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Abstract: Water stress is one of the primary environmental factors that limits terrestrial ecosystems’
productivity. Hense, the way to quantify gobal vegetation productivity’s vulnerability under water
stress and reveal its seasonal dynamics in response to drought is of great significance in mitigating
and adapting to global changes. Here, we estimated monthly gross primary productivity (GPP) first
based on light-use efficiency (LUE) models for 1982–2015. GPP’s response time to water availability
can be determined by correlating the monthly GPP series with the multiple timescale Standard-
ized Precipitation Evapotranspiration Index (SPEI). Thereafter, we developed an optimal bivariate
probabilistic model to derive the vegetation productivity loss probabilities under different drought
scenarios using the copula method. The results showed that LUE models have a good fit and estimate
GPP well (R2 exceeded 0.7). GPP is expected to decrease in 71.91% of the global land vegetation area
because of increases in radiation and temperature and decreases in soil moisture during drought
periods. Largely, we found that vegetation productivity and water availability are correlated posi-
tively globally. The vegetation productivity in arid and semiarid areas depends considerably upon
water availability compared to that in humid and semi-humid areas. Weak drought resistance often
characterizes the land cover types that water availability influences more. In addition, under the
scenario of the same level of GPP damage with different drought degrees, as droughts increase in
severity, GPP loss probabilities increase as well. Further, under the same drought severity with
different levels of GPP damage, drought’s effect on GPP loss probabilities weaken gradually as the
GPP damage level increaes. Similar patterns were observed in different seasons. Our results showed
that arid and semiarid areas have higher conditional probabilities of vegetation productivity losses
under different drought scenarios.

Keywords: LUE-GPP; SPEI; copula function; conditional probability

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) report shows that the world
will continue to warm in the 21st century [1]. This indicates that as the future temperature
rises, the occurrence and frequency of extreme weather and climate, such as heatwaves
and droughts, will increase rapidly [2]. This trend and its associated adverse effects on
natural and social ecosystems are expected to increase further [3]. Terrestrial ecosystems’
gross primary productivity (GPP) is the largest component of global terrestrial carbon
flux, and slight fluctuations in GPP have a significant influence on atmospheric CO2
concentration [4]. On a global scale, particularly in arid and semiarid regions, water stress
is the primary environmental factor that limits terrestrial ecosystems’ productivity [5].
Hence, studying drought’s effects on their productivity has become an important priority
in global change research.

Remote Sens. 2021, 13, 1289. https://doi.org/10.3390/rs13071289 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6761-0829
https://doi.org/10.3390/rs13071289
https://doi.org/10.3390/rs13071289
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13071289
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/7/1289?type=check_update&version=1


Remote Sens. 2021, 13, 1289 2 of 20

The terrestrial ecosystem’s productivity characterizes its quality, it is the key to con-
trolling the ecosystem’s carbon, water, energy and nutrient cycles, and plays a decisive role
in regulating its function and controlling its carbon source and sink [6]. At the same time,
ecosystem productivity is also the basis of a variety of ecosystem services [7] and is the
source of food, fiber, wood, livestock grains and biofuels in human society [8]. As the main
outcome and important manifestation of global climate change, drought not only affects
photosynthesis and ecosystem productivity directly [9], but it can also affect terrestrial
ecosystem productivity in directly by changing the intensity and frequency of other forms
of disturbance, such as increasing the frequency and intensity of fires, plant mortality and
the occurrence of pests and diseases [10]. In recent years, many studies have investigated
drought’s effects on terrestrial ecosystems’ productivity at different spatio-temporal scales
based on long-term observations from ecological research sites, field experiments, eddy co-
variance measurements, large-scale satellite measurements and model simulations [11–13].
Satellites data used commonly to evaluate vegetation productivity include primarily the
Moderate Resolution Imaging Spectroradiometer-Fraction of Photosynthetically Active Ra-
diation (MODIS-FPAR) and the Global Inventory Modeling and Mapping Studies-Fraction
of Photosynthetically Active Radiation (AVHRR GIMMS-FPAR), remotely-sensed data for
atmosphere state, MODIS Enhanced Vegetation Index, leaf area index, spatially distributed
CO2 concentrations, and canopy information. For example, Reichstein et al. [11] found that
the drought stress in Europe in summer 2003 caused the reduction of ecosystem productiv-
ity by jointing flux tower, remote sensing (including MODSI and AVHRR-GIMMS FPAR)
and modelling datasets. Zhang et al. [14] emphasized that the drought in Southwestern
China in spring 2010 reduced primary productivity by using primary productivity products
derived from MODIS. Stocker et al. [15] used four remote sensing data-driven models and
demenstrated that drought’s effects on terrestrial primary production were underestimated.
Previous studies have shown that different vegetation types and environmental conditions
(such as climate and soil factors) largely determine biological communities’ resistance and
ability to recover from drought stress [16].

Although there is increasing recognition of drought’s adverse effects on terrestrial
vegetation productivity, few studies have focused on the seasonal dynamics in global
productivity in response to drought across various climate zones and land biomes. More-
over, studies of drought’s lag effect on terrestrial vegetation productivity and vegetation’s
responses to drought at various time-scales on a global scale are scare. The Standardized
Precipitation Evapotranspiration Index (SPEI) quantifies different drought types based on
the water balance, and is used widely on global and regional scales because of its multiple
time scales and spatial comparability [17]. Therefore, determining the corresponding time
scale when GPP and SPEI have the highest correlation based upon different time scales
is of great significance in understanding the variations in different terrestrial ecosystems’
productivity depending uopn drought resistance. In addition, we give greater attention
here to the way to quantify the probability of varying degrees of damage to vegetation
productivity under predictable drought scenarios. Copulas can be used to couple multiple
variables and construct their joint probability distribution by considering their correla-
tions [18], which can derive the vegetation productivity loss distributions conditioned
on any drought scenario. For example, Madadgar et al. [19] estimated the probability
of drought in agricultural production in Australia based on a copula model, while Fang
et al. [20] constructed a bivariate probabilistic framework to assess vegetation vulnerability
and map drought-prone ecosystems in China’s Loess Plateau.

