
remote sensing  

Technical Note

Feature-Level Fusion of Polarized SAR and Optical Images
Based on Random Forest and Conditional Random Fields

Yingying Kong 1,* , Biyuan Yan 1, Yanjuan Liu 1, Henry Leung 2 and Xiangyang Peng 3

����������
�������

Citation: Kong, Y.; Yan, B.; Liu, Y.;

Leung, H.; Peng, X. Feature-Level

Fusion of Polarized SAR and Optical

Images Based on Random Forest and

Conditional Random Fields. Remote

Sens. 2021, 13, 1323.

https://doi.org/10.3390/rs13071323

Academic Editor: Monidipa Das

Received: 1 March 2021

Accepted: 24 March 2021

Published: 30 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; yanbiyuan@nuaa.edu.cn (B.Y.); liuyanjuan@nuaa.edu.cn (Y.L.)

2 Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2P 2M5, Canada;
Leungh@ucalgary.ca

3 Nanjing Research Institute of Electronics Engineering, Nanjing 210007, China; wwukt@163.com
* Correspondence: yayako_zy@nuaa.edu.cn; Tel.: +86-1855-140-8717

Abstract: In terms of land cover classification, optical images have been proven to have good
classification performance. Synthetic Aperture Radar (SAR) has the characteristics of working all-
time and all-weather. It has more significant advantages over optical images for the recognition of
some scenes, such as water bodies. One of the current challenges is how to fuse the benefits of both
to obtain more powerful classification capabilities. This study proposes a classification model based
on random forest with the conditional random fields (CRF) for feature-level fusion classification
using features extracted from polarized SAR and optical images. In this paper, feature importance is
introduced as a weight in the pairwise potential function of the CRF to improve the correction rate
of misclassified points. The results show that the dataset combining the two provides significant
improvements in feature identification when compared to the dataset using optical or polarized SAR
image features alone. Among the four classification models used, the random forest-importance_
conditional random fields (RF-Im_CRF) model developed in this paper obtained the best overall
accuracy (OA) and Kappa coefficient, validating the effectiveness of the method.

Keywords: polarized SAR; optical image; random forest; conditional random fields; feature-level fusion

1. Introduction

The impact of urban development on the Earth’s environment is enormous, leaving
an ever-changing imprint on its surface. This situation calls for a compulsory requirement
to map the land cover and review land-use patterns of our dynamic eco-system time [1].
Polarized Synthetic Aperture Radar (SAR) and optical image have gained many appli-
cations in land cover classifications [2–5]. Since the two have entirely different physical
properties, this makes them have distinct advantages in classification. For example, the
optical images are susceptible to differences in the vegetation spectrum and are, therefore,
often used to detect pest and disease problems [6]. SAR images offer high accuracy and
purity in detecting water areas, but extracting sharp edges is still a challenge [7]. Therefore,
how to fully utilize the advantages of both is one of the major topics currently faced.

Data fusion is a way to take full advantage of multiple sources of data. The data
fusion stages (pixel-level, feature-level, and decision-level) determine the data fusion tech-
niques [8]. Feature-level fusion consists of two critical processes: image feature extraction
and feature merging. In this regard, Aswatha et al. [1] used multimodal information from
multispectral images and polarized SAR data to classify land cover into seven classes
in an unsupervised manner. Su [9] extracted the backward scattering features and grey-
level co-occurrence matrix (GLCM) features obtained from the Pauli decomposition and
H/A/alpha decomposition of polarized SAR images, the spectral features, and GLCM fea-
tures of multispectral images, and used a support vector machine (SVM) for classification.
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This fusion method effectively improves the classification accuracy and the pepper noise
is reduced.

Land cover classification is one of the critical applications of remote sensing images.
The traditional land cover classification method is divided into two steps: feature extraction
and classifier training [10].

The feature extraction for optical images is based on spectral and textural features. A
textural feature is a comprehensive reflection of the image greyscale statistical information,
spatial distribution information, and structural information. Commonly used textural
feature classification algorithms include a local binary pattern (LBP) [11], GLCM [12],
etc. Polarized SAR feature extraction is based on polarized target decomposition, which
aims to decode the scattering mechanism of the feature under a reasonable physical con-
straint model [13], such as Freeman-Durden decomposition [14], Yamaguchi decomposi-
tion [15], etc.

