with
the best fit was stored.
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Table 1. Summary statistics of the NN training set used to predict thin ice (top) and full-range
thickness (bottom). The description includes the Mean, Standard Deviation (StDev), Minimum, and
Maximum values of the observations.

Model Input Feature Mean StDev Min Max

T
hi

n
ic

e TB [K] 166.8 21.3 100.0 209.7
SIC [%] 80.4 20.1 18.8 100.0
TS [K] 264.1 5.1 236.4 281.4
SITSMOS [m] 0.239 0.165 0.020 0.600

Fu
ll

-r
an

ge

TB [K] 173.8 24.7 100.4 207.8
SIC [%] 95.3 7.5 19.9 100.0
TS [K] 260.2 4.6 239.6 272.5
Fb [m] 0.108 0.070 0.000 0.399
SITCS2SMOS [m] 1.248 0.639 0.045 2.853

Unlike in simple regression or process-based models, the results of a NN cannot
be extrapolated, since its input features are non-linearly related. NNs are based on the
underlying statistics of the observations and a trained model can only be applied to new
data in case the corresponding range of values is covered by that of the original training set.
Thus, a reliable model prediction requires the variable space of the available training data to
include the predicted data as an already learned subset. This can be assessed by comparing
the training and prediction datasets regarding its variable ranges and the density of values.
In case the values of the new dataset are located within the multi-dimensional convex hull
of the original training dataset, the model output can be considered to be reliable. The
convex hulls around the points clouds of all combinations of input features are presented
in a two-dimensional sub-feature space in Figure 5, for the Arctic data (blue markers and
black solid line) and for the Antarctic data (orange markers and red dashed line).

Both of the datasets are of the same quality and processed identically. The total number
of valid observations for Arctic ice is higher because both the Fb and the TB observations
are less dense at higher latitudes, which reduces the amount of data for Antarctic sea ice.
Regarding the distributions of TB, Fb and SIC, the ranges and densities of the observations
in the Antarctic, are entirely covered within the hull of observations in the Arctic. Therefore,
the full-range model, which was trained with Arctic data, is considered to be reliable for
an application to the Antarctic data. It is important to mention that a small amount of TS
values in the Antarctic dataset is close to the sea ice melting point (>270 K). This is because
the Antarctic summer had already started and the temperatures are high enough, so that
sea ice located at lower latitudes begins to melt. The corresponding subset is not located
within the convex hull of Arctic training data, which limits the reliability of the model
predictions for these particular values.
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Figure 5. Convex hulls around the point clouds in two-dimensional sub-feature space of Arctic data (black solid line around
blue markers), and Antarctic data (red dashed line around yellow markers) (Feature pairs: (a) TB–TS, (b) TB–SIC, (c) TB–Fb,
(d) Fb–SIC, (e) Fb–TS, and (f) SIC–TS). The application of the full-range model to Antarctic data is considered to be reliable,
since most of its values are located within the convex hull and at denser areas of Arctic training data.

3. Results

This section presents the results of the thin and full-range NN models. Section 3.1
describes the training procedure and indicates the model architectures of the best model
fits. In Section 3.2, the corresponding models are applied to predict maps of Arctic thin SIT,
and Arctic and Antarctic full-range SIT.

3.1. Training of the NN Models

During the training, various model architectures were adjusted and evaluated to
minimize the generalization error (MAE) in order to obtain the model that fits the training
data best. The hyperparameters were tuned to find a trade-off between training efficiency
and convergence of the validation and training losses. The objective was to maintain the
resemblance between the learning curves throughout the training to prevent overfitting
and overgeneralization. Each model was trained with a maximum number of 1000 epochs,
and both the training and validation losses were evaluated after each epoch, with a constant
learning rate of 0.001. This rate turned out to be large enough to obtain a fast improvement
of the learning curve at the beginning of the training (short burn-in phase) and small
enough to lead to smooth convergence without bouncing around the optimum towards
the end. In both NN (thin SIT and full-range SIT), the batch size, the number of hidden
layers, and the patience interval of Early Stopping regularization were tuned, where the
number of neurons per layer was kept constant to 64. An increase of the batch size up to
a value of 1024 did not significantly influence the converging trend, but it considerably
decreased the amplitude of the fluctuations in the validation loss and speeded up the
training time. A higher number of hidden layers usually allows a network a fast build-up
of sufficient complexity. In this case, more hidden layers (>3) led to a notable reduction of
the training loss, whereas the validation loss was only slightly improving. This implied
that, although the obtained model complexity apparently represented the reduced training
set, it did not generalize well on the validation set. The validation loss fluctuated, but
it showed a decreasing trend until it stagnated, when the model started to overfit the
training data. Early Stopping with a patience interval eventually prevented the model from
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this overfitting. The fit was stopped after the validation loss did not show improvement
anymore during the corresponding patience interval and the best fit was called-back
and saved.

