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Abstract: Land use/land cover (LULC) change has been recognized as one of the most important
indicators to study ecological and environmental changes. Remote sensing provides an effective way
to map and monitor LULC change in real time and for large areas. However, with the increasing
spatial resolution of remote sensing imagery, traditional classification approaches cannot fully
represent the spectral and spatial information from objects and thus have limitations in classification
results, such as the “salt and pepper” effect. Nowadays, the deep semantic segmentation methods
have shown great potential to solve this challenge. In this study, we developed an adaptive band
attention (BA) deep learning model based on U-Net to classify the LULC in the Three Gorges
Reservoir Area (TGRA) combining RapidEye imagery and topographic information. The BA module
adaptively weighted input bands in convolution layers to address the different importance of the
bands. By comparing the performance of our model with two typical traditional pixel-based methods
including classification and regression tree (CART) and random forest (RF), we found a higher overall
accuracy (OA) and a higher Intersection over Union (IoU) for all classification categories using our
model. The OA and mean IoU of our model were 0.77 and 0.60, respectively, with the BA module
and were 0.75 and 0.58, respectively, without the BA module. The OA and mean IoU of CART and
RF were both below 0.51 and 0.30, respectively, although RF slightly outperformed CART. Our model
also showed a reasonable classification accuracy in independent areas well outside the training area,
which indicates the strong model generalizability in the spatial domain. This study demonstrates the
novelty of our proposed model for large-scale LULC mapping using high-resolution remote sensing
data, which well overcomes the limitations of traditional classification approaches and suggests the
consideration of band weighting in convolution layers.

Keywords: deep learning; semantic segmentation; land use/land cover; Three Gorges Reservoir
Area

1. Introduction

The Three Gorges Project (TGP) built the largest dam across the third longest river
(Yangtze River) in the world. It was built to provide great power, improve the river
shipping, and control floods in the upper reaches while increasing the dry season flow
in the middle and lower reaches of the Yangtze River. The TGP has created a reservoir
area of 1080 km2 by damming the Yangtze River and greatly changed the landscape
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pattern in the Three Gorges Reservoir Area (TGRA) [1]. Approximately 1.25 million
people were displaced over a 16-year period ending in 2008. Thus far, this project has
begun to bring enormous economic benefits but caused adverse and often irreversible
environmental impacts [2,3]. To characterize the environmental impacts of the TGP, the
Chinese government has formulated a series of relevant polices to monitor the ecological
and environmental changes [2,4,5].

LULC change has been recognized as one of the most important indicators to study
ecological and environmental changes [6,7]. Remote sensing technology provides the
most effective way for monitoring LULC at large scales [8,9]. LULC mapping with high
spatial resolution is the fundament to assess ecosystem service and global environmental
change [10]. It is necessary to develop an automated and efficient classification method for
high-resolution LULC mapping at large scales.

With the increasing availability and spatial resolution of remote sensing data, tradi-
tional classification approaches for LULC mapping using remote sensing can be divided
into two groups: pixel-based methods and objected-based methods [11].

Pixel-based methods have long been the main approach to classify remote sense
images by using the spectral information of each pixel. Initially, parametric classifiers
were commonly used such as parallelepiped, maximum likelihood, and minimum distance
classifiers [12]. In 2014, Yu and Liang et al. found that 32% of the1651 studies about remote
sensing classification used maximum likelihood due to its efficiency and accessibility in
most remote sensing software [13]. In recent years, non-parametric machine learning
classifiers were also developed to improve classification accuracy, such as the classification
and regression tree (CART) [14–16], support vector machine (SVM) [17–19], and random
forest (RF) [20,21]. These classifiers are often used for hyperspectral data with more spectral
information provided in each pixel [22,23]. However, the increase in within-class variance
and decrease in between-class variance often limit the accuracy of pixel-based methods [24].
In addition, with the increase in the spatial resolution of sensors to 5–30 m or higher, the
pixel-based classification results tend to possess “salt and pepper” noise, that is, in some
categories, there are other categories of noise due to the effect of spectral confusion of
different land cover types [25].

To overcome this issue, object-based classification methods were proposed for high-
resolution image analysis [26]. In contrast to pixel-based methods, object-based methods
use both spectral and spatial features of objects and divide the classification into two
steps: image segmentation and classification [27]. Image segmentation splits an image
into separate regions or objects based on geometric features, spatial relations, and scale
topology relations of upscale and downscale inheritances. A group of pixels with similar
spectral and spatial properties are aggregated into one object, thereby avoiding “salt and
pepper” noise [28,29]. The classic segmentation algorithms mainly include the recursive hi-
erarchical segmentation (RHSeg) [6,30], multiresolution segmentation [31], and watershed
segmentation [32]. Zhang et al. mapped the land cover of China using HJ satellite imagery
based on an object-based method, which showed an overall accuracy of 86%. However, this
two-step classification method requires great human involvement to adjust the parameters
in each step, which limits the model generalization and adaptability in large area [3].

Over the past few years, deep learning based on convolution neural networks (CNN)
has become a technology of considerable interest in computer vision with the emergence of
graphic processing units (GPU). CNN is a very powerful tool for object identification and
image classification which can yield informative features hierarchically [33]. Recently, fully
convolutional networks (FCN) based on CNN were developed for pixel-wise semantic
segmentation, which assigns a semantic label (i.e., a class) to each coherent region of
an image using dense pixel-wise prediction models. They were first used for semantic
segmentation of digital images [34], multi-modal medical image analyses, and multispectral
satellite image segmentation. Several semantic network architectures have been proposed,
e.g., SegNet [35], U-Net [36], FC-Densenet [37], E-Net [38], Link-Net [39], RefineNet [40],
and PSPNet [41]. In particular, the U-Net architecture initially developed for biomedical



Remote Sens. 2021, 13, 1225 3 of 17

image segmentation has now been widely used in Kaggle competition and classifying
ground features with high accuracy. The rapid development of semantic segmentation
architecture brings opportunities for high-resolution remote sensing classification.

However, compared to digital images with red, green, and blue bands, multispectral
imagery normally has 3–10 bands and hyperspectral imagery even consists hundreds
or thousands of bands. In addition, the data from different remote sensing sensors or
platforms can be stacked together to provide multi-band information [11]. The relationship
between bands is a critical feature in remote sensing classification. Traditionally, vegetation
indices such as normalized difference vegetation index (NDVI) [42], soil-adjusted vegeta-
tion index (SAVI) [43], and normalized difference water index (NDWI) [44] are calculated
to enhance the contrast between targets and background. However, in a CNN, the convo-
lutional operations extract the feature information from input bands with equal weights
without considering the different importance of spectral information in multiple bands.

In this study, we developed an adaptive band attention (BA) deep learning model
based on U-Net to classify LULC in TGRA using RapidEye imagery and topographic
information. We introduced the BA module that weighted bands adaptively in CNN by