Machine learning has achieved considerable progress in classification and regression
tasks. Commonly used machine learning is SVM, decision tree, random forest, etc. In the
current research, SVM has been used extensively. For example, Attarchi [16] used SVM to
classify polarized SAR data and its GLCM features for the detection of impervious surfaces.
While SVM classifies samples by finding hyperplanes, decision trees classify samples by
selecting the optimal components and dividing the subset into the corresponding leaf
nodes based on the features. Phartiyal et al. [17] used an evolutionary genetic algorithm to
optimize the empirical model to maximize the classification performance. They constructed
a decision tree based on the best class boundary and obtained satisfactory classification
results. Random forest is an ensemble learning model based on decision trees, which
obtains the final results by combining and analysing multiple decision trees [18]. Du
et al. [19] extracted the polarization and texture features of the fully polarized SAR images
for random forest and rotation forest classifiers. The experiment finally verified that random
forest is better than Wishart and SVM classifiers, and it is less accurate than rotation forest
but faster.

In image processing, conditional random fields (CRF) have unique advantages in
expressing the spatial context and the posterior probability modelling [20]. Zhong et al. [21]
proposed the spatial-spectral-emissivity land-cover classification based on the conditional
random fields (SSECRF) algorithm, which integrates the spatial-spectral feature set and
emissivity by constructing the SSECRF energy function to obtain better classification
results. CRF allows for the processing of target classes in conjunction with neighbourhood
information, effectively improving the image purity of the classification results, which is
missing from machine learning.

This article proposes an RF-Im_CRF classification model to improve the accuracy
of the random forest classifier in feature-level fusion classification. The model first ex-
tracts the spectral and GLCM features of optical images, the Freeman decomposition, and
Polarization Signature Correlation Feature (PSCF) features of polarized SAR. Then, the
model assembled them into a random forest training dataset. Afterward, the random forest
classifier results are input into the Im_CRF model, which uses the feature importance from
the random forest as the weight information in the pairwise potential function to improve
feature classification accuracy.

2. Materials
2.1. Study Site

The location selected for this study is in Nanjing and its surrounding area, which is
located in Jiangsu Province in Eastern China. Figure 1 shows the optical and polarized
SAR false-colour images of the study area. The false-colour image is generated based on
the Pauli decomposition. The images are 1500 × 1500 pixels in size, which include river,
buildings, vegetation, and roads. The image resolution is 8 metres, so the total size of the
study area is about 169 km2. The architective area occupies the majority of the image, the
vegetation area is relatively concentrated, and there is a small amount of vegetation within
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the building space. The cultivated area is concentrated in the northern part of the river. A
clear colour difference can be observed in the optical image between the dense vegetation
area and the cultivated area. The colour of the river part is not sufficiently uniform, which
is similar to the farmland in some areas. In contrast, the river area of the SAR false-colour
image is different from other regions. Therefore, it can be seen that polarized SAR has
apparent advantages in identifying river categories.
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Figure 1. Study area. (a) The optical image. (b) The polarized SAR false-colour image.

The dataset used for research is the polarized SAR data collected by the RADARSAT-2
satellite, which has four polarization states: HH, VV, HV, and VH. This data was acquired
on 19 April 2011 at a resolution of 8 m. The optical image resolution is 5 m, and the
acquisition time is April 2017. Due to the relatively low resolution and the fact that the
acquisition time falls within the same month, the variation in ground objects is within
manageable limits. In the ENVI software, the optical image was down-sampled to a
resolution of 8 m, and the polarized SAR image has undergone preprocessing such as
multi-looking and noise reduction. The two images were calibrated in the same geographic
coordinate system.

2.2. Sampling Point Selection

The sampling point coordinates in the experiment were taken with the optical image
as a reference. Overall, five land cover categories were considered, namely Water, Building,
High vegetation, Low vegetation, and Road. The high vegetation is dominated by tall
forests and the low vegetation is dominated by agricultural land. Since the image resolution
is 8 m, this prevents some narrow roads from being clearly represented, especially for
SAR images. This paper, therefore, chose to sample roads with larger width, such as
motorways and arterial roads. Because of the massive amount of source image data, it is
not easy to classify the entire image finely. Therefore, the training samples chosen for this
experiment are 100 per class, and the test samples are 150 for each category, as shown in
Table 1. The totals of training samples and test samples are 500 and 750, respectively, with
no duplicate points.
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Table 1. Sample label type and quantity.

Label Category Train Number Test Number

Water 100 150
High vegetation 100 150

Building 100 150
Low vegetation 100 150

Road 100 150

Total 500 750

3. Characteristic Data Acquisition
3.1. Polarization Feature Extraction

For the extraction of polarized SAR image features, this experiment selected two
polarization feature extraction methods known as the Freeman-Durden decomposition and
the PSCF.

3.1.1. Freeman-Durden Decomposition

The Freeman-Durden polarization decomposition method is based on the fundamental
principle of radar scattering, which decomposes the SAR cross-covariance matrix into
canopy scattering (or volume scattering), odd bounce scattering (or surface scattering),
and double-bounce scattering (or dihedral scattering). The detailed description of the
modelling process for the composite scattering model can be found in Reference [22]. This
model can acquire the characteristic parameters related to the three scattering mechanisms
and the corresponding weight coefficients.