Table 2 provides a summary of the final architecture and the optimal training hy-
perparameters of the NNs and the SIT-range-specific MAE obtained from the prediction
for the thin and full-range SIT models. The learning curves for the thin and full-range
model are presented in Figures 6a and 8a, respectively. Regarding both of the models,
training and validation loss converged well, and no overfitting of the training data could be
observed. Validation and training curves of the thin SIT model both match well throughout
the training, whereas a small mismatch remained between those of the full-range SIT model
towards the end of the training. The evaluation of the test set resulted in a final MAE of
0.065 m for the thin and 0.237 m for the full-range model, respectively.

Table 2. A summary of training (top) and prediction (bottom) characteristics corresponding to the
thin and full-range SIT models. The training characteristics comprise the model architecture and the
adjusted hyperparameters for the optimal fit, including the total trained instances, the number of
hidden layers and neurons per layer, batch size, patience interval for Early Stopping, and the number
of trained epochs. Regarding the predictions, the obtained Mean Absolute Error (MAE) values are
indicated for specific SIT ranges.

Training Instances Layers Neurons Batch Size Patience Epochs

Thin ice model 348,009 2 64 1024 30 epochs 198
Full-range model 63,330 3 64 1024 40 epochs 353

Prediction Thin Ice Model Full-Range Model

SIT range [m] 0–0.6 0–0.5 0.5–1.5 1.5–2.5 0–2.5
MAE [m] 0.065 0.160 0.275 0.149 0.237

3.2. Prediction of Arctic and Antarctic SIT

The performance of the optimal fits was evaluated after applying the NN models to
the unknown Arctic test set. The prediction error, the distribution of the MAE with SIT,
and the relation between predicted and ground truth SIT are displayed in the Figure 6b–d
for thin SIT. This model performs well with the error being widely unbiased up to a SIT of
0.4 m, but it underestimates the values for higher SIT. Predicted values deviate more from
ground truth values with increasing SIT, until reaching a maximum error of around 9.5 cm
at a SIT of approximately 30 cm. For predictions larger than 0.5 m, the MAE again shows
lower values. This could be explained, because the model generally contains a small bias
towards higher values and ground truth values beyond 0.6 m were filtered beforehand.

In Figure 7, two estimated weekly composite maps that are based on the thin SIT
model are compared to the corresponding SITSMOS maps in the periods from 15–21 October
and from 12–18 November 2020. In mid-October, sea ice mainly consisted of the remaining
thick multi-year ice and regions of newly-formed thin ice were observed around the
Beaufort Sea. In this period, only a small amount of under- and overestimated values
are present. Positive deviations can be attributed to most-recently formed thin ice. Until
mid-November, freeze-up had already advanced in the Arctic ocean, and thin sea ice below
0.6 m became more abundant. The increasing amount of newly-formed thin ice in the East
Siberian Sea and the Laptev Sea, which is visible in the SITSMOS product, is in agreement
with the values that were obtained from the NN model. In this period, the number of
underestimated values increases as sea ice gets thicker. The deviations between the ground
truth and the predicted values reveal that underestimated values are located around the
0.6 m threshold, where the model range is limited. They can be related to areas in the
Beaufort Sea and the Greenland Sea, where sea ice started to thicken beyond the sensitivity
range of TB observations.
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Figure 6. Evaluation of training and prediction of the thin SIT model. (a) Validation and training error determined after
each epoch; early stopping occurred at 198 iterations and the model resulted in a MAE of 0.065 m; (b) prediction error
after application of the model to the entire Arctic dataset; (c) distribution of the MAE with SIT; and, (d) relation between
predicted and ground truth SITSMOS.

Figure 7. Weekly maps of predicted thin SIT (a,d), the corresponding ground truth SITSMOS (b,e), and deviations with
respect to SITSMOS (c,f), over the Arctic sea from 15–21 October and from 12–18 November 2020, respectively. Areas with
SITSMOS > 0.6 m were filtered in the predictions.