Given ecosystem productivity’s key role in affecting the global carbon budget and
the supply of ecosystem services, in the context of global warming, the rapid increase in
atmospheric carbon dioxide concentration, and increasing human food production and
resource demand, estimating ecosystem productivity accurately is important to assess
drought’s effects on terrestrial ecosystems precisely [21]. Three main methods are used to
estimate ecosystems’ productivity at the regional and global scales—remote sensing-based
light-use efficiency (LUE) models [22], machine learning algorithms [23], and process-
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based physiological and ecological models [24]. Remote sensing observations can provide
information continuously on land surface features that affect ecosystem productivity, such
as ecosystem structure, vegetation phenology, biomass, soil moisture, and land cover
over a large area. The LUE model relies on remote sensing observation data to estimate
ecosystem productivity through the utilization rate of photosynthetically active radiation
in the ecosystem [25]. We gave special attention to determining water stress and produced
a data set of monthly LUE GPPs at the global scale based on various representations of
water stress: Water stress based on vapor-pressure deficit, humidity deficit and root-zone
soil-water content separately.

Our study had two primary objectives. The first was to determine the seasonal dynam-
ics of global vegetation productivity’s response to drought across various climate zones
and land biomes, and the second was to quantify the probability of varying degrees of
damage to vegetation productivity under predictable drought scenarios. First, we used
a LUE model to produce a dataset of global monthly satellite-observed GPPs, which are
designed primarily to determinate water stress. Second, we explored vegetation productiv-
ity’s spatio-temporal evolution of dependence and response time to water availability by
correlating monthly GPP series with the multiple timescale SPEIs (1- to 24-months). Finally,
we develpoed an optimal bivariate probabilistic model in each pixel of the globe using the
copula method, which was used to derive the vegetation productivity loss probabilities
under different drought scenarios.

2. Materials and Methods
2.1. Data
2.1.1. Remote Sensing Data

The actual evapotranspiration, potential evapotranspiration and soil moisture (in-
cluding surface soil and root-zone soil moisture) data were derived from the Global Land
Evaporation Amsterdam Model (GLEAM), which is designed to be determined by remote
sensing observations only [26]. The GLEAM_V3.3a dataset has a 0.25◦ spatial resolution
at a monthly time step that spans the 39-year period from 1980–2018 (www.gleam.eu (ac-
cessed on 25 March 2021)). Fraction of Photosynthetically Active Radiation (FPAR)3g data
were generated from AVHRR GIMMS NDVI3g using an Artificial Neural Network (ANN)
derived model, with a spatial resolution of 1/12◦ and a 15 days time interval [27]. We used
the MODIS MCD12C1 product, which contains yearly, worldwide distributions of 17 land
cover types from 2001–2017 at a spatial resolution of 0.05◦ (https://lpdaac.usgs.gov/ (ac-
cessed on 10 December 2020)) [28]. In this study, barren land, water bodies, permanent
snow, and ice were removed.

2.1.2. Meteorological data and FLUXNET data

Downward shortwave radiation, air temperature, specific humidity and air pressure
were obtained from the CRU-NCEPV6.1 dataset with a spatial resolution of 0.5◦ and a 6-h
time interval. We used gross primary productivity (GPP) data from the FLUXNET2015
dataset to compare flux site measurement of GPP and LUE GPP (https://fluxnet.org/data/
fluxnet2015-dataset/ (accessed on 1 December 2020)).

2.2. Drought Index

SPEI can be calculated by fitting the difference between precipitation and potential
evapotranspiration based on a log-logistic probability distribution, which combines the
multi-temporal characteristic of standardized precipitation index and the sensitivity of
palmer drought severity index to changes in evaporation demand. A global gridded dataset
of the SPEI was calculated using monthly precipitation and potential evapotranspiration
from the CRU TS3.24.01 dataset [29]. This dataset is generated at a 0.5◦ spatial resolution
and at a monthly time step and covers the period from 1902 to 2015. We used the SPEI
dataset from 1982 to 2015 in this study, which contains timescales from 1- to 24-months.
A 6-month SPEI value is formulated by the cumulative water deficit or surplus from

www.gleam.eu
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five months before to the current month. Three drought scenarios including moderate
(−1.5 < SPEI ≤ 1), severe (−2 < SPEI ≤ −1.5), and extreme (SPEI ≤ −2) can be differenti-
ated using a set of SPEI thresholds [29]. The yearly aridity index (AI), which has a spatial
resolution of 0.5◦, was calculated with Feng and Fu’s formula [30]. (Response: we cited the
citation 31 in Section 2.3) According to this dataset, global land can be classified into arid
(0.05 ≤ AI < 0.2), semiarid (0.2 ≤ AI < 0.5), semihumid (0.5 ≤ AI < 0.65) and humid zones
(AI ≥ 0.65).

2.3. LUE GPP

The global GPP for the 1982–2015 period was calculated based on the LUE equation,
as follows [31]:

GPP = εmax × SOL× 0.45× f PAR× f (T)× f (W), (1)

in which εmax is vegetation type related maximum light use efficiency, SOL is downward
solar shortwave radiation, and f PAR represents the fraction of photosynthetically active
radiation vegetation absorbs. f t and f w are temperature and water stress respectively to
plant productivity. We adopted the meteorological data from the CRU-NCEPV6.1 dataset,
which includes downward shortwave radiation, air temperature, specific humidity and
air pressure, and so forth. We used f PAR Zhu et al. [27] developed. We calculated the
temperature stress with Equation (2), as follows:

f t =
(T − TMIN)(T − TMAX)

[(T − TMIN)(T − TMAX)]−
(
T − Topt

)2 , (2)

in which TMIN and TMAX are the minimum and maximum temperature for plant’s photo-
synthesis, with the specific parameters can be found in Zhang et al. [32].

In this study, we focused particularly on determining water stress ( f w) in the LUE
equation. The MODIS-GPP algorithm [33] calculates f w with the daily vapor pressure
deficit (VPD) on consideration that leaf stomatal conductance is mainly restricted by cold
stress and VPD, named VPDMOD expressed as in Equation (3):

f w = f (VPD) =


1 VPD ≤ VPDopen

VPDclose−VPD
VPDclose−VPDopen

VPDopen < VPD < VPDclose

0 VPD ≥ VPDclose

, (3)

in which VPDclose represents VPD that induces full stomatal closure, while VPDopen rep-
resents VPD that results in full stomatal opening, all parameters are set based on the
vegetation type.

The GLO-PEM algorithm [34] considers each vegetation type’s optimum growth tem-
perature (Topt). The algorithm calculates water stress with vegetation type, independently
with Equation (4) named VPDGLO:

f w = f (VPD) =

{
1− 0.05δq 0 < δq ≤ 15

0.25 δq > 15
, (4)

in which δq is the specific humidity deficit (g/kg), the difference between saturated and
actual specific humidity.