The power corresponding to the three scattering mechanisms are Ps, Pd, and Pv, where
Ps corresponds to the power of surface scattering, Pd represents the power of dihedral
scattering, and Pv represents the power of volume scattering. Then, the Freeman feature
vector of the target points can be established.

XFreeman = [xPd
i , xPs

i , xPv
i ]

T
(1)

3.1.2. Polarization Signature Correlation Feature (PSCF)

Radar polarization signatures (PSs) can effectively characterize the scattering be-
haviour of the research object, so it has the potential to distinguish the types of ground
objects. This feature is usually a three-dimensional representation of the backscattering
behaviour of a target or land cover. In the expression of PSs, the x-axis and y-axis represent
the ellipse angle and azimuth angle, respectively, and the z-axis represents the received
backscattering power coefficient. The value range of the azimuth angle (ψ) is −90 to 90
degrees, and the value range of the ellipse angle (χ) is −45 to 45 degrees. The following
formula gives the PSs.

σ
(
χiψiχjψj

)
=

4π

k2


1

cos 2χi cos 2ψi
cos 2χi sin 2ψi

sin 2χi

(K)


1

cos 2χj cos 2ψj
cos 2χj sin 2ψj

sin 2χj

 (2)

Among them, σ represents the backscattering coefficient or received power, the sub-
scripts i and j mean the transmitting and receiving units, respectively, and K is the Ken-
naugh matrix [23]. k is the wave number of the illuminating wave.

The co-polarized signatures are obtained by transmitting and receiving combination
ψi = ψj, χi = χj, and the cross-polarized signatures are obtained by ψi = 90+ ψj, χi = −χj.
The ellipse angle defines the polarization behaviour (linear polarization, circular polariza-
tion, or elliptical polarization), and the azimuth angle defines the polarization states, that
is, horizontal or vertical polarization [24]. In the current research, the characteristics of
co-polarized and cross-polarized signatures have been fully considered and utilized.
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Since surface objects generally exhibit a complex scattering response, the polarization
signatures of standard targets must be used as a reference for classification. Therefore, PSs
have been calculated for flat plate (FP), horizontal dipole (HD), vertical dipole (VD), and a
dihedral angle (Di) in the standard targets. The formulae for the generation of the standard
target PSs are given in Reference [25].

Therefore, the PSCF uses the radar polarization signatures of the four standard scatter-
ers (FP, HD, HD, and VD) as a reference to calculate the relevance between the polarization
characteristics of the target points and the above four standard targets. This can be a
reference to distinguish between different categories. The correlation coefficient formula is
as follows.

CC =
Sxy

SxSy
(3)

where x and y are the polarized characteristics of the target points and the standard targets,
respectively. Sx is the standard deviation of x, Sy is the standard deviation of y, and Sxy is
the covariance between x and y. CC is the correlation coefficient between x and y.

This paper refers to Reference [17] to obtain the PSCF solution and establish the
feature correlation coefficients between a single target and four standard targets, which
are Corr_co_Di, Corr_co_FP, Corr_co_HD, Corr_co_VD, Corr_cross_Di, Corr_ cross _FP,
Corr_ cross_HD, and Corr_ cross _VD. Among them, the co is for the co-polarization while
the cross is for cross-polarization. Thus, the PSCF feature vector of the target point is
established as:

XPSCF = [xcorr_co_Di
i , xcorr_co_FP

i , xcorr_co_HD
i , xcorr_co_VD

i ,

xcorr_cross_Di
i , xcorr_cross_FP

i , xcorr_cross_HD
i , xcorr_cross_VD

i ]T
(4)

3.2. Optical Image Feature Extraction
3.2.1. Spectral Information Extraction

Compared with multispectral images, the optical image does not have rich spectral
information, but it is also sufficient to identify information with significant spectral dif-
ferences. This optical image can be divided into three bands: red, green, and blue, so the
spectral feature information is shown as follows.

XSpectral = [xr
i , xg

i , xb
i ]

T
(5)

3.2.2. Grey-Level Co-Occurrence Matrix (GLCM)

The textural feature is a visual feature that does not depend on brightness and colour,
reflecting similar information of adjacent pixels in the image. It reflects the internal char-
acteristics shared by the surface of the object. It contains essential information about the
surface structure of the object and the relationship to its neighbours.

GLCM is a commonly used method for extracting texture information with good
discrimination ability. Its principle is to convert the specified spatial relationship in the
image into texture information based on the greyscale value. The texture features obtained
by GLCM are helpful to distinguish objects with similar spectral characteristics.

