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Abstract: Deep learning provides a promising approach for air pollution prediction. The existing
deep learning-based predicted models generally consider either the temporal correlations of air
quality monitoring stations or the nonlinear relationship between the PM2.5 (particulate matter with
an aerodynamic diameter of less than 2.5 µm) concentrations and explanatory variables. Spatial
correlation has not been effectively incorporated into prediction models, therefore exhibiting poor
performance in PM2.5 prediction tasks. Additionally, determining the manner by which to expand
longer-term prediction tasks is still challenging. In this paper, to allow for spatiotemporal correlations,
a spatiotemporal convolutional recursive long short-term memory (CR-LSTM) neural network model
is proposed for predicting the PM2.5 concentrations in long-term prediction tasks by combining
a convolutional long short-term memory (ConvLSTM) neural network and a recursive strategy.
Herein, the ConvLSTM network was used to capture the complex spatiotemporal correlations and to
predict the future PM2.5 concentrations; the recursive strategy was used for expanding the long-term
prediction tasks. The CR-LSTM model was used to realize the prediction of the future 24 h of PM2.5

concentrations for 12 air quality monitoring stations in Beijing by configuring both the appropriate
time lag derived from the temporal correlations and the spatial neighborhood, including the hourly
historical PM2.5 concentrations, the daily mean meteorological data, and the annual nighttime light
and normalized difference vegetation index (NDVI). The results showed that the proposed CR-LSTM
model achieved better performance (coefficient of determination (R2) = 0.74; root mean square
error (RMSE) = 18.96 µg/m3) than other common models, such as multiple linear regression (MLR),
support vector regression (SVR), the conventional LSTM model, the LSTM extended (LSTME) model,
and the temporal sliding LSTM extended (TS-LSTME) model. The proposed CR-LSTM model,
implementing a combination of geographical rules, recursive strategy, and deep learning, shows
improved performance in longer-term prediction tasks.

Keywords: air pollutant; PM2.5; ConvLSTM; spatiotemporal correlation; long-term prediction

1. Introduction

Fine particulate matter with an aerodynamic diameter <2.5 µg (PM2.5) is one of the
most significant sources of air pollution in urban areas [1,2]. Long-term exposure to heavy
PM2.5 concentrations is related to adverse effects on human organs and, furthermore,
causes cardiovascular diseases [3–7]. Many cities in China still face haze pollution due
to the energy consumption caused by human activities and economic development in
recent years [8]. PM2.5 pollution has received increasing attention from the public in
China since 2013 [9]. Since 2013, approximately 1500 air quality monitoring stations across
China have been built to accurately monitor the ground-level air quality conditions in
real time. Therefore, it is meaningful to predict PM2.5 concentrations in advance using
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these established air quality monitoring stations to prevent major accidents caused by air
pollution, thus assisting in atmospheric management decisions and controlling major air
pollution events.

Previous studies [3,10,11] introduced two classes of models for predicting PM2.5
concentrations—deterministic models and statistical models. Deterministic models predict
PM2.5 concentrations by simulating physical transmission and the chemical reactions of
air pollutants [3,12]. Despite the progress made by those methods, they suffer from expen-
sive computation due to the photochemical dispersion mechanism and uncertainties in
emissions, which is not suitable for air quality prediction in large-scale areas [11,13–15].
Statistical models, mainly referring to machine- or deep-learning techniques, can fit the
complicated relationship between PM2.5 concentrations and exogenous variables [16,17]
and reach a prediction accuracy almost comparable to deterministic models [18,19]. Due to
their incredible speed, lower costs, and lower requirement for prior knowledge, statistical
models are widely used in prediction tasks [17,20–24]. With improvements in computa-
tional capacity and deep learning theory, these models can achieve better performance in
PM2.5 concentrations prediction tasks, providing a promising prospect for expanding the
application of statistical models in atmospheric environmental science [16,17,25].

Existing studies show that machine learning- and deep learning-based models have
been widely applied in atmospheric environmental modeling for the monitoring and pre-
diction of air pollutants, such as the multilayer perceptron (MLP) model [26,27], the back-
propagation neural network (BPNN) model [28], support vector regression (SVR) [28,29],
the random forest (RF) model [30–32], the general regression neural network (GRNN)
model [28,33], the recurrent neural network (RNN) model [34], and long short-term mem-
ory (LSTM)-based models [11,35–38]. The careful reasoning process in machine learning-
based models (such as MLP, SVR, and RF) is comparable to mathematical reasoning [11].
However, those models generally exhibit linear relationships between PM2.5 concentra-
tions and exogenous variables. The models’ structures are relatively simple, resulting in
disadvantages in extracting the complex nonlinear relationships between input and output
variables [3,39]. Additionally, the fault-tolerant ability of machine learning-based models
for training samples is unsatisfactory. However, deep learning-based models have satisfac-
tory addictiveness and robustness and can overcome the defects of machine learning-based
models [17,22]. Among those deep learning-based prediction models (such as GRNN,
BPNN, RNN, and LSTM), the LSTM model can capture temporal autocorrelations and
can be widely used in prediction tasks by configuring the corresponding mechanisms
for historical time series data [11,20]. More importantly, the LSTM model can overcome
gradient explosion and disappearance in error backpropagation and is much better at
capturing long short-term information [11,36]. Many LSTM-based models for predicting
air quality have been proposed, such as LSTM extended (LSTME) [40], convolutional LSTM
extended (C-LSTME) [10], graph convolutional LSTM (GC-LSTM) [24], deep multi-output
LSTM (DM-LSTM) [41], Read-first LSTM (RLSTM) [36], convolutional neural network
LSTM (CNN-LSTM) [42], and temporal sliding LSTM extended (TS-LSTME) [11] models.
However, there are several key limitations in PM2.5 concentration prediction tasks for
LSTM-based models. First, various studies have demonstrated that spatiotemporal correla-
tions play a major role in influencing changes in air pollution [3,11,16,22,32,43,44]. Previous
studies [11,40] have generally considered the temporal correlations of air pollution. In
contrast, spatial correlations have not been effectively incorporated into the corresponding
models, affecting these models’ PM2.5 concentration prediction performance. For exam-
ple, Mao [11] proposed a TS-LSTME model for predicting the 24-h PM2.5 concentration
in areas in Jin-jing-ji based on the conventional LSTM model and sliding prediction. Si-
multaneously, spatial correlations among air quality monitoring stations have only been
applied to reference partitioning modeling strategies rather than incorporated into slid-
ing prediction tasks. Therefore, it is worth discussing the manner in which to effectively
capture and quantify spatial correlation. Second, conventional LSTM-based models are
suitable for long short-term prediction tasks but longer-term prediction tasks (up to or
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greater than 24-h prediction) generally exhibit poor performance. For example, Wen [10]
proposed a C-LSTME model for predicting the PM2.5 concentrations in Beijing and across
the whole of China through the combination of a convolutional neural network (CNN) and
the conventional LSTM model, but it still can’t be good at longer-term prediction tasks.
Compared to short-term predictions, such as 1-h predictions, expanding longer-term PM2.5
concentrations prediction can better assist in early warning and air pollution management.