The CASA model provides a framework that considers water stress with a multidisci-
plinary algorithm [35], shown in Equation (5), as follows:

f w = f (VPD)×Ws

Ws =


1 VPD only model

0.5 + ETR VPD + ETR model
0.5 + KS VPD + SM model

,
(5)



Remote Sens. 2021, 13, 1289 5 of 20

in which ETR is the ratio of actual evapotranspiration to potential evapotranspiration. Ac-
cording to FAO 56 [36], ETR can be equal to KS, which is calculated based on root zone soil
moisture (hereinafter SM) and soil and vegetation properties, written as Equations (6) and (7):

KS =
SM−WP

(1− p)× TAW
(6)

p = pstd + 0.04× (5− ET0), (7)

in which WP and TAW represent soil wilting point and total available soil water derived
from the International Geosphere-Biosphere Programme Data and Information System
(IGMP-DIS) dataset [37] and the World Inventory of Soil property Estimates (WISE) derived
soil properties [38]. ET0 is calculated with Hagreaves equation [39] while pstd is a vegetation
type-specific depletion factor (allowable extent of soil water deficit before water stress)
at ET0 of 5 mm per day. Actual evapotranspiration, potential evapotranspiration, and
root-zone soil moisture data were all acquired from the GLEAM dataset.

In this study, we provided a dataset of monthly plant productivity that spans the
34-year period from 1982–2015 at the global scale, composed by five LUE GPPs derived
from the multidisciplinary framework in Equation (5). These five GPPs represent different
considerations of water stress in the LUE equation, the VPD only model, VPDGLO-ETR
model, VPDMOD-ETR model, VPDGLO-SM model, and VPDMOD-SM model. Because the
LUE equation estimate GPP from multiple satellite data, for example, NDVI, FPAR, and
GLEAM soil water, it is considered satellite-observed GPP.

2.4. Determining LUE GPP’s Response Time to Water Availability

To screen out vegetation productivity’s response time to water availability, a monthly
GPP series from 1982 to 2015 was correlated with the multiple timescale SPEI (1- to 24-
months). For the i-th month in a year, Spearman’s correlation analysis was performed
between the monthly GPP and SPEI series at different timescales as follows

Ri
j = corr

(
GPPi, SPEIi

j

)
i = 1, 2 , . . . , 12, j = 1, 2, . . . , 24, (8)

in which R is the correlation coefficient and a timescale j denotes the cumulative water
deficit or surplus from j-1 months before to the current month. Finally, a timescale able to
maximize the GPP-SPEI association, is retained as the vegetation productivity response
time (VPRT) to water variations for the i-th month.

VPRTi = max
{

Ri
j

}
j = 1, 2, . . . , 24. (9)

2.5. Copulas

We chose the extreme value (EV), generalized extreme value (GEV), exponential (EXP),
gamma (GAM), Poisson (POISS), normal (NOR), generalized Pareto (GP) and Weibull
(WBL) distribution functions to fit the monthly GPP series (Table S1). The SPEI series is
a statistic distributed normally and accordingly, the normal distribution is employed as
its marginal. The probability distribution functions of monthly GPP and SPEI series are
defined as FGPP (gpp) and FSPEI (spei), respectively.

We constructed a joint distribution function in each pixel of the globe in every month
based on monthly GPP and SPEI series. Considering FGPP (gpp) and FSPEI (spei), these two
marginal distribution’s joint distribution function can be defined as a copula C:

FGPP,SPEI(gpp, spei) = C(FGPP(gpp), FSPEI(spei)). (10)

In this study, we used the methods of maximum likelihood and inference functions
for margins to estimate the fitted parameters in FGPP (gpp), FSPEI (spei) and FGPP,SPEI
(gpp, spei) [40]. The bivariate distribution functions used commonly, including the Frank,
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Clayton, Gumbel, t and Normal copulas, were constructed to couple FGPP (gpp)) and
FSPEI (spei) in each pixel of the globe (as shown in Table S2).

Next, we obtained the optimal joint distribution function of FGPP (gpp) and FSPEI (spei)
as follows by referring to the method of the goodness-of-fit test Zhang et al. [41] provided.

FGPP,SPEI(gpp, spei) = P(GPP ≤ gpp, SPEI ≤ spei) =
∫ gpp

−∞

∫ spei

−∞
f (gpp, spei)dudv. (11)

Ultimately, we generated a set of conditional probabilities of vegetation productivity
losses for diverse drought conditions with a bivariate statistical framework. Larger values
of vegetation productivity loss probabilities under the same scenario imply greater ecosys-
tem vulnerability, and such ecosystems are categorized thereby as the drought-prone class.
Given multiple drought scenarios, conditional probabilities of vegetation productivity
lower than different percentiles (e.g., the 10th, 20th, 30th, 40th percentiles were consid-
ered in the study) are derived using copula-based joint distribution and the conditional
distribution formulas. The conditional probabilities of different percentiles of vegetation
productivity loss under moderate, severe and extreme drought scenarios can be calculated
by the following formula.

P(GPP < gpp| − 1.5 < SPEI ≤ −1) =
FGPP, SPEI(gpp,−1)− FGPP, SPEI(gpp, −1.5)

FSPEI(−1)− FSPEI(−1.5)
(12)

P(GPP < gpp|−2 < SPEI ≤ −1.5) =
FGPP, SPEI(gpp,−1.5)− FGPP, SPEI(gpp, −2)

FSPEI(−1.5)− FSPEI(−2)
(13)

P(GPP < gpp| SPEI ≤ −2) =
FGPP, SPEI(gpp,−2)

FSPEI(−2)
. (14)

2.6. Statistical Tests

We used the linear regression method to calculate the GPP’s mean change rate over the
entire temporal domain. A two-tailed t-test and the Mann-Kendall test were used to examine
the significance of the trend, while the Kolmogorov–Smirnov test was used to establish the
optimal marginal distribution function of GPP (p < 0.05). In addition, we adopted several
goodness-of-fit measures to evaluate different copula models’ performance, including the
squared Euclidean distance (SED) between the theoretical copula and the empirical copula,
the root mean squared error (RMSE) and the Akaike information criterion (AIC).