In this paper, three features are chosen to describe the spatial relationships of images:
contrast, dissimilarity, and energy. Contrast and dissimilarity can measure the local varia-
tion and reflect the sharpness of the image and the depth of the texture. The energy is the
sum of the squares of element values of the GLCM, demonstrating the uniformity of the
image greyscale distribution and the texture thickness. The GLCM feature information is
expressed as follows.

XGLCM = [xcontrast
i , xdissimiliraty

i , xenergy
i ]

T
(6)
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4. Random Forest-Importance_Conditional Random Forest (RF-Im_CRF) Model

Figure 2 is the flowchart of applying the RF-Im_CRF model to the feature-level fusion
of polarized SAR and optical images. After extracting the features of the two images, the
random forest is first used for classification. Then, the classification results and feature
importance of the random forest are combined with the CRF. The classification results are
taken as the unary potential function and the feature importance is taken as the weight of
the pairwise potential function to improve the classification accuracy.
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4.1. Random Forest

Random forests construct mutually independent decision trees in which each gen-
erates a training set by bootstrap resampling. M rounds were randomly selected from
the original training set with N samples to obtain M training sets. Some samples may
be chosen multiple times under self-service resampling, while some samples may not
be drawn. Then M decision trees are developed according to these training sets. In the
decision-making stage, the classification results are obtained by taking the mode, or the
regression results, by taking the average value. The random forest can process large data
sets with high efficiency and precision, filter explanatory variables by itself, and get the
mutual influence and importance ranking of variables.

The Gini index, or Gini impurity, indicates the probability that a randomly selected
sample in the sample set will be misclassified. At each node in the binary tree T of
the random forest, the optimal segmentation is sought according to the Gini index i(τ),
which divides the sub-node data set. Random forest follows the principle of Gini gain
maximization when selecting features for nodes [26]. Let pk be the probability of node τ
being divided into child nodes τk, k = 1, 2. Then the Gini index is:

i(τ) =
2

∑
k=1

pk(1− pk) = 1−
2

∑
k=1

p2
k (7)
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The Gini gain ∆i generated by splitting the sample through a certain threshold and
sending it to two child nodes τ1 and τ2, which is defined as:

∆i(τ) = i(τ)− p1i(τ1)− p2i(τ2) (8)

Since the decision tree selects features that can maximize the Gini gain of the node
when generating nodes, the feature importance can be reflected by the sample division of
the nodes. However, random forest introduces the double randomness of data samples
and input features during a training process, which may cause important features with
high discrimination being used to divide nodes less frequently than features with low
discrimination. Therefore, the importance of features cannot be measured simply by the
number of times used as segmentation attributes [27,28].

4.2. Conditional Random Fields

The CRF model simulates the local neighbourhood interaction between random
variables in the unified probability framework. Given the observed image data, the model
directly models the posterior probability of the label as a Gibbs distribution.

The general form of the CRF model is:

P(Y|X) =
1

Z(X)
exp

−
∑

i∈V
Φ%i(yi, xi, w) + β ∑

(i,j)∈E
Φ%ij

(
yi, yj, xi, xj, v

) (9)

Among them, V is for the set of data points and E is for the set of point neighbours.
xi, yi represents the observation variable of the i-th point in the data and its class label

variable, respectively. X is the sequence of observations, X = [x1, . . . , xi, . . . , xN ]. Y is the
sequence of tags corresponding to X, Y = (y1, . . . , yi, . . . , yC), where C is the number of
categories. P(Y|X) is the probability of the label sequence Y under the given observa-

tion sequence X. Z(X) is the normalization constant, Z(X) = ∑
Y

exp
{
− ∑

c∈C
Φ%c(yc, x)

}
;

Φ%i(·) is the unary potential function, which represents the probability of the observed
variable xi taking the label yi. Φij(·) is the pairwise potential function, which means the
correlation between the variable xi and its neighbouring variables xj and the correlation
between the labels. w, v, respectively, represents the parameters of the correlation potential
function and the interaction potential function. β is to adjust the weight of the two potential
function terms, which determines the degree of influence of the pairwise function on the
unray potential function. In this article, to simplify the implementation of CRF, β is set to a
constant 1.

Then the corresponding Gibbs energy is defined as:

E(Y|X) = − log P(Y|X)− log(Z(X)) = ∑
c∈C

Φ%(yc, x)

= ∑
i∈V

Φ%i(yi, xi, w) + β ∑
(i,j)∈E

Φ%ij
(
yi, yj, xi, xj, v

) (10)

According to the Bayesian Maximum Posterior (MAP) rule, image classification aims
to find the label Y that maximizes the posterior probability P(Y|X). Therefore, the CRF’s
MAP mark xMAP can be obtained by the following formula.