Figure 8b–d show the evaluation of the full-range SIT model. The model performs
well for thin (<0.5 m) and for thicker ice (>1.5 m), in which a substantial amount of values
is given. These include the individual sub-ranges, where TB and altimetry observations
are known to be more sensitive to SIT, and where uncertainties of the SITSMOS and the
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SITCS2SMOS products are expected to be lower. Most part of the elevated value of the
total MAE (0.237 m) is made up by the high deviations of for SIT between 0.5 m and
1.5 m (∼0.25 –0.30 m, with a MAE of 0.275 m in Table 2). This may occur due to the fact
that, after summer melt and at the beginning of the freeze-up period, mainly thick multi-
year ice remained together with thin newly-formed ice. Instead, only a few values of
sea ice in the intermediate thickness range can be provided for model training during
the observed period. Therefore, the intermediate range may be underrepresented in the
resulting predictions. In addition, the ground truth values are based on TB and altimetry
observations using an optimal interpolation scheme. This may introduce some artifacts at
intermediate SIT ranges, resulting in distortions in the training that cannot be adequately
conceptualized by the NN model.

Figure 8. Evaluation of training and prediction of the full-range SIT model. (a) Validation and training error determined
after each epoch converge close to each other; early stopping occurred around 353 iterations and the model resulted in
a MAE of 0.237 m; (b) prediction error after application of the model to the entire Arctic dataset; (c) distribution of the
MAE with SIT; (d) relation between predicted and ground truth SITCS2SMOS; Good generalization is obtained for thin ice
(SIT < 0.5 m) and thicker ice (SIT > 1.5 m).

In Figure 9, the predicted weekly composite based on the full-range SIT model is
compared to the corresponding SITCS2SMOS map in the period from 22–28 October 2020.
The over- and underestimations may be due to the large footprint of the antenna, which
smoothes out the observations, reducing the small-scale variability. Underestimations
(indicated in blue) can be attributed to areas of more heterogeneous multi-year ice. Most
of the overestimated values (indicated in red) are located in the Beaufort Sea and in areas
with high contrasts between newly-formed thin ice and thicker ice. Hereby, predicted
values are within the intermediate SIT range, in which the model performance is also less
accurate. Highly overestimated values are located to the north of the Baffin Bay around
North-Western Greenland. This anomaly may also be due to land-sea contamination or to
most recently formed ice, which is not yet captured in the predicted weekly composite.

Figure 10 shows the predicted SIT map over the Antarctic sea from 15 October to
14 November 2020 (monthly composite), obtained after applying the full-range SIT model
to Antarctic data. The massive ice shelves (e.g., Ronne and Ross) located in the Ross and
Weddell sea were excluded from the predictions. It is important to note that a dissemi-
nated product of SIT at the Antarctic scale was at the time of the study not available for
comparison. Therefore, the model cannot be validated in the same way as for the Arctic.
SIT has an important impact on the melting trend of sea ice and it can be a good proxy
of the upcoming SIE distribution. Antarctic SIE is already decreasing after having passed
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its annual sea ice maximum around mid-September. Thus, the spatial patterns of the
distribution of SIT can be compared to those of future SIE, assuming that areas consisting
of mainly thin ice are supposed to melt first. Because Antarctic sea ice melts and refreezes
almost completely during a course of a year, it is mainly composed by thinner first-year ice.
This is in agreement with the model predictions, which result in an average SIT of 0.67 m
for the Antarctic, in comparison with 1.25 m obtained for the Arctic. Additionally, the
maximum estimated SIT of 2 m in the Antarctic is lower than in the Arctic, where values
up to 2.5 m were predicted.

Figure 9. Comparison between the weekly composites of predicted Arctic full-range SIT maps (a) and the corresponding
ground truth SITCS2SMOS product (b), including their deviations (c), from 22–28 October 2020.

Figure 10. Application of the Arctic full-range SIT model to Antarctic data. (a) Distribution of the predicted SIT values;
(b) Monthly composite of Antarctic full-range SIT from 15 October to 14 November 2020.