3. Results
3.1. Validation of LUE GPPs’ Accuracy, Dynamics Trends and Drought’s Effect on GPP

In this study, special attention was given to determining water stress (including
atmosphere vapor pressure deficit, soil moisture content and the humidity deficit) in
the LUE model to estimate the global GPP. By comparing with the FLUXNET GPP site
data, we found that different LUE models have a good fit in estimation of LUE GPP. The
fitted R2 of VPDGLO-SM, VPDMOD-SM, VPDGLO-ETR, and VPDMOD-ETR were 0.7739,
0.7399, 0.7427, 0.7459 and 0.7628, respectively (Table 1). The average goodness of fit of
multiple models reached 0.78 (Figure S2). Overall, LUE GPP had a greater response to
the atmospheric vapor pressure deficit, followed by soil water content, and the humidity
deficit. The LUE GPP showed greater sensitivity to soil moisture content than the vapor
pressure deficit only in evergreen needleleaf forest (ENF), mixed forest (MF) (R2 = 0.7833
and 0.8479, respectively, RMSE = 1.6399 and 1.3825, respectively). The annual average
spatial distribution of GPP in multiple models is shown in Figure S1. From 1982 to 2015,
the global average annual GPP of terrestrial vegetation continued to increase at a mean rate
of 0.134 Pg C a −1 (p < 0.001), but its growth rate declined after the mid-1990s (Figure 1a).
From the spatial distribution of the mean annual GPP change trend, it can be seen that the
global mean annual GPP still had a largely increasing trend, and the significant increase
area accounted for 36.83% of the global terrestrial vegetation area, located primarily in the
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mid-high latitudes of the northern hemisphere, India, Southeastern China, Southeastern
South America, Northern and Southern Africa, and Eastern Australia. 11.62% of the
regional GPP showed a significant downward trend, largely in Eastern Brazil and Central
and Southern Africa (Figure 1b).

Taking SPEI-12 as an example, a drought episode with an SPEI value less than −1
and no less than 3 consecutive months was considered a drought event. We counted the
total frequency of droughts from 1982 to 2015 in each grid around the world. It can be
seen that the global drought-prone areas are concentrated primarily in Central Russia,
Southeast Asia, the Mediterranean coast and most parts of Africa, and the frequency of
droughts has increased more than 10 times (Figure 2a). We divided the entire time period
from 1982 to 2015 into a dry period and a non-dry period, and compared the changes
in LUE GPP during the dry period relative to the non-dry period. It can be seen that
in the high latitudes of the Northern hemisphere, Eastern Asia, the Amazon basin and
Central Africa, vegetation productivity under drought conditions increased (accounting for
28.09% of the total global land vegetation area), while in 71.91% of the total land vegetation
area in the world, the occurrence of drought led to a decrease in GPP (Figure 2b). To
reveal the cause of this phenomenon further, we considered the effect of climate factors
(including temperature, solar radiation and soil moisture) on vegetation productivity. As
shown in Figure 3, temperature and solar radiation play important roles in the changes
in GPP in the high latitudes of the Northern hemisphere, Eastern Asia, the Amazon basin
and Central Africa during drought periods, while in other regions, soil moisture limits
GPP primarily. In arid and semiarid areas, GPP is correlated negatively with temperature
and solar radiation, while in humid and semi-humid areas, the converse is true. GPP is
correlated positively with soil moisture globally.

Table 1. Regression statistics for different light-use efficiency models between each land-use type’s measured FLUXNET
GPP and LUE GPPs.

Light-Use Efficiency Models

Type Statistics VPD only VPDGLO-SM VPDMOD-SM VPDGLO-ETR VPDMOD-ETR

DBF (N: 1693) R2 0.7822 0.7467 0.7610 0.7275 0.7454
RMSE 2.1887 2.3839 2.3068 2.4894 2.3932

EBF (N: 857) R2 0.6388 0.3798 0.3663 0.5599 0.6662
RMSE 1.9865 2.8458 2.8692 2.5501 1.9500

ENF (N: 2968) R2 0.7706 0.7833 0.7733 0.7671 0.7590
RMSE 1.6990 1.6399 1.6919 1.7278 1.7697

MF (N: 863) R2 0.8480 0.8479 0.8484 0.8486 0.8496
RMSE 1.3900 1.3825 1.3877 1.3873 1.3904

WET (N: 541) R2 0.6860 0.5871 0.6297 0.5953 0.6406
RMSE 2.0777 2.5013 2.3196 2.4670 2.2742

CSH/OSH (N: 317) R2 0.6563 0.4718 0.4369 0.6829 0.6609
RMSE 1.3422 1.7781 1.8739 1.3185 1.3611

WSA (N: 545) R2 0.8103 0.7806 0.7947 0.7784 0.8001
RMSE 1.1185 1.3406 1.2351 1.3736 1.2354

SAV (N: 427) R2 0.6776 0.6511 0.6517 0.6749 0.6746
RMSE 1.3769 1.6252 1.6233 1.4901 1.4919

GRA (N: 1767) R2 0.7667 0.7727 0.7730 0.7754 0.7763
RMSE 1.9214 1.9175 1.9088 1.9137 1.9012

CRO (N: 1392) R2 0.5290 0.4686 0.5047 0.4564 0.4953
RMSE 3.5701 /

All sites except cropland
(N: 9978)

R2 0.7739 0.7399 0.7427 0.7459 0.7628
RMSE 1.8089 1.9817 1.9679 1.9739 1.8855

Note:The sites are deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), mixed forest (MF),
wetlands (WET), closed shrublands/open shrublands (CSH/OSH), woody savanna (WSA), savanna (SAV), grassland (GRA) and cropland
(CRO). VPD only, VPDGLO-SM, VPDMOD-SM, VPDGLO-ETR and VPDMOD-ETR stand for the moisture stress algorithms. N represents the
total number of data points; R2 is the R2e values of linear regressions with intercept. RMSE represents root mean square error. For each
land-use type, the corresponding “best algorithm” is highlighted in bold.
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Figure 1. The dynamics trend and spatial distribution of the annual ensemble mean light-use efficiency
(LUE) model gross primary productivities (GPPs) from 1982 to 2015. (a) Linear trend of annual ensemble
mean LUE model GPPs. The shaded areas denote one standard deviation of each corresponding
ensemble. (b) Spatial distribution of the linear change rate of GPP during 1982–2015. Only statistically
significant trends (p < 0.05) are shown in this figure. The inset shows the corresponding values’
frequency distribution.
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of drought frequency from 1982–2015 (based on Standardized Precipitation Evapotranspiration Index (SPEI)–12 month). (b)
GPP anomalies during drought period relative to non-drought period.
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Figure 3. Geographic distributions of potential climate factors (temperature, radiation and soil
moisture) to GPP from 1982 to 2015.