YMAP = arg max
y

P(Y|X) = arg min
y

E(Y|X) (11)

It can be seen that finding the maximum value of the posterior probability P(Y|X) is
equivalent to finding the minimum value of the energy function E(Y|X). Therefore, the opti-
mization algorithm finds the most probable label by finding the minimum energy solution.
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4.3. RF-Im_CRF Model
4.3.1. Establishment of Potential Functions

In this paper, the unary potential function Φ%i is defined based on the classification
results of the random forest classifier. For variables xi and its label yi, when yi = k, ∀k ∈ K
(K is the label set), then Equation (12) is:

P(yi = k|xi) =
1
M

M

∑
m=1

δ[Tm(xi, θm) = k] (12)

M is the total number of decision trees. θm is the independent and identically dis-
tributed parameter vector describing the m-th decision tree. Then, P(yi = k|xi) represents
the probability that the target is of class k.

The CRF unary potential function is defined as:

Φ%i(yi, xi) = −logP(yi|xi) (13)

Pairwise potential function Φ%ij
(
yi, yj, xi, xj, v

)
, also called the smoothness term,

encourages adjacent pixels of the image to use the same label. This article uses an improved
contrast-sensitive Potts model that introduces the feature importance ηk to define the
pairwise potential function.

Φ%ij
(
yi, yj, xi, xj

)
=

{
0 i f yi = yj

gij(S) otherwise
(14)

gij(S) = dist(i, j)−1exp

(
−

N

∑
k=1

ηkγk ‖ Xk
i − Xk

j ‖ 2

)
(15)

Among them, gij simulates the spatial interaction of adjacent pixels xi and xj, which
is used to measure the feature difference between neighbours. dist(i, j) is the Euclidean
distance between adjacent pixels, Xk

i and Xk
j represent the feature vector between points

i and j. k represents the category of the feature vector, namely, k = 1, 2, 3, 4, which, re-
spectively, represents the feature vector XFreeman, XPSCF, XSpectral , XGLCM. γk is set to be
the mean square error of feature vectors between adjacent pixels in the image, denoted

as γk =
(

2
〈∣∣∣∣∣∣Xk

i − Xk
j

∣∣∣∣∣∣2〉)−1
, which 〈·〉 represents the mean value of the neighbour-

hood. The parameter ηk is the feature importance in the classification process, obtained by
random forest.

4.3.2. Feature Importance

In this paper, the statistic Imi is used as a feature importance measurement based on
the Gini index, representing the average change in the Gini index of the i-th feature in the
node division of all decision trees. The importance of feature xi on node n is the change in
the Gini index that the sample on the node τ is divided into child nodes τ1 and τ2 in which:

Imi,m,n = i(τ)− i(τ1)− i(τ2) (16)

where n = 1, . . . , N, which represents the node index in one decision tree, and m = 1, . . . , M,
which represents the decision tree index in the random forest. Therefore, the feature xi
has N nodes in the m-th decision tree as the attribute of node division. Then the feature
importance xi on this decision tree can be expressed as:

Imi,m =
N

∑
n=1

Imi,m,n (17)
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The feature importance xi in the entire random forest is:

Imi =
1
M

M

∑
m=1

Imi,m (18)

The sum of the feature importance of each feature is 1.
For parameter ηk, Freeman decomposition, PSCF features, spectral features, and

GLCM features are regarded as four various feature components. Then, taking spectral
features as an example, the feature importance of this characteristic component is:

ηSpectral = Imr + Img + Imb (19)

The four feature components extracted in this paper have different value ranges
and number of elements. Since the normalization of features does not affect the random
forest results, they are not normalized in feature extraction. However, in the CRF, this
difference in the value range affects the pairwise potential function. Therefore, it needs
to be divided into four parts to avoid the features with a small value range in which they
do not work as well as they should. Since the importance of each feature is different, the
higher the importance of the feature, the greater the influence on classification. Therefore,
the parameters ηk can further strengthen the feature difference between neighbours and
improve classification accuracy.

5. Experiment and Analysis
5.1. Multi-Source Data Comparative Classification Experiment

First, to verify the advantages of image fusion in image classification, this paper
used the random forest to perform classification experiments on optical image data and
polarized SAR data. The optical image data contains a feature vector consisting of spectral
and GLCM information, and the polarized SAR data includes a feature vector consisting of
Freeman and PSCF information. The number of decision trees in the random forest was
set to 100. This value ensures that the results of the random forest will be optimal and
fluctuate within a range of values. The experimental results are shown as follows.