In this study we propose a spatiotemporal convolutional recursive long short-term
memory (CR-LSTM) neural network model for predicting PM2.5 concentrations in long-
term prediction tasks by allowing for the spatiotemporal correlations of air pollution
through the combination of a convolutional long short-term memory (ConvLSTM) neural
network and the recursive strategy. A regional spatial station representation method was
used to readjust to the location relationship among air quality monitoring stations to adapt
to the data input requirement of the ConvLSTM network. The conventional LSTM model
itself can only capture the temporal correlation of individual air quality monitoring stations.
The ConvLSTM network, adding a convolution operation to the conventional LSTM model,
captures not only temporal correlations similarly to the LSTM model, but also extracts
spatial correlations similarly to a CNN [20,45]. Meanwhile, the recursive strategy was used
for expanding long-term prediction tasks. Although the ConvLSTM network captures
temporal correlations, a proper recursive period in the proposed CR-LSTM model needs to
be configured for long-term prediction tasks. Pearson’s correlation coefficient was used to
quantify the temporal correlation of air quality monitoring stations. The optimizing time
lag derived from the temporal correlations of air quality monitoring stations was achieved
and set as the period of recursive prediction of the proposed CR-LSTM model. Additionally,
daily mean meteorological data, geographic conditions, human activities, and time features
were incorporated into the proposed CR-LSTM model to improve its performance. Taking
the hourly historical PM2.5 concentrations and daily mean meteorological data for Beijing
from 1 January 2014 to 31 December 2019, as well as the annual nighttime light and
normalized difference vegetation index (NDVI) data from 2014 to 2019, as the case study,
a 24-h PM2.5 concentration prediction task was built with the proposed CR-LSTM model
and the performance was verified. The results show that the proposed CR-LSTM model
achieved better performances (all test samples: coefficient of determination (R2) = 0.74, root
mean square error (RMSE) = 18.96 µg/m3, and mean absolute error (MAE) = 12.89 µg/m3;
daily samples: R2 = 0.80, RMSE = 15.53µg/m3, and MAE = 10.18µg/m3) than the current
common models (i.e., multiple linear regression (MLR), SVR, conventional LSTM, LSTME,
and TS-LSTME). According to the daily mean of Level 2 of the China Ambient Air Quality
Standards (CAAQS) introduced in 2012 (>75 µg/m3) [46], such performance can assist early
warning and management service for air pollution. Thus, the model has broad application
prospects in atmospheric environmental science.

The remainder of this paper is organized as follows: Section 2 introduces the study
areas, data source, and the structure of the proposed CR-LSTM model. Section 3 outlines
the results and analysis of the proposed CR-LSTM model based on a 24-h PM2.5 concentra-
tion prediction task. Section 4 represents a comparison of the model with other models,
discussing the sensitivity analysis of time lag and meteorological dynamics, and presents
both the contributions and limitations of this study. Section 5 concludes this paper.

2. Materials and Methods
2.1. Study Area and Data Source

Since 2013, China has established many air quality monitoring stations and has
become aware of the adverse impact on human health from excessive PM2.5 concentrations.
China has come a long way in its journey to reduce harmful emissions. However, the
Jing-Jin-Ji region is still of critical concern with regard to its air pollution management
practices [8]. Beijing, as the capital of China, is one of the most prosperous cities in
China, with a permanent resident population of 21.53 million in 2019. However, the city
still faces haze pollution. According to the Beijing Municipal Ecology and Environment
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Bureau (http://sthjj.beijing.gov.cn/ (accessed on 4 January 2021)), the yearly mean PM2.5
concentration in Beijing was 38µg/m3 in 2020, exceeding Level 2 of the China Ambient Air
Quality Standards introduced in 2012 (>35 µg/m3), and was nearly four times higher than
the World Health Organization (WHO) standard in 2019 (10 µg/m3) [47].