3.2. Spatio-Temporal Dynamics of Vegetation Productivity’s Dependence on Water Availability

The monthly LUE GPP series was correlated with the SPEI of multiple time scales (1–
24 months) to determine the extent to which water resources determine global vegetation
productivity changes. As shown in Figure 4a, vegetation productivity and water availability
are largely correlated positively globally, indicating that vegetation productivity tends to
increase (decrease) as water supply increases (decreases). In 47.30% of the global terrestrial
ecosystem, the correlation coefficient between GPP and SPEI can exceed 0.6. Particularly
in the Southwest United States, Southeastern Argentina, South Africa, Central Asia, and
Australia, the correlation coefficient between GPP and SPEI can exceed 0.8, indicating
that vegetation productivity in these areas depends more upon water supply. Seasonal
changes also affect the correlation between GPP and SPEI. As Figure S3a–d shows, the
regions with a high correlation between GPP and SPEI in the United States and Central
Asia were located primarily in the Southwest of these two regions in March–May, and
from June to August, the scope and intensity of GPP that SPEI affected in these two
regions reached the maximum (the correlation coefficient was 0.6 or higher). As the rainy
season in the Northern hemisphere fades, the correlation between GPP and SPEI in the
United States and Central Asia weakens gradually, and from December to February of the
following year, the correlation coefficient between GPP and SPEI in this region fell below
0.4. Vegetation productivity and water availability’s dependence in the high latitudes of the
Northern hemisphere is relatively stable, and remains largely between 0.2 and 0.4, while
the correlation between GPP and SPEI in Australia is strong throughout the year.
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(a) Spatial distribution of the maximum correlation coefficients recorded between LUE GPP and SPEI in each pixel during
1982–2015. (b) SPEI timescales at which the maximum correlation coefficient between LUE GPP and SPEI was found over
the period 1982–2015.

As shown in Figure 5a, an analysis of the changes in the correlation between GPP and
SPEI in various climate zones indicated that as the climatic conditions become gradually
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humid, the dependence between vegetation productivity and water availability continues
to decrease (the correlation coefficient between GPP and SPEI declined from 0.76 to 0.47).
Different seasons showed consistent characteristics, indicating that the vegetation produc-
tivity in arid and semiarid areas is more sensitive to changes in water availability than in
humid and semi-humid areas. By comparing the maximum correlation coefficients of GPP
and SPEI under different land cover types (Figure 6a), it can be seen that the productivity
of GRA, SAV and DBF has a greater correlation with water availability (the correlation
coefficients are 0.69, 0.64 and 0.61 respectively), followed by CRO, MF, DNF, ENF, OS and
EBF (correlation coefficients of 0.57, 0.55, 0.53, 0.51, 0.50, and 0.50 in order). WSA and
WET’s productivity had the weakest correlation with water resources. Our results showed
that various land cover types have different adaptation strategies to the increase and loss
of water resources.
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Figure 5. The correlation coefficient (a) and response time (b) of vegetation productivity to water
availability in various climatic regions and different seasons. MAM, JJA, SON, DJF, and ALL
represent March–May, June–August, September–November, December–February and the entire year,
respectively. The error bars indicate ±1 standard error.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 

from March to May and is concentrated largely in the mid-high latitudes of the Northern 
hemisphere. With the passage of seasons, the proportion of GPPs in these high latitude 
regions with a longer response time to SPEI decrease gradually from June to November. 
From December to November of the following year in Australia, GPP’s response time to 
SPEI changes from a short-term time scale (less than 6 months) to a medium- and long-
term time scale (6–9 months). 

As shown in Figure 5b, an analysis of the changes GPP’s in the response time to SPEI 
in various climate zones indicates that as the climatic conditions become gradually humid, 
the response time of vegetation productivity to changes in water availability increased 
(GPP’s mean response time to SPEI extended from 3.9 months to 8.9 months). The 
characteristics were consistent in different seasons, indicating that vegetation’s 
productivity capacity to withstand long-term water shortages is weaker in arid and 
semiarid areas than in humid and semi-humid areas. By comparing GPP’s response time 
to SPEI under different land cover types (Figure 6b), it can be seen that DNF has the 
strongest ability to resist long-term water shortages (the mean response time reached 13.6 
months), followed by OS, EBF, WET, CRO, ENF, WSA and MF (mean response time of 
9.9, 8.5, 8.4, 8.1, 7.9, 7.8 and 7.5 months, respectively). SAV, GRA, and DBF have poor 
ability to resist and mitigate drought (mean response time of 6.1, 6, and 4.9 months, 
respectively). It is worth noting that the land cover types that are more relevant to water 
availability are often accompanied by weak drought resistance. 

 
Figure 6. The correlation coefficient (a) and response time (b) of vegetation productivity to water 
availability in different land cover types. ENF, EBF, DNF, DBF, MF, OS, WSA, SAV, GRA, WET 
and CRO represent evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf 
forest, deciduous broadleaf forest, mixed forest, open shrublands, woody savannas, savannas, 
grasslands, wetlands and croplands, respectively. Boxes represent interquartile ranges of the 
values of 25th and 75th percentiles (Q25, Q75), whiskers cover Q25–1.5×(Q75–Q25) to Q75+1.5×(Q75–Q25), 
horizontal lines represent the median, black empty squares represent the mean, and black solid 
diamonds indicate outliers. 

Figure 6. Cont.



Remote Sens. 2021, 13, 1289 11 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 

from March to May and is concentrated largely in the mid-high latitudes of the Northern 
hemisphere. With the passage of seasons, the proportion of GPPs in these high latitude 
regions with a longer response time to SPEI decrease gradually from June to November. 
From December to November of the following year in Australia, GPP’s response time to 
SPEI changes from a short-term time scale (less than 6 months) to a medium- and long-
term time scale (6–9 months). 

As shown in Figure 5b, an analysis of the changes GPP’s in the response time to SPEI 
in various climate zones indicates that as the climatic conditions become gradually humid, 
the response time of vegetation productivity to changes in water availability increased 
(GPP’s mean response time to SPEI extended from 3.9 months to 8.9 months). The 
characteristics were consistent in different seasons, indicating that vegetation’s 
productivity capacity to withstand long-term water shortages is weaker in arid and 
semiarid areas than in humid and semi-humid areas. By comparing GPP’s response time 
to SPEI under different land cover types (Figure 6b), it can be seen that DNF has the 
strongest ability to resist long-term water shortages (the mean response time reached 13.6 
months), followed by OS, EBF, WET, CRO, ENF, WSA and MF (mean response time of 
9.9, 8.5, 8.4, 8.1, 7.9, 7.8 and 7.5 months, respectively). SAV, GRA, and DBF have poor 
ability to resist and mitigate drought (mean response time of 6.1, 6, and 4.9 months, 
respectively). It is worth noting that the land cover types that are more relevant to water 
availability are often accompanied by weak drought resistance. 