For classification tasks, the classification results can intuitively and clearly reflect the
disparity between different features or different classification methods, especially when
the distinction is significant. Figure 3 shows the classification results obtained by adopting
different feature vectors. It can be seen that the characteristics of the optical image can
better distinguish the difference between high and low vegetation due to the apparent
differences in spectra. However, the reliance on spectral features also makes many errors
in the identification of waters. Since the water surface tends to be specularly reflective, the
backscatter from the water surface is almost zero, resulting in high accuracy of SAR image
classification in waters. At the same time, the working frequency band of RADARSAT-2 is
C-band, which has certain penetrability, making it difficult to distinguish the characteristic
difference between high and low vegetation, thus, presenting a mixed phenomenon of
dark green and light green. This penetrability is also reflected in the ability of the polarized
SAR data to detect folds in the hills and present similar features to buildings, leading to
misinterpretations. Optical image features have certain advantages in terms of buildings,
and it is difficult for both sides to get ideal results on the road.

The visual effect of the classification that combines polarized SAR and optical image
features is significantly improved. The water area as well as high and low vegetation are
well inherited. Simultaneously, compared with the former two, the salt and pepper noise
in the construction area has been significantly reduced. The large area of misjudgment
is also hard to see, and the display effect of the road is improved. This indicates that the
characteristics of polarized SAR and optical images both play a specific role in classification.
Due to the similarity of the narrow river sections to the backscattering of the road, this
caused the SAR data to misinterpret at the river in the southwest region of the image. This
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situation is also shown in Figure 3c. This indicates that the features of the optical images are
still difficult to correct for the high misclassification of SAR images in this particular scene.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 17 
 

 

of dark green and light green. This penetrability is also reflected in the ability of the po-
larized SAR data to detect folds in the hills and present similar features to buildings, lead-
ing to misinterpretations. Optical image features have certain advantages in terms of 
buildings, and it is difficult for both sides to get ideal results on the road. 

(a) (b) (c) 

 
Figure 3. Multi-source data classification results. (a) Optical image classification result. (b) Polarized SAR classification 
result. (c) Optical + polarized SAR image classification result. 

The visual effect of the classification that combines polarized SAR and optical image 
features is significantly improved. The water area as well as high and low vegetation are 
well inherited. Simultaneously, compared with the former two, the salt and pepper noise 
in the construction area has been significantly reduced. The large area of misjudgment is 
also hard to see, and the display effect of the road is improved. This indicates that the 
characteristics of polarized SAR and optical images both play a specific role in classifica-
tion. Due to the similarity of the narrow river sections to the backscattering of the road, 
this caused the SAR data to misinterpret at the river in the southwest region of the image. 
This situation is also shown in Figure 3c. This indicates that the features of the optical 
images are still difficult to correct for the high misclassification of SAR images in this par-
ticular scene. 

From the experimental results, it can be seen that the integrated polarized SAR and 
optical image fusion classification performance is significantly improved compared with 
the image classification performance of the single source. However, there are still many 
noise points, which affect the smoothness of the classification result. The RF-Im_CRF 
model proposed in this paper will improve the classification results aiming at this phe-
nomenon. 

5.2. Comparison of RF-Im_CRF Model Experiment Results 
5.2.1. Analysis of Classified Image Results 

To verify the effectiveness of the algorithm in this paper, the experimental data were 
classified using SVM based on Poly kernel function, RF, RF-CRF without feature im-
portance as weights [21], and the RF-Im_CRF models, respectively. The experimental data 
is the feature vector composed of the four features in Chapter 3 of the article. The results 
are shown in Figure 4. 

Figure 3. Multi-source data classification results. (a) Optical image classification result. (b) Polarized SAR classification
result. (c) Optical + polarized SAR image classification result.

From the experimental results, it can be seen that the integrated polarized SAR and
optical image fusion classification performance is significantly improved compared with
the image classification performance of the single source. However, there are still many
noise points, which affect the smoothness of the classification result. The RF-Im_CRF model
proposed in this paper will improve the classification results aiming at this phenomenon.

5.2. Comparison of RF-Im_CRF Model Experiment Results
5.2.1. Analysis of Classified Image Results

To verify the effectiveness of the algorithm in this paper, the experimental data were
classified using SVM based on Poly kernel function, RF, RF-CRF without feature importance
as weights [21], and the RF-Im_CRF models, respectively. The experimental data is the
feature vector composed of the four features in Chapter 3 of the article. The results are
shown in Figure 4.

It can be seen that the SVM has the worst classification effect. SVM is an independent
classifier, so it follows one rule when classifying. Random forests, on the other hand, rely
on multiple mutually independent decision trees acting together, each with a different
classification threshold. This means that the misclassification results of a single decision
tree are corrected by the action of other decision trees. As a result, random forests give
better results.

Compared with the random forest classifier, the RF-CRF model significantly improves
image smoothness, since the CRF eliminates most salt and pepper noise. The differences
between the RF-CRF and RF-Im_CRF models are difficult to see. Therefore, this paper
extracted three scenes in the image for comparison to show the performance gap between
the two models. The reference data are the optical image and the real classification results
based on the optical image.