4. Discussion

This work has presented the first results over polar areas using the FMPL-2 TB ob-
servations of the FSSCat mission to predict SIT based on NN approaches. The thin SIT
model performs well for sea ice up to ∼0.5 m. Above 0.5 m—where TB is less sensitive to
SIT—the values are notably underestimated, and the network is not capable of inferring
SIT at higher range from the input feature interactions [5]. The retrieval algorithm of the
corresponding SITSMOS product used as ground truth depends on the distribution of the
physical temperature of sea ice and performs better for cold conditions [12]. This may
contribute to the observed deviations between the model prediction and ground truth data
for higher SIT. To extend the sensitivity range of the thin model, the input features are
complemented with sea ice Fb observations from the Cryosat-2 mission to yield full-range
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SIT, using the SITCS2SMOS product as ground truth data. The full-range model performs
well for values above 1.5 m and for thin SIT. However, between 0.5 m and 1.5 m, a gap of
higher errors of magnitudes around 0.25 m to 0.3 m remains. The uncertainty of the merged
SITCS2SMOS product is a combination of those of the original SIT maps that are derived from
SMOS (SITSMOS) and CryoSat-2 (SITCS2) [21]. The observed errors of the model predictions
in the intermediate SIT range between 0.5 m and 1.5 m are in agreement with those of
the SITSMOS and SITCS2 products, revealing high relative uncertainties between 25% and
75% in the same SIT range. Thus, the higher uncertainty of the SITCS2SMOS product at the
mostly interpolated intermediate SIT range may affect the learning process during model
training and it limits the prediction accuracy of the network at that particular range.

Instead of using the interpolated SITCS2SMOS product as a single target variable in
the output layer of the network, more consistent predictions may be obtained by using
SITSMOS and SITCS2 data as two separate variables. The two predicted outputs could be
interpolated a posteriori according to their individual error distributions. A conceivable
solution to generally overcome the challenge of the remaining sensitivity gap—which is not
covered by the altimetry measurements and the radiometry observations at L-band—will
be to introduce another feature to the training set. Radiometry observations at P-band
(∼500 MHz), as indicated in Figure 2b in Section ’Data and Methods’, can complement
the lack of sensitivity in the intermediate range. It can provide the necessary information
content to the network to overcome the limitations of both the saturation of TB for higher SIT
and the predominantly high uncertainties of sea ice Fb corresponding to small SIT values.

Although ancillary data at higher resolution are added to reveal information of sea
ice at smaller scale, the large radiometer footprint of ∼350 × 500 km2 smoothes out the
observations and limits the detectable small-scale features of the SIT. Large-scale averaging
overall reduces the standard deviation and the dynamic range of the TB observations.
Predictions of the full-range model are currently underestimated at areas of predominately
thicker and more heterogeneous multi-year ice, where TB observations at L-band are
already saturated. Overestimated values are mostly located at the transitions between
first-year and multi-year ice, and where high contrasts in SIT due to local variability are
given. Therefore, the accuracy of SIT estimations while considering smaller scales is limited
by the local heterogeneity of sea ice. The actual resolution of the FMPL-2 observations also
depends on the orientation between the flight direction relative to the contrasts in surface
structures of sea ice. Thus, it would be feasible to deploy a network of FMPL-2 like sensors
in a constellation of CubeSats to shorten the revisit time.

The TB discontinuities between land and sea ice close to coastal areas can lead to
oscillations in the image reconstruction process (Gibbs phenomenon). TB observations over
land are sensitive to the soil moisture content, and values at L-band for circular-polarized
near-nadir observations can range between around 175 K to 275 K [56]. This often results in
higher TB and an overestimation of SIT in land-sea contaminated areas. The accompanied
artifacts can be corrected using a Gibbs algorithm similar to that which is used to derive TB
maps from SMOS data, but has not yet been implemented in the FMPL-2 TB retrievals [57].

Regarding the range and density of values of Arctic training data and Antarctic predic-
tion data, the application of the full-range model to predict Antarctic SIT was considered
to be reliable during the study period. Because the Arctic and Antarctic regions represent
different environments, accurate models require greater understanding on the temporal
variability, sensitivity, and uncertainty contributions of the selected input features with
respect to SIT estimations. So far, there is no validated product of Antarctic-wide SIT avail-
able using a process-based approach, mainly because these models require information on
the physical properties, including snow cover. The signatures of radiometry measurements
at L-band are sensitive to the intrinsic ice-physical properties, which change over the
course of a year, and the conversion of satellite altimeter observations of Fb to SIT requires
accurate knowledge of snow cover. Snow depth has been successfully estimated using
approaches that are based on both emission models and NNs [29,30]. The uncertainty of
SIT retrievals is largely determined by the uncertainty of current snow products, and the
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development of statistics-based models based on a appropriate set of features is promising,
but it still remains challenging.