 
Figure 6. The correlation coefficient (a) and response time (b) of vegetation productivity to water 
availability in different land cover types. ENF, EBF, DNF, DBF, MF, OS, WSA, SAV, GRA, WET 
and CRO represent evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf 
forest, deciduous broadleaf forest, mixed forest, open shrublands, woody savannas, savannas, 
grasslands, wetlands and croplands, respectively. Boxes represent interquartile ranges of the 
values of 25th and 75th percentiles (Q25, Q75), whiskers cover Q25–1.5×(Q75–Q25) to Q75+1.5×(Q75–Q25), 
horizontal lines represent the median, black empty squares represent the mean, and black solid 
diamonds indicate outliers. 

Figure 6. The correlation coefficient (a) and response time (b) of vegetation productivity to water
availability in different land cover types. ENF, EBF, DNF, DBF, MF, OS, WSA, SAV, GRA, WET and
CRO represent evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest,
deciduous broadleaf forest, mixed forest, open shrublands, woody savannas, savannas, grasslands,
wetlands and croplands, respectively. Boxes represent interquartile ranges of the values of 25th
and 75th percentiles (Q25, Q75), whiskers cover Q25 − 1.5 × (Q75 − Q25) to Q75 1.5 × (Q75 − Q25),
horizontal lines represent the median, black empty squares represent the mean, and black solid
diamonds indicate outliers.

3.3. Spatio-Temporal Dynamics of Vegetation Productivity’s Response Time to Water Availability

We analyzed the temporal and spatial dynamics of vegetation productivity’s response
time of to water availability changes further. Productivity’s response time to water availabil-
ity is defined as timescales over which the maximum GPP-SPEI correlations are recorded.
It can be seen from the spatial distribution of productivity’s response time to water avail-
ability (Figure 4b) that the response time of 56.8% of the global terrestrial ecosystems to
water resources is based primarily on short-term and medium-term time scales. In Canada,
Northwestern Colombia, Eastern Russia, and Northeastern and Southeastern China, the
response time of vegetation productivity to SPEI is relatively long, typically more than
12 months. The longer the response time to water availability changes, the stronger the
ability of vegetation productivity in these areas to withstand long-term water shortages.
Seasonal changes also affect the length of time in which GPP responds to SPEI in different
regions. It can be seen from Figure S3e–h that 34.92% of the global terrestrial ecosystem
GPP requires a long time to respond to SPEI during the period from March to May and is
concentrated largely in the mid-high latitudes of the Northern hemisphere. With the passage
of seasons, the proportion of GPPs in these high latitude regions with a longer response time
to SPEI decrease gradually from June to November. From December to November of the
following year in Australia, GPP’s response time to SPEI changes from a short-term time scale
(less than 6 months) to a medium- and long-term time scale (6–9 months).

As shown in Figure 5b, an analysis of the changes GPP’s in the response time to SPEI in
various climate zones indicates that as the climatic conditions become gradually humid, the
response time of vegetation productivity to changes in water availability increased (GPP’s
mean response time to SPEI extended from 3.9 months to 8.9 months). The characteristics
were consistent in different seasons, indicating that vegetation’s productivity capacity
to withstand long-term water shortages is weaker in arid and semiarid areas than in
humid and semi-humid areas. By comparing GPP’s response time to SPEI under different
land cover types (Figure 6b), it can be seen that DNF has the strongest ability to resist
long-term water shortages (the mean response time reached 13.6 months), followed by
OS, EBF, WET, CRO, ENF, WSA and MF (mean response time of 9.9, 8.5, 8.4, 8.1, 7.9, 7.8
and 7.5 months, respectively). SAV, GRA, and DBF have poor ability to resist and mitigate
drought (mean response time of 6.1, 6, and 4.9 months, respectively). It is worth noting that
the land cover types that are more relevant to water availability are often accompanied by
weak drought resistance.
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3.4. Vegetation Productivity Loss Probability under Different Drought Scenarios

We first fitted GPP’s optimal marginal distribution during different months based on
the Kolmogorov–Smirnov test. According to the criterion that the smaller the SED, RMSE,
and AIC values, the better the copula function’s fit effect, we fitted the optimal copula
function with the GPP and SPEI in each grid. We set GPP’s damage degree to four levels,
the 10th, 20th, 30th, and 40th percentile values of GPP in different seasons. Figure 7 shows
the spatial distribution of the LUE GPP values at the four percentiles over the globe in
March–May, and those in June–August, September–November and December–February
are provided in Figures S4–S6. It can be seen that there are obvious differences in the
level of global GPP damage during different seasons. At the same time, three drought
scenarios were set based on SPEI, moderate (−1.5 < SPEI ≤ 1), severe (−2 < SPEI ≤ −1.5)
and extreme (SPEI ≤ −2). In this way, the temporal and spatial distribution characteristics
of the probability of different degrees of damage to vegetation productivity under different
drought scenarios were studied to determine areas around the globe susceptible to drought
during different seasons.
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March–May.