Our study collected the hourly historical PM2.5 concentrations and daily mean me-
teorological data of 12 air quality monitoring stations in Beijing from 1 January 2014 to
31 December 2019, as well as the annual nighttime light and NDVI data from 2014 to 2019, to
verify the proposed CR-LSTM model’s performance. The hourly historical PM2.5 concentra-
tion and daily mean meteorological data came from the National City Air Quality Real-Time
Publishing Platform (http://106.37.208.233:20035/ (accessed on 4 January 2021)) and the
Meteorological Data Service Center (http://data.cma.cn/en (accessed on 4 January 2021)),
respectively. The nighttime light and NDVI data were obtained from the Earth Observation
Group (https://eogdata.mines.edu/products/vnl/#annual_v2 (accessed on 4 January
2021)) and the Resource and Environment Data Cloud platform (http://www.resdc.cn/
(accessed on 4 January 2021)), respectively. The adjacent short-term value interpolated
the missing PM2.5 concentrations and meteorological data. The meteorological data in-
cluded the wind speed (WS; m/s), relative humidity (RHU; %), surface pressure (PRS;
Pa), temperature (TEM; ◦C), precipitation (PRE; mm), and sunshine duration (SSD; h).
The meteorological data were matched to air quality monitoring stations through inverse
distance weighted (IDW) interpolation. We extracted the pixel value of the nighttime light
and NDVI data closest to air quality monitoring stations. Figure 1 shows the study area
and the location of the 12 air quality monitoring stations, while Table 1 shows the statistics
of the 12 air quality monitoring stations in Beijing.
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Table 1. Information on the variables of the 12 air quality monitoring stations in Beijing.

Variables Unit Range Mean Variance

PM2.5 µg/m3 [1, 1000] 64.16 69.89

WS m/s [0.4, 25.68] 2 2.38

RHU % [4.27, 94.94] 42.14 21.5

PRS hPa [930.20, 1037.73] 975.14 28.25

TEM ◦C [−18.09, 32.27] 12.9 11.35

PRE mm [0, 159.63] 1.51 5.75

SSD h [0, 13.82] 6.84 3.74

Nighttime light N/A [0.36, 62.10] 26.65 16.54

NDVI N/A [0.27, 0.90] 0.53 0.20

Season N/A [1, 4]
One-hot encoding

Month N/A [1, 12]
Note: PM2.5, particulate matter with an aerodynamic diameter of less than 2.5 µm; WS, wind speed; RHU, relative
humidity; PRS, surface pressure; TEM, temperature; PRE, precipitation; SSD, sunshine duration.

2.2. CR-LSTM Model

A previous study [11] demonstrated the significant spatiotemporal correlation be-
tween PM2.5 concentrations of air quality monitoring stations in the Beijing–Tianjin–Hebei
region. The spatial correlation of 12 air quality monitoring stations is more significant in
Beijing (R2 > 0.81) [11]. Therefore, the modeling process should consider the spatiotem-
poral correlation of air pollution. Additionally, the temporal correlation in individual
air quality monitoring stations is also significant through Pearson correlation coefficient
analysis. Figure 2 shows the temporal correlation decrease with the increase of the time
lag. When the time lag is equal to 12, the Pearson correlation coefficient for 12 air quality
monitoring stations is between 0.59 and 0.68. The smaller the time lag, the higher the
temporal correlation. The analysis above shows that the spatiotemporal correlation is
necessary for the process of modeling. Due to the significant temporal correlation between
individual air quality monitoring stations, the combination between recursive strategy
and the ConvLSTM network extends the longer-term prediction task and makes up for
the shortcoming of the conventional LSTM-based network in long-term prediction tasks.
These features allowed us to gain the theoretical basis we needed for constructing the
CR-LSTM model.
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2.2.1. The Regional Spatial Station Representation Method

Due to the irregular distribution of the 12 air quality monitoring stations in Beijing
(Figure 1), these uneven distributions were not input into the ConvLSTM network. Con-
sidering Tobler’s First Law of Geography [3,48], a regional spatial station representation
method was used to reorganize the 12 air quality monitoring stations into a regular dis-
tribution, using the location relationships (longitude and latitude) to adapt to the data
input requirements of the ConvLSTM network, which was viewed as an approximate
representation of regional PM2.5 concentration distribution. Additionally, a CNN, as part
of a ConvLSTM network and a typical deep learning algorithm, can consider the neighbor-
hood information to extract image features via the convolution kernel operation, which
is also used to mine complex spatial relationships around neighborhoods [49,50]. In our
study, a CNN was used to capture and quantify the complex spatial correlation of air
pollution. Figure 3 shows the reorganized distribution of the 12 air quality monitoring
stations in Beijing.
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2.2.2. The LSTM Neural Network

The LSTM neural network, a special type of recurrent neural network (RNN), com-
prised an input layer, an output layer, and a series of memory blocks. Herein, each block
had three central units (an input gate, an output gates, and a forget gate) that stored long-
term data dependencies. Compared to an RNN, the LSTM model can overcome gradient
explosion and disappearance in error backpropagation and is much better at capturing long
short-term information. Figure 4 represents the structure of the conventional LSTM model.
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Three gating mechanisms control information transmission in the LSTM model.
Herein, the input gate was responsible for inputting the external information into the
memory block. The forget and output gates were used for controlling the information that
needed to be saved or released from the LSTM block. The conventional LSTM network
guided the information transmission through the forget gate ft, the input gate it, and the
output gate ot. Xt, Ct, and ht represent the input, internal and external state at time t,
respectively. The detailed information transformation in the LSTM block is as follows:

ft = σ
(

W f [ht−1, xt] + b f

)
(1)

it = σ(Wi[ht−1, xt] + bi) (2)

ct= tanh(Wc[ht−1, xt] + bc) (3)

Ct= ft ∗ Ct−1 + it ∗ ct (4)

ot = σ(Wo[ht−1, xt] + bo) (5)

ht= ot ∗ tanh(Ct−1) (6)

where W and b represent the weights and bias between the transmission layers of the LSTM
block; Xt, ht, and Ct are the input, output and memory information at time t; it, ot, and ft
represent the input, output, and forget gates, respectively; and σ (Sigmoid) and tanh are the
activation functions, and the formulas are as follow:

σ =
1

1 + e−x (7)

tanh(x) =
ex − e−x

ex + e−x (8)

2.2.3. The ConvLSTM Neural Network

The conventional LSTM model itself only can capture the temporal correlation of
individual air quality monitoring stations. However, the ConvLSTM network, adding
a convolution operation to the traditional LSTM model, captures temporal correlations,
similarly to the LSTM model, and the spatial correlations among air quality monitoring
stations similarly to the CNN, extracting the complex spatiotemporal correlation charac-
teristics of air pollution (Figure 5) [35]. Additionally, the ConvLSTM network can also
overcome gradient explosion and disappearance in error backpropagation, resulting in
the better capture of long short-term and neighbor information than the conventional
LSTM network. Similarly to the LSTM networks, the ConvLSTM network also provides
information transmission through the forget gate ft, the input gate it, and the output gate ot.
Xt, Ct, and ht refer to the input, internal, and external states at time t, respectively. However,
the forget gate ft, the input gate it, and the output gate ot are calculated through states Xt
and ht-1 by convolution operation and batch normalization (BN) (Equations (9)–(12)), as
well as the internal Ct-1 or Ct. Compared to the conventional LSTM model, the ConvLSTM
network is better able to capture longer-term information dependencies. The formulas of
information transmission in the ConvLSTM network are as follows:

Nt= BN(Wxxt) + BN(Whht−1) + bN (9)

it = σ(Nt + Wci ◦ ct−1 + bi) (10)

ft = σ
(

Nt + Wc f ◦ ct−1 + b f

)
(11)

Ct= ft ◦ ct−1+it ◦ tanh(Nt + bc) (12)

ot = σ(Nt + Wco ◦ Ct + bo) (13)
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ht = ot ◦ tanh(Ct) (14)

where Nt is the intermediate variable for the input feature at current moment t, computed
by the convolution operation; Wx and Wh are the weight matrixes for the intermediate
variable Nt; BN represents the batch normalization operation; Wci and Wcf are the weight
matrixes for the variables between internal Ct-1 and input gate it and between Ct-1 and
forget gate ft, respectively; Wco is the weight matrixes for the variables between internal
Ct and output gate it; bN, bi, bf, bc, and bo are the corresponding biases; and ◦ is the
matrix operation.
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2.2.4. The CR-LSTM Model

In our study, to allow for spatiotemporal correlations, a spatiotemporal CR-LSTM
model was proposed by combining a ConvLSTM neural network and the recursive strategy
for predicting future 24-h PM2.5 concentrations for the 12 air quality monitoring stations in
Beijing. Figure 6 shows the framework of the proposed CR-LSTM model. Although the
ConvLSTM network can predict long short-term prediction tasks, longer-term prediction
(up to or greater than 24 h) tasks exhibit poor performance. The recursive strategy was
introduced to a ConvLSTM network to extend the long-term prediction task, exploring
the prediction potential of said ConvLSTM network in longer-term prediction tasks. A
previous study [11] proved that the recursive strategy can improve the conventional LSTM
model’s prediction ability in long-term prediction tasks. The CR-LSTM model mainly
consists of three parts as follows.

Part 1: Spatiotemporal Correlations Configuration
The aim of the first part was to configure the spatiotemporal correlations among

air quality monitoring stations and to incorporate them into the ConvLSTM block/unit.
The detailed processes were as follows: (1) the spatial correlations of the 12 air quality
monitoring stations in Beijing were between 0.81 and 0.97, verifying the necessity of spatial
correlations in modeling. The regional spatial station representation method was used to
reorganize the 12 air quality monitoring stations in Beijing into a regular distribution using
the location relationships (longitude and latitude) to adapt to the data input requirements
of the ConvLSTM block. The appropriate receptive field (neighborhood) was configured
to quantify the spatial correlation of air pollution. (2) Pearson’s correlation coefficient
analysis showed significant temporal correlations for the 12 air quality monitoring stations
in Beijing (Figure 2). Since the next prediction results rely on the previous prediction
results in the proposed CR-LSTM model, more recursive iterations will result in error
accumulation and poor performance. The increase in the number of recursive iterations
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also increases the number of ConvLSTM units, resulting in expensive computation. Thus,
the period of the recursive strategy in the CR-LSTM model affects the model’s performance.
In our study, temporal correlations were used to obtain the optimizing time lag r in
the recursive prediction task. (3) The ConvLSTM network captured the spatiotemporal
correlations of air quality monitoring stations. The configured spatiotemporal correlations
were incorporated into the model and were used as the inputs of the ConvLSTM network
of the CR-LSTM model.
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Part 2: Recursive Prediction Configuration
Part 2 focuses on the crucial component of the proposed CR-LSTM model. The

ConvLSTM network can also predict future PM2.5 concentrations. However, it is more
suitable for long short-term prediction tasks. Longer-term prediction tasks exhibit poor
performance. Previous studies [10,11] have also demonstrated that the accuracy of LSTM-
based models decreases significantly as the prediction time interval increases. Longer-term
prediction (up to or greater than 24 h) tasks are a challenge for LSTM-based models. The
starting point of the proposed CR-LSTM model lowers the model’s prediction error for
a longer prediction period of time by combining the recursive strategy and adding the
ConvLSTM block, expanding the model’s prediction ability in longer-term prediction tasks.
The detailed processes of recursive prediction were as follows: (1) the optimizing time
lag r was obtained through Pearson’s correlation coefficient analysis and the appropriate
receptive field (neighborhood) was configured from experience. (2) The continuous hourly
historical PM2.5 concentrations for the 12 air quality monitoring stations during time
interval r and those of the neighboring stations within the N×N window were captured
through the bidirectional ConvLSTM layer and the fully connected layer, and the hour-by-
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hour prediction results within future r hours (output 1) for the 12 air quality monitoring
stations were then forecasted. Since the ConvLSTM network generally exhibits good
performance for short-term prediction tasks, the time lag r was configured through a
trade-off between accuracy and computational expense. Subsequently, the hour-by-hour
prediction results within the future r hours (output 1) and the data for the neighboring
stations within the N×N window input into the next bidirectional ConvLSTM layer and the
fully connected layer, as well as the hour-by-hour prediction results from r to 2*r (output 2)
in the future, were obtained. In this iteration, longer-term hour-by-hour prediction results
(output 3, . . . , output n) can be achieved. Finally, the multi-period hour-by-hour prediction
results (output 1, output 2, . . . , output n) were concatenated and input into the next fully
connected layer. In the recursive prediction, the selection of time lag r is key to the CR-
LSTM model. For specific prediction tasks, a larger r will affect the model’s accuracy in the
period of prediction; a smaller r will add to the number of recursive iterations, resulting
in error accumulation and expensive computation. In our study, we proposed that the
time lag r could be achieved by observing the characteristics of the data and their temporal
correlations. In summary, Pearson’s correlation coefficient analysis was one of the tools for
obtaining the optimizing time lag r.

Part 3: Auxiliary Data Incorporation
Previous studies [51–53] have shown that synoptic conditions are an essential con-

tributor to PM2.5 concentrations. For example, precipitation can wash particles, including
PM2.5 particles, reducing the PM2.5 concentration; a higher temperature will significantly
dilute surface air pollution, decreasing the PM2.5 concentration. Additionally, the PM2.5
concentration also shows significant seasonal effects: The PM2.5 concentration is highest in
the winter and lowest in the summer. Additionally, geographical conditions and human
activities also affect the distribution of PM2.5 concentrations. Many studies [10,11,14,34,37]
have also incorporated synoptic conditions, geographical conditions, human activities, and
season effects into the corresponding models to improve the models’ performance. Our
study assumed that the combination of the internal historical change trend derived from
the air quality monitoring stations and the dynamic disturbance of the synoptic conditions,
geographical conditions, human activities, and seasonal effect together affect future PM2.5
concentrations. Hence, the previous layer’s outputs and auxiliary data (synoptic condi-
tions, geographical conditions, human activities, and seasonal and month effects) were
flattened, input into a fully connected layer, and the final hour-by-hour prediction results
for the 12 air quality monitoring stations were obtained. The synoptic conditions included
wind speed, relative humidity, surface pressure, temperature, precipitation, and sunshine
duration; the geographical conditions and human activities were quantified by the NDVI
and nighttime light data, respectively. All of the above were normalized by using the
min–max scaling method. The seasonal and month effects consisted of the four seasons and
12 months, achieved by one-hot encoding. In the future, more exogenous variables derived
from auxiliary data (e.g., topographic data, wind direction, and socio-economic data) will
also be incorporated into the corresponding models based on actual business requirements.

In addition, the activation function of the ConvLSTM block is the rectified linear unit
(ReLU). The regularization (L2) and dropout (0.1) were used in the fully connected and Con-
vLSTM layers. The RMSE, the MAE, and the R2 were used to test the model’s performance.

3. Results and Analysis
3.1. Pre-Processing of the Model

The proposed CR-LSTM model could, in theory, be used to predict infinite long-term
PM2.5 concentrations via the recursive strategy. However, the temporal correlation of air
quality monitoring stations decreases as the time lag increases. Since the following predic-
tion results relied on the previous prediction results, an increasing number of recursive
iterations would result in significant error accumulation, especially in the last recursive
stage. Generally, the model’s performance in the last recursive stage was the worst of
the total recursive prediction process due to the error accumulation. The hour-by-hour
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prediction results in the last recursive stage may not apply to the actual forecast scenario
due to the higher error accumulation. Hence, to improve the model’s performance and
to minimize the complexity of the model structure, the mean PM2.5 concentrations in the
last recursive stage were set as the model’s output rather than the hour-by-hour prediction
results. The detailed recursive processes were as follows. As shown in Figure 6, after
configuring the time lag r, it is grouped with the predicted long-term T to form the (T/r)
ConvLSTM units. Taking a 24-h (T = 24) prediction task as an example, when time lag r
sets to 6, the CR-LSTM model includes six (T/r = 6) ConvLSTM units: the first ConvLSTM
unit represents the first set of prediction results (output 1: 1–4 h), the second represents
the second set of prediction results (output 2: 5–8 h), the sixth represents the sixth set of
prediction results (output 6: The average PM2.5 concentrations from 20 to 24 h), and so on.
Through such a recursive prediction, the final continuous long-term prediction sequence
is formed.

Ultimately, the time lag r is the key to the CR-LSTM model, determining the time
interval of the prediction and the number of recursive iterations. In our study, temporal
correlations were used to optimize time lag r in the recursive prediction tasks. The hourly
historical PM2.5 concentrations of the 12 air quality monitoring stations in Beijing showed a
Pearson’s correlation coefficient between 0.59 and 0.68 when r = 12 (Figure 2). Such a high
temporal correlation can be selected as the time lag r of the CR-LSTM model. Hence, in
our study, for predicting future 24-h PM2.5 concentrations, the time lag r of the CR-LSTM
model was set as 12, the output of the CR-LSTM model included hour-by-hour predictions
of the future 1–12 h and the mean PM2.5 concentrations of the future 13–24 h. Tensorflow
deep learning lib was then used to build our proposed CR-LSTM model and to train the
corresponding model in the Jupyter notebook environment.

3.2. CR-LSTM Model Performance

In our study we collected the hourly historical PM2.5 concentrations and daily mean
meteorological data for Beijing from 1 January 2014 to 31 December 2019. Additionally, we
also collected the annual nighttime light and NDVI data from 2014 to 2019 and assumed
that these do not change within a year. The ratios for the training, verification, and test sets
were 60%, 20%, and 20%, respectively. In the ConvLSTM block, the receptive field was set
to 2 × 2, and the number of filters was set to 32. The nodes of the fully connected layer
in the CR-LSTM model were set to 1000. After determining the network architecture, the
CR-LSTM model for 24-h PM2.5 concentration prediction tasks in Beijing was established.
The inputs for the CR-LSTM network had five dimensions: the number of input samples,
the optimizing time lag r, the width of the image of the ConvLSTM block, the height of
the image of the ConvLSTM block, and the number of monitoring stations. The results
showed that the model’s performance for the 12 air quality monitoring stations in Beijing
was good (R2 = 0.74, RMSE = 18.96 µg/m3, and MAE = 12.89 µg/m3). The details of the
performance of the CR-LSTM model for the 12 air quality monitoring stations in Beijing
are shown in Table 2 and Figures 7 and 8. The R2 ranged from 0.64 to 0.78, the RMSE from
14.21 to 22.12 µg/m3, and the MAE from 10.16 and 14.75 µg/m3. These results indicate
that the proposed CR-LSTM model achieved good performance at both city and individual
station scales. According to the daily mean for Level 2 of the CAAQS introduced in 2012
(>75 µg/m3), such performance can assist early warning and management systems of air
pollution and has broad application prospects in atmospheric environmental science.

The hourly historical meteorological data were hard to obtain from the corresponding
agencies due to the high data security level in China, resulting in the large time interval
overlap in the test set for the existing samples. Using all test samples to evaluate the
model’s performance may have brought about a few biases. To minimize these biases
and to further explore the proposed CR-LSTM model’s performance at the daily scale, we
extracted the specified periods (12–23 h) of the previous day from the test set to predict
the daily PM2.5 concentrations on the next day (0–24 h). For example, the daily mean
PM2.5 concentration on 1 July 2019 can be predicted from the specified periods (12–23 h)



Remote Sens. 2021, 13, 1284 12 of 20

on 30 June 2019. As shown in Figure 9, the R2, RMSE, and MAE for the 12 air quality
monitoring stations in Beijing at the daily scale reached 0.8, 15.53µg/m3, and 10.81µg/m3,
respectively. Additionally, the R2 of the individual air quality monitoring station at the
daily scale ranged from 0.70 to 0.80, the RMSE from 13.57 to 19.98 µg/m3, and the MAE
from 9.41 to 13.04 µg/m3 (Figure 10). The results above show that the proposed CR-LSTM
model achieved good performance.

Table 2. Performance of the CR-LSTM model for the 12 air quality monitoring stations.

Station RMSE (µg/m3) MAE (µg/m3) R2

Beijing 18.96 12.89 0.74

1001A 16.52 11.01 0.70

1002A 18.71 12.45 0.72

1003A 19.82 13.35 0.69
1004A 14.21 10.16 0.78

1005A 16.82 11.52 0.67

1006A 20.15 13.56 0.68

1007A 21.98 14.75 0.68

1008A 18.75 13.18 0.70

1009A 20.62 14.01 0.68

1010A 21.52 13.99 0.67

1011A 22.12 14.38 0.64

1012A 21.11 13.69 0.69
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4. Discussion
4.1. Comparison of the Experiments

Other common models (i.e., MLR, SVR, LSTM, LSTME, and T-LSTME) were selected
for comparison with the proposed CR-LSTM model to determine its performance. The
MLR, SVR, and LSTM models only consider the hourly historical PM2.5 concentrations; the
LSTME and TS-LSTME consider the hourly historical PM2.5 concentrations, as well as the
daily mean meteorological data, the geographical conditions, and human activities, but
ignore the spatial correlations among air quality monitoring stations. Table 3 shows that the
performances of different models at day scale in Beijing, indicating that the proposed CR-
LSTM model achieved better performance than the other models. The comparison showed
that the deep learning-based models (LSTME, TS-LSTME, and CR-LSTM) were superior
to the machine learning-based models (MLR and SVR). Additionally, the comparison
between the recursive prediction models (TS-LSTM and CR-LSTM) and the conventional
LSTM-based models (LSTME and TS-LSTME) showed that the recursive strategy can
significantly improve model performance. The comparison between the CR-LSTM and
TS-LSTME models showed that spatial correlation can also improve model performance
(RMSE = 18.96 µg/m3 versus 19.87.00 µg/m3; MAE = 12.89 µg/m3 versus 13.24 µg/m3,
R2 = 0.74 versus 0.72). Therefore, it is reasonable to assume that the proposed CR-LSTM
model provides better PM2.5 concentration prediction than the other models for large-scale
regions, such as Jing-Jin-Ji in China.
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Table 3. Comparison of the experiments for the different models for 24-h prediction task in Beijing.

Model RMSE (µg/m3) MAE (µg/m3) R2

MLR 44.16 29.32 0.37
SVR 46.74 31.21 0.33

LSTM 24.84 17.76 0.51
LSTME 24.66 17.24 0.53

TS-LSTME 19.87 13.24 0.72
CR-LSTM 8.96 12.89 0.74

Figure 11 shows the performances (MAE) of the different models for the 12 air quality
monitoring stations at the daily scale in Beijing. The results indicate that the proposed
CR-LSTM model achieved better performance than the MLR, SVR, LSTM, and LSTME
models. Compared to the TS-LSTME model, the proposed CR-LSTM model achieved better
accuracy at most air quality monitoring stations.
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4.2. Rationality of Time Lag r Derived from the Temporal Correlation

The time lag r, key for the CR-LSTM model, was derived from the temporal correlation
analysis of the air quality monitoring stations. Selection of the proper time lag r based on
the temporal correlation analysis is worth discussing. A longer time lag r brings about a
lower prediction error, particularly in the recursive prediction period, especially in the last
time point, while a shorter time lag r brings about an increase in the number of recursive
iterations and the complexity of model structure, resulting in error accumulation and
expensive computation. Hence, the time lag r was obtained through a trade-off between
accuracy and computation expense. In our study, we selected a Pearson’s correlation
coefficient value of approximately 0.6 as the time lag r, determined from experience.
Artificial judgment may be somewhat subjective. Hence, taking the future 24-h PM2.5
concentrations prediction as an example, we tried to setting multiple time lag values,
such as {4, 6, 8, 12, and 24}, in order to validate the rationality of the selected Pearson’s
correlation coefficient value of 0.6.

Table 4 shows the performance of the CR-LSTM model for different time lags r in
24-h prediction tasks. Generally, when the time lag r = 12, the proposed CR-LSTM model
exhibited better performance than the prediction results with the other time lag value. The
results also demonstrated that with an increase in the time lag r, the performance of the
proposed CR-LSTM model improved, demonstrating that error accumulation exists in
the prediction process along with recursive iterations. Additionally, a smaller r increased
the number of ConvLSTM units, thus significantly increasing the training operations.
However, the advantage of a smaller r is that it can improve the temporal resolution of
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the prediction results; For example, when r = 6, the hourly prediction time is 1–18 and
the mean PM2.5 concentration is obtained for 19–24 h; when r = 12,the hourly prediction
time is 1–12 and the mean PM2.5 concentration is obtained for 13–24 h. Our study provides
a Pearson’s correlation coefficient of 0.6 as the reference value of the time lag r in the
CR-LSTM model. The time lag r of the CR-LSTM model can also be adjusted based on
actual business requirements.

Table 4. Performance of the CR-LSTM model with different time lags r in 24-h prediction tasks.

Time Lag
(r)

Temporal
Correlation Structure of ConvLSTM Unit Number of Recursive

Iterations
RMSE

(µg/m3 )
MAE

(µg/m3) R2

4 0.85–0.89 1–4 h→5–8 h→9–12
h→13–16→17–20 h→21–24 h average 6 25.17 14.64 0.54

6 0.77–0.80 1–6 h→7–12 h→13–18 h→19–24 h average 4 23.72 14.65 0.62
8 0.70–0.78 1–8 h→9–16 h→17–24 h average 3 21.63 14.12 0.67
12 0.59–0.68 1–12 h→13–24 h average 2 18.96 12.89 0.74
24 0.44–0.48 1–24 h 1 24.75 17.26 0.53

4.3. Sensitivity of the Spatiotemporal Dynamics Related to Meteorological Dynamics

Previous studies [51–53] have proved that synoptic conditions are an essential con-
tributor to the PM2.5 concentration. For example, Zhang [53] studied the impact of meteo-
rological changes on the PM2.5 mass reduction in key regions in China using the hourly
historical PM2.5 concentrations and meteorological data, further guiding us to consider
meteorological dynamics in modeling. The leave-one-out method for meteorological data,
which involves discarding a meteorological feature, was used to analyze the sensitivity
of the spatiotemporal dynamics related to meteorological dynamics for the proposed CR-
LSTM model. Due to the reduction in the model’s variables, the fully connected layer
nodes in the CR-LSTM model were set to 800. Table 5 shows the model’s performance in
different scenes. The results further proved that synoptic conditions affect the model’s
performance. Scenes 2–7 of Table 5 show that the RHU and TEM were relatively sensitive to
the other synoptic conditions (WS, PRS, PRE, and SSD) for the proposed CR-LSTM model,
closely followed by WS and PRE, while the sensitivity of PRS was the lowest. Table 5
(scene 8) demonstrates that the consideration of six sets of meteorological data obtained
the best performance in the proposed CR-LSTM model. However, increasing the number
of variables leads to complexity of the model structure and computation expense. Hence,
sensitivity analysis of variables helps to optimize the model by selecting the corresponding
variables through the trade-off of both accuracy and time efficiency.

Table 5. Performance of the CR-LSTM model in different scenes for the meteorological data.

Scenes Variables RMSE
(µg/m3)

MAE
(µg/m3) R2

1 PM2.5 24.66 17.24 0.53
2 PM2.5 + RHU+ PRS+ TEM + PRE + SSD (without WS) 22.03 13.54 0.69
3 PM2.5 + WS+ PRS+ TEM + PRE + SSD (without RHU) 22.58 15.80 0.68
4 PM2.5 + WS+ RHU+ TEM + PRE + SSD (without PRS) 20.97 13.17 0.72
5 PM2.5 + WS+ RHU+ PRS+ PRE + SSD (without TEM) 22.37 15.06 0.68
6 PM2.5 + WS+ RHU+ PRS+ TEM + SSD (without + PRE) 22.01 13.51 0.69
7 PM2.5 + WS+ RHU+ PRS+ TEM + PRE (without SSD) 21.63 13.51 0.70
8 PM2.5 + WS+ RHU+ PRS+ TEM + PRE + SSD 18.96 12.89 0.74

Note: PM2.5, particulate matter with an aerodynamic diameter of less than 2.5 µm; WS, wind speed; RHU, relative
humidity; PRS, surface pressure; TEM, temperature; PRE, precipitation; SSD, sunshine duration.

4.4. Contributions and Limitations

Our study proposed a spatiotemporal CR-LSTM neural network model for predicting
PM2.5 concentrations in longer-term prediction tasks by combining a ConvLSTM neural
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network and the recursive strategy. The proposed CR-LSTM model allows for efficient
spatiotemporal correlations of air pollution, while the recursive strategy expands long-term
prediction tasks. Longer-term air pollution prediction can also better assist in early warning
and air pollution management, showing higher practicalities. The critical contributions of
our study are as follows.

(1) We proposed a CR-LSTM model whose essential contribution is to expand longer-
term prediction tasks by efficiently considering spatiotemporal correlations and introducing
the recursive strategy.

(2) The proposed CR-LSTM model also has strong expansibility and practicability by
configuring the proper time lag r derived from temporal correlations.

(3) In the proposed CR-LSTM model, we selected the ConvLSTM block as the basic
unit of the CR-LSTM model, improving the model’s performance by efficiently considering
spatial autocorrelation. A comparison between the CR-LSTM model and other common
models (i.e., MLR, SVR, LSTM, LSTME, and T-LSTME) was used to evaluate the accuracy
and stability of the ConvLSTM block of the CR-LSTM model.

However, some limitations still exist in this study and some work needs to be com-
pleted in the future. First, our study did not consider spatiotemporal heterogeneity. A
previous study [54] proposed geographically and temporally weighted regression (GTWR)
to capture spatiotemporal heterogeneity, while the spatiotemporal relationship is still not
clear for deep learning-based models. Hence, we will introduce spatiotemporal heterogene-
ity into the proposed CR-LSTM model in the future [16]. Second, previous studies have also
shown a spatiotemporal heterogeneity between PM2.5 concentrations and meteorological
features. Our study used meteorological data as auxiliary variables and the spatiotemporal
heterogeneity of the meteorological features was ignored. In future research, we will con-
sider the spatiotemporal heterogeneity of meteorological features in modeling. Third, the
phenomenon of underestimation of high PM2.5 concentrations and overestimation of low
PM2.5 concentrations exists in the many prediction models (see Figure 8 for details), which
may bring about some biases. Future research will further analyze the reasons for this
phenomenon and improve the model’s performance and practicability. Fourth, we cannot
predict if the proposed CR-LSTM model will work for other types of air pollution predic-
tion. In a future study, we will apply the proposed CR-LSTM model to other long-term
predictions of air pollution (e.g., O3, NO2, and PM10) to broaden its application. Fifth, our
study focused on the validation and analysis of 24-h PM2.5 concentration prediction tasks
for the proposed CR-LSTM model. The CR-LSTM will be further applied to longer-term
prediction task (e.g., 36, 48, 60, and 72 h) to test the model’s performance in the future.
Sixth, the reorganization mapping of the air quality monitoring stations needs to be further
optimized by taking into consideration geographical conditions (such as topography, traffic
station, and roads network) to improve the model’s performance. Finally, the model was
validated based on only 12 air quality monitoring stations in Beijing and so the reliabilities
and applicability of the model need further validation. In the next study, we will apply
the proposed CR-LSTM model to the case of China and test the model’s performance in
large-scale regions.

5. Conclusions

A previous study [11] showed a significant spatiotemporal correlation of the PM2.5
concentrations in the Jing-Jin-Ji Region. The modeling process should consider the spa-
tiotemporal correlation of air pollution efficiently. The manner in which to capture and
quantify spatial correlation is also worth discussing. Additionally, conventional LSTM-
based models are suitable for long short-term prediction tasks, the longer-term prediction
exhibited poor performance. Therefore, expanding longer-term prediction tasks is still
challenging. In our study, a spatiotemporal CR-LSTM model was proposed for predict-
ing PM2.5 concentrations by combining a ConvLSTM network and the recursive strategy,
thereby expanding the long-term prediction ability. Herein, the ConvLSTM network was
used to capture the complex spatiotemporal correlations and to predict the future PM2.5
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concentrations; the recursive strategy was used for expanding long-term prediction tasks.
The CR-LSTM model was used to realize the future 24-h PM2.5 concentration prediction
for 12 air quality monitoring stations in Beijing through the configuration of both the
appropriate time lag, derived from the temporal correlations, and spatial neighborhood,
including the hourly historical PM2.5 concentrations, daily mean meteorological data, and
annual nighttime light and NDVI data. In addition, we also explained the rationality of
the combination between the ConvLSTM network and the recursive strategy. Taking the
case of 12 air quality monitoring stations in Beijing, the prediction results showed that
the proposed CR-LSTM model achieved good performance (all test samples: R2 = 0.74,
RMSE = 18.96 µg/m3, MAE = 12.89 µg/m3; daily samples: R2 = 0.8, RMSE = 15.53 µg/m3,
MAE = 10.81 µg/m3) and the comparison with the other models also proved the valid-
ity and advantage of the proposed CR-LSTM model (see Section 4.1 for details). The
conclusions are as follows.

(1) The combination of geographical law, recursive strategy, and deep learning can
improve the model’s long-term prediction task performance. The spatiotemporal corre-
lation characteristics of air pollution should be considered in the modeling in long-term
prediction tasks.

(2) The combination of a ConvLSTM network and the recursive strategy can improve
the model’s performance in expanding longer-term prediction tasks, which provides a new
perspective for other deep learning-based methods in longer-term prediction modeling
and application.

(3) A spatiotemporal CR-LSTM neural network model was proposed based on a
ConvLSTM network and the recursive strategy for PM2.5 concentrations prediction, the
essential contribution of which was to expand long-term predicted tasks. The rationality
and empirical analysis of the proposed CR-LSTM model were also discussed in detail. The
methodological advancements of this study are also applicable to long-term air pollution
prediction tasks in other cities or large-scale regions.
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