As shown in Figure 5, when compared with the RF-CRF model, the RF-Im_CRF model
can further reduce the salt and pepper noise in the image, and the smoothness can be
further improved. Since parking lots are set up around some large buildings, the classifier
will be difficult to balance between roads and buildings. Some open places such as sports
fields and squares as well as roads have more white blocks in area 1, which represent the
road. Area 2 has lower category complexity and better homogeneity of vegetation, so there
is less variation in the effects of classification. There are narrow roads in area 3, which were
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not sampled as samples during the sampling process, since it hardly distinguished with
low contrast between neighbours in the SAR image. Therefore, it is misclassified as low
vegetation in the classification result. The small white areas in the river are the ships sailing
on the river in the SAR image. The RF-Im_CRF model is better than the RF-CRF model
in identifying the riverbank portion on the left side, showing a relatively complete low
vegetation zone.
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The display of the classification results shows that, when compared with the RF-CRF
model, the RF-Im_CRF further improves the classification accuracy, resulting in less noisy
images and a further increase in purity. This is because the value range of various features
is diverse. For example, the value range of the spectral feature is between 0–255, while the
value range of PSCF is between -1 and 1. The feature difference is calculated in the unit of
a feature component in CRF, which helps reduce the overall influence of features with a
wide value range. Simultaneously, after adding feature importance as weights, the impact
of features with high importance on feature differences between neighbours is enhanced.
Therefore, the RF-Im_CRF model can classify ground objects more accurately.
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5.2.2. Classification Data Analysis

This paper quantified the classification effectiveness of the classification model through
Overall Accuracy (OA) and a Kappa coefficient, and analysed various classification cases
using precision and recall.

When the training set is the same, the SVM produce the same results in multiple
experiments. In contrast, the random forest has a certain degree of randomness. Even
though the training set is the same, the results obtained during each training set are
different. Therefore, we used the same dataset for ten consecutive tests on the random
forest model to get the average of the results. In each experiment, the RF, RF-CRF, and RF-
Im_CRF models use the same RF model results, which are only different in the subsequent
processing. The RF model was built on Scikit-learn package using Python [29]. In each
experiment, this paper extracted the feature importance and the probability of each class
of all points. At the end, the evaluation index, such as OA and Kappa coefficients, were
obtained for each model based on classification results.

The OA, Kappa values, and their 95% confidence interval are shown in Table 2.

Table 2. The average of OA and Kappa.

SVM RF RF-CRF RF-Im_CRF

OA 79% 88.0% 91.6% 94.0%
95% confidence interval [85.88%,90.4%] [90.22%,93.02%] [93.52%,94.54%]

Kappa 0.74 0.85 0.89 0.91
95% confidence interval [0.834,0.866] [0.879,0.905] [0.902,0.918]

With the same test data and constant parameters, the results of the SVM are always
consistent and, therefore, there are no confidence intervals. In terms of a quantitative
data comparison, the RF-Im_CRF model proposed in this paper has the best classification
accuracy with an average OA of 94.0%, and the 95% confidence interval is [93.52%,94.54%].
The Kappa coefficient is 0.91 with the 95% confidence interval of [0.902,0.918]. Compared
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with SVM, RF, and RF-CRF, OA increased by 15%, 6%, and 2.4%, respectively, and clas-
sification reliability increased by 17%, 6%, and 2%, respectively. The reason is that SVM
and RF classify single pixels, which are inevitably misclassified even with the inclusion
of textural information. CRF can use neighbourhood information to correct misclassified
pixels, thereby, improving the classification accuracy. The comparison of the above results
shows that the RF-Im_CRF model can further significantly reduce the noise generated in the
random forest classification and improve the smoothness of images due to the correction
capability of Im_CRF.

In order to analyse the classification accuracy relationship between each category, we
give the experimental result data obtained in a single experiment, as shown in Table 3. In
the absence of CRF, the 95% confidence interval of each class of random forest is basically
between [A + 2%, A− 2%]. Where A represents the classification accuracy of each category.
The Bootstrap Resampling method of the random forest causes each decision tree to use a
different training subset, which leads to differences in classification performance across
the trees. With a large number of decision trees, the random forest itself is more accurate
than the SVM method, but it inevitably generates randomness, which results in slightly
different classification results for each category. The number of test sets for each category
is 150, which means that there are three different classification results for this category in
the two experiments, and there will be a 2% difference.The classification effect is further
improved by the CRF, resulting in a 95% confidence interval between [A + 1%, A− 1%].

Table 3. Comparison of results of different classifiers.