As Figure 8d,h,i shows, the proportion of high-probability areas in the global terrestrial
ecosystem increases with the increase in drought intensity when the GPP is lower than
the 40th percentile in March–May. Under moderate drought conditions, the area with
a probability of occurrence higher than 75% covers only 5.04% of the global terrestrial
vegetation area, while under extreme drought conditions, the proportion increases to
27.78%. Further, when the GPP is lower than the 10th, 20th, and 30th percentiles, it still
shows the same characteristics of change (the area with a probability of occurrence higher
than 75% increases from 0.005% to 2.13%, from 0.12% to 9.24%, and from 1.65% to 18.71%).
In other seasons, as the degree of drought increases, the conditional probabilities that
GPP will be damaged at different levels increase as well (Figures S7–S9). Under the same
drought severity with different levels of GPP damage, drought’s influence on GPP loss
probabilities weaken gradually as the GPP damage level increases (Figure 8a–d). We
explored the seasonal evolution in vegetation productivity’s loss probability further under
the same drought scenario and the same level of damage of GPP. Using Figure 8h, Figures
S7h, S8h and S9h as examples, it can be seen that under severe drought conditions, the
area with a conditional probability higher than 75% was 17.48, 21.89, 17.37, and 14.25% in
March–May, June–August, September–November, and December–February respectively,
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in which vegetation productivity was more sensitive to drought in June–August. The
primary reason for this phenomenon is drought’s effect on GPP in mid- and high-latitude
regions of the Northern hemisphere, as this period is the growing season of vegetation in
those regions. The occurrence of drought during the growing season reduced the carbon
sequestration capacity of vegetation greatly, and increased the GPP loss probability thereby.
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Figure 8. Conditional probabilities of vegetation productivity losses under different drought scenarios in March–May.
(a–d) represent the conditional probabilities when the GPP ≤ 10th, ≤ 20th, ≤ 30th, and ≤ 40th percentiles in the moderate
drought scenario, respectively. (e–h) represent the conditional probabilities when the GPP ≤ 10th, ≤ 20th, ≤ 30th, and
≤ 40th percentiles in the severe drought scenario, respectively. (i–l) represent the conditional probabilities when the GPP ≤
10th, ≤ 20th, ≤ 30th, and ≤ 40th percentiles in the extreme drought scenario, respectively.

Further, we analyzed the conditional probabilities of vegetation productivity losses
under different drought scenarios in various climatic regions. Take the conditional prob-
ability when GPP is less than the 40th percentile from March to May as an example (as
shown in Figure 9). Under the moderate drought scenario, the conditional probabilities of
GPP loss are 0.54, 0.49, 0.45, and 0.44 in arid, semi-arid, semi-humid, and humid regions,
respectively. (They are 0.74, 0.67, 0.56, and 0.56 under the severe drought scenario, and are
0.81, 0.72, 0.59, and 0.58 under the extreme drought scenario). Our results showed that arid
and semiarid areas are more likely to suffer different levels of damage than are humid and
semi-humid areas under different drought scenarios. As the degree of drought increases,
the conditional probabilities of GPP loss also increase in different climate zones (similar
results were also evident in other seasons (Figures S10–S12). By comparing the probability
of vegetation productivity losses under different drought scenarios in different land cover
types when the GPP ≤ 40th percentile (Figures 10 and S13–S15), it can be seen that as the
degree of drought increases, the productivity loss probability of EBF, DNF, OS, SAV, and
GRA show an increasing trend in different seasons. From March to August, for other land
cover types, such as ENF, compared with extreme drought, severe drought has the greatest
effect on the degree of damage to vegetation productivity, indicating that different land
types respond differently to drought during different seasons.
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Figure 9. Conditional probabilities of vegetation productivity losses under different scenarios in
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productivity losses under moderate, severe and extreme drought, respectively. GPP loss1, GPP loss2,
GPP loss3 and GPP loss4 represent GPP ≤ 10th, ≤ 20th, ≤ 30th, and ≤ 40th percentiles, respectively.
The error bars indicate ±1 standard error.
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Figure 10. Conditional probabilities of vegetation productivity losses under different drought
scenarios in different land cover types when the GPP≤ 40th percentile in March–May. (a–c) represent
conditional probabilities of vegetation productivity losses under moderate drought, severe drought
and extreme drought, respectively. Boxes represent interquartile ranges of the values of 25th and
75th percentiles (Q25, Q75), whiskers cover Q25 − 1.5 × (Q75 − Q25) to Q75 + 1.5 × (Q75 − Q25),
horizontal lines represent the median, black empty squares represent the mean, and black solid
diamonds indicate outliers.

4. Discussion
4.1. Estimating GPP and Drought’s Effects on GPP

In this study, special attention was given to determining water stress (including
atmosphere vapor pressure deficit, soil moisture content and the humidity deficit) in the
LUE model to estimate the global GPP. We found that different LUE models have a good
fit-in estimating the LUE GPP (R2 exceed 0.7). Cai et al. [42] showed that the range of global
GPP estimated by different light energy utilization efficiency models was 95–140 Pg C yr−1,
which is consistent with this study’s estimation results. Generally, because of the lack
of water during drought periods, vegetation’s stomatal conductance tends to decrease
to minimize water loss and prevent hydraulic conductivity loss [43,44], which reduces
GPP. Many studies have shown that drought reduces terrestrial ecosystem carbon sinks
significantly, and may even transform them into carbon sources [13,45]. However, our
results showed that approximately 30% of the global GPP values increased after being
disturbed by drought (Figure 2b), a phenomenon attributable to climatic factors’ influence.
Our results showed that GPP is correlated negatively with temperature and solar radiation
in arid and semiarid areas, while the converse is true in humid and semi-humid areas.
Further, GPP is correlated positively with soil moisture globally. When a drought episode
occurs, because of lower radiation and temperature, and the replenishment of soil moisture
in the high latitudes of the Northern Hemisphere, Eastern Asia, the Amazon River basin
and Central Africa, it causes an increase in GPP in these regions relative to those in non-dry
periods (as shown in Figure 11). This result can be confirmed by Zhao and Runing [46]. In
contrast, in most parts of the world, GPP decrease during drought periods because of the
increase in radiation and temperature and the decrease in soil moisture.
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4.2. Terrestrial Ecosystems’ Drought Resistance

Terrestrial ecosystems’ drought resistance can be characterized as: a water deficit must
continue for a period of time before negative anomalies occur in ecosystem variables [47].
In this study, response time of productivity to water availability was defined according to
timescales over which the maximum GPP-SPEI correlations were recorded. To some extent,
the response time of vegetation productivity to drought can characterize terrestrial ecosys-
tems’ drought resistance. Our research results showed that 56.8% of the global terrestrial
ecosystems’ response time to water availability is based largely on short- and medium-term
time scales. Because different hydrological backgrounds and vegetation composition affect
terrestrial ecosystems, their drought resistance demonstrates strong spatial heterogeneity.
In Canada, Northwestern Colombia, Eastern Russia, and Northeastern and Southeastern
regions China, the response time of vegetation productivity to SPEI is relatively long,
usually greater than 12 months. The longer the response time to water availability changes
in these regions, the stronger the vegetation productivity’s capacity to withstand long-term
water shortages. Seasonal changes also affect the resistance of the ecosystem to drought
in the same region, particularly in mid-to-high latitude regions (Figure S3). Taking the
mid-to-high latitude regions of the Northern hemisphere as an example, it can be seen that
the proportion of GPPs in the high latitude with a longer response time to SPEI decreases
gradually with the passage of seasons. This result indicates that vegetation has a strong
resistance to drought in the early stage of growth, and as subsequent vegetation growth
requires considerable water, the occurrence of drought at this stage is more likely to cause
vegetation productivity to decline.

Climatic conditions and different types of land cover often affect terrestrial ecosystems’
drought resistance [48,49]. Our results showed that as the climatic conditions become grad-
ually humid, the response time of vegetation productivity to changes in water availability
increases. This indicates that vegetation productivity in arid and semiarid areas is more
vulnerable to drought than in humid and semi-humid areas. Vicente-Serrano et al. [49]
also found that arid biomes respond to drought at short time-scales. This may be related
to the adaptation strategies of vegetation to water availability in different climate zones.
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When a water deficit occurs, arid ecosystems adapt quickly to water shortages by reducing
water loss and respiratory costs and increasing growth rates. Fang et al. [20] demonstrated
that, as there is a long-term water surplus in humid areas, a short-term drought can not
cause changes in vegetation productivity easily. Further, our results revealed different
land biomes’ role in drought resistance. By comparing GPP’s response time to SPEI under
different land cover types, we found that DNF, OS, EBF, and ENF have a greater ability to
adapt to drought, while WSA, MF, SAV, and GRA have a weak ability to resist and mitigate
drought. Forests generally have deep root systems, and thus, under severe drought condi-
tions, they can use the water stored in the deep soil to achieve strong resistance to drought.
Whether drought disturbs a forest ecosystem is related closely to its intensity and duration.
The water use strategy of shrubs is generally to increase the use of surface soil water during
non-arid periods and absorb deep soil water during dry periods to maintain their own
production needs [50]. However, herbaceous plants’ xylem system has low water and
carbon storage capacity compared with that of woodland and shrubs, so it is less resistant
to drought. Ivits et al. [51] found that steppic ecosystems also showed weak resistance
against drought. Our results are more consistent with the research above.

4.3. The Significance for Ecosystem Management of Estimating the GPP Loss Probability

We developed an optimal bivariate probabilistic model to derive the vegetation pro-
ductivity loss probabilities under different drought scenarios using copula method. The
vegetation productivity loss probability drought causes can also reflect the ability of terres-
trial ecosystems to resist interference. Under the same drought conditions, the higher the
probability of vegetation loss, the weaker the resistance to drought. Our results showed that
arid and semiarid areas have higher conditional probabilities of vegetation productivity
losses under different drought scenarios. The productivity loss probability of EBF, DNF,
OS, SAV, and GRA showed an increasing trend during different seasons. Quantifying the
probability of varying degrees of damage to vegetation productivity under predictable
drought scenarios has great significance in mitigating and adapting to global changes.
However, there is none of the comparisons either between vegetation are types or the
prediction is self are not statistically significant. Huang et al. [52] found that the persistence
of a water deficit (11 months) with an intensity of −1.64 (SPEI) led to negligible growth
of conifer species. Berdugo et al. [53] showed that aridification can lead to systemic and
abrupt changes in multiple ecosystem attributes. Therefore, in future studies, to determine
how much drought can cause significant changes in ecosystem productivity and to estimate
the corresponding GPP loss probability can better reflect the differences between arid to
humid areas.

5. Conclusions

In this study, we explored satellite-observed global terrestrial vegetation production
in response to water avaliability by determining gobal vegetation productivity’s seasonal
dynamics in response to drought in various climate zones and land biomes and quanti-
fying its vulnerability under predictable drought scenarios. Our primary conclusions are
as follows:

1. Different LUE models have a good fit effect in estimating GPP. The fitting R2 of VPDGLO-
SM, VPDMOD-SM, VPDGLO-ETR and VPDMOD-ETR were 0.7739, 0.7399, 0.7427, 0.7459
and 0.7628, respectively. From 1982 to 2015, the global mean annual GPP of terrestrial
vegetation continued to increase at an average rate of 0.134 Pg C a −1 (p < 0.001), but
its growth rate declined after the mid-1990s. GPP is expected to decrease in 71.91% of
the global land vegetation area because of increases in radiation and temperature and
decreases in soil moisture during drought periods.

2. Vegetation productivity and water availability are largely correlated positively glob-
ally. Further, seasonal changes also affect vegetation productivity’s dependence upon
water availability. The correlation coefficient between GPP and SPEI declined from
0.76 to 0.47 as the climatic conditions became gradually humid, indicating that the
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vegetation productivity in arid and semiarid areas depends more heavily on water
availability than that in humid and semi-humid areas. Various land cover types have
different adaptation strategies to the increase and loss of water resources, and the
productivity of GRA, SAV, and DBF has a higher correlation with water availability.

3. 56.8% of the global terrestrial ecosystems’ response time to water resources is based
primarily on short and medium-term time scales (3–6 months). The GPP’s mean
response time to SPEI increased from 3.9 to 8.9 months as the climatic conditions be-
came gradually humid, which indicates that the capacity of productivity of vegetation
in arid and semiarid areas to withstand long-term water shortages is weaker than
that in humid and semi-humid areas. The land cover types that are more relevant to
water availability are often accompanied by weak drought resistance, while DNF, OS,
EBF and WET have a stronger ability to resist long-term water deficits.

4. Under the scenario of the same level of GPP damage with different drought degrees,
as droughts increase in severity, GPP loss probabilities increase as well. Further,
under the same drought severity with different levels of GPP damage, drought’s
effect on GPP loss probabilities weakens gradually as the GPP damage level increases.
Similar patterns were observed in different seasons. Our results showed that arid and
semiarid areas have higher conditional probabilities of vegetation productivity losses
under different drought scenarios. The productivity loss probability of EBF, DNF, OS,
SAV, and GRA show an increasing trend in different seasons, and different land types
have different responses to drought in different seasons.
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.3390/rs13071289/s1, Figure S1: Geographical patterns of the annual ensemble mean LUE model
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values at 10th (a), 20th (b), 30th (c) and 40th percentiles (d) during December–February, Figure S7:
Conditional probabilities of vegetation productivity losses under different drought scenarios in June-
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scenarios in September–November, Figure S9: Conditional probabilities of vegetation productivity
losses under different drought scenarios in December–February, Figure S10: Conditional probabilities
of vegetation productivity losses under different scenarios in various climatic regions in June–August,
Figure S11: Conditional probabilities of vegetation productivity losses under different scenarios in
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productivity losses under different scenarios in various climatic regions in December–February,
Figure S13: Conditional probabilities of vegetation productivity losses under different scenarios in
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