Because the seasons of freeze up and melting in the Northern Hemisphere are the
opposite of those in the Southern Hemisphere and sea ice is located towards lower latitudes
in the Antarctic, it largely consists of first-year ice throughout the year, which is generally
shallower than in the Arctic. This is in agreement with the predictions of the full-range
model, which result in an average SIT of 1.25 m for the Arctic and 0.67 m for the Antarctic,
respectively. In the beginning of the Arctic freeze up, sea ice mainly consists of newly-
formed thin ice and thick multi-year ice, agreeing with the range of thicker ice between
2 m and 2.5 m, which was only predicted over the Arctic. Unlike in the Arctic, parts of
Antarctic sea ice surface temperatures reach the melting point during the observed period,
which limits the reliability of the full-range model predictions for these particular values.
In case the period of available training data was longer than the observed two months, the
model training set should be periodically updated with new data, once any of the input
features of the Antarctic prediction dataset reaches the limits of the training set.

5. Conclusions

Polar regions are environments with strong seasonal dynamics and spatial hetero-
geneity, which are difficult to be adequately addressed using process-based or simple
regression models. This work has presented a new approach focusing on the retrieval
of SIT maps based on predictive regression neural networks. Two independent models
have been implemented and trained with Arctic data to yield maps of Arctic thin SIT and
full-range SIT. Information regarding non-linearly related sea ice parameters is contained
in hidden relationships between a selected number of observations. These relationships
were considered in an additional number of hidden layers of a NN model. The model
input features comprise of the FMPL-2 TB observations that were provided by the FSSCat
mission launched on 3 September 2020, which carries the FMPL-2 payload with the first
GNSS-Reflectometer and L-band microwave radiometer on board a CubeSat, and ancillary
data, including SIC and surface temperature maps. A thin SIT model was implemented
using the SITSMOS product as ground truth data and targets SIT values up to 0.6 m, being
limited by the sensitivity of L-band TB observations. Adding complementary information
of CryoSat-2 sea ice Fb data to the existing input features allowed us to extend the sensitiv-
ity range to values that are larger than those covered by the thin SIT model. This enabled
implementing a second model yielding full-range SIT, which was evaluated using maps of
the merged SITCS2SMOS product as ground truth data.

The input features were processed and both models were trained on Arctic data during
early Arctic freeze up from 15 October to 4 December 2020. A number of hyperparameters
was adjusted to prevent the models from data overfitting to obtain the optimal fit through
the minimization of the MAE cost function. The thin ice model shows good performance
with an overall MAE of 0.065 m and it generalizes well up to a SIT of 0.5 m, while under-
estimating for higher SIT values. The best fit of the full-range model results in a MAE
of 0.237 m, and the predictions match well for thin ice and SIT above 1.5 m. Hereby, the
main error contribution originates from predicted values in the intermediate SIT range.
Major losses may be attributed to an existing sensitivity gap of the sensors or to the limited
availability of sufficient values for training during the observed period.

The predictive models allowed for producing weekly composite maps of thin and
full-range SIT at the Arctic scale. In a first attempt, the full-range model that was obtained
from Arctic observations was also applied to Antarctic data to produce monthly composites
of Antarctic SIT. It is important to note that a disseminated product of full-range SIT maps
at Antarctic scale was not available for comparison during the observed period.

Neural networks have the advantage to be adaptive to new datasets and models are
able to capture variable sea ice conditions and changing the relationships of the input vari-
ables when considering longer learning periods. Future tasks encompass the application
of the methodology to additional data to better pinpoint limitations and evaluate model
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performance on regional scale. This work verified the success of the FSSCat mission and
the potential of applying FMPL-2 TB to estimate SIT over polar areas using data from a
single CubeSat. Using a constellation of CubeSats of the same kind effectively increases
the satellite revisit and the spatial resolution of TB maps, and has the potential to improve
model accuracy. These constellations would demonstrate a feasible moderate-cost alterna-
tive to complement large satellite mission or to substitute them during gaps of non-existent
data, in order to guarantee the continuous monitoring of polar sea ice at both hemispheres.
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