Model Water High Building Low Road

Precision (%) 87 85 72 79 74
Recall (%) 77 88 84 84 63

F1-score (%) 82 86 78 81 70

RF
Precision (%) 98 92 79 85 78

Recall (%) 95 93 91 81 72
F1-score (%) 96 92 85 83 75

RF-CRF
Precision (%) 99 96 80 90 82

Recall (%) 95 95 93 88 75
F1-score (%) 97 95 86 89 78

RF-Im_CRF
Precision (%) 100 97 84 93 88

Recall (%) 95 96 97 89 84
F1-score (%) 97 96 90 91 86

It can be seen that the four models are more accurate in classifying water, high
vegetation, and low vegetation than buildings and roads. The reason is that buildings
have high complexity in both spectrum and structural characteristics, while roads are more
challenging to identify due to low image resolution, a narrow area, and a susceptibity to
factors, such as street trees. Among the two, roads are the most difficult to identify and the
most error-prone category. This is because roads are mostly between buildings including
the boundary between the road and the building that will blur the road with low image
resolution. Moreover, the backscattering characteristics of buildings in SAR image can
obscure the road to a certain extent, which has a negative impact on classification and
makes roads more likely to be misclassified as buildings. At the same time, in the mixed
area of multi-category features, low-resolution images significantly increase the complexity
of categories, which makes the boundaries between categories difficult to distinguish.
Therefore, how to effectively select feature quantities or improve image resolution to
enhance the classification effect of buildings and roads, and make more precise distinctions
to mixed regions will become the following research focus.

In terms of the model’s operational efficiency, since the model proposed in this work
needs to use neighbourhood information, this means that neighbourhood pixels must be
classified as well. On the contrary, the original random forest classifier does not need to
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classify neighbourhood pixels. Therefore, the computational amount in the calculation
process for this model is significantly higher than the one required for simpler classifiers,
such as SVM or random forest. The evaluation of computing efficiency and the possible
improvements of the algorithm from the computational point-of-view are in progress and
will be the subject of the follow-up work.

5.2.3. Analysis of Feature Importance

This article also extracted the feature importance of each feature vector in the above
ten experiments and took the average to get the results shown below.

As shown in Tables 4 and 5 and Figure 6, the feature importance of Freeman decom-
position and spectral features are higher than others in the random forest classification. For
the individual feature vectors, the volume scattering component in Freeman decomposition
has the highest feature importance, which is followed by the blue component of spectral
features. Nevertheless, the difference between the components of the spectral characteris-
tics is not significant. This is because the volume scattering component is generally higher
in the Freeman decomposition than the surface scattering and dihedral scattering for all
targets except water. In water targets, these three components are small, and the scattering
properties of road targets are similar to water under ideal conditions. Therefore, the volume
scattering component has a good basis for judging the water area or road. Therefore, the
body scattering has the highest feature importance. The recognition rate is not as ideal in
water areas because of the complex and narrow environment in which roads are located.
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Table 4. Feature importance of four characteristic components.

Feature Freeman Spectral GLCM PSCF

η (%) 33.78 30.03 13.44 22.72
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Table 5. Feature importance of each feature.

Class Pd Ps Pv R G B G1 G2 G3 P1 P2 P3 P4 P5 P6 P7 P8

Im
(%) 7.35 5.91 20.53 8.94 9.15 11.96 3.11 2.84 7.49 3.93 2.93 2.14 2.01 3.95 2.30 2.74 2.74

G1 = contrast, G-2 = dissimilarity, G3 = energy, P1 = Corr_co_Di, P2 = Corr_co_FP, P3 = Corr_co_HD, P4 = Corr_co_VD, P5 = Corr_cross_Di,
P6 = Corr_cross_ FP, P7 = Corr_cross_ HD, P8 = Corr_cross_VD.

Except for energy, the GLCM and PSCF have similar proportions, while PSCF com-
ponents are higher, so the η value is relatively high. The feature importance reflects the
contribution degree of each feature in the classification. The randomness of random forest
also impacts the feature importance. Therefore, the 95% confidence interval of four charac-
teristic components is between [A−1%, A+1%]. Using such a contribution degree as the
weight in the CRF pairwise potential function clarifies the spatial relationship between the
target and the neighbourhood and improves classification accuracy.

6. Conclusions

Relying on the unique advantages of CRF in spatial context feature modelling and
classification, this paper established a pixel-based RF-Im_CRF model for classification
based on various feature information, such as spectrum, texture, and polarization. The
experiments and analyses were carried out using polarized SAR and optical images of
Nanjing area as data. The results show that the fusion of multi-source image data improves
the classification accuracy. The RF-Im_CRF model with multiple features proposed in this
paper further improves the classification accuracy to more than 94%, which increases by
6% when compared with the random forest classifier. Therefore, the RF-Im_CRF model has
good performance in the fusion classification of polarized SAR and optical images and can
be used as a fusion classification method for heterogeneous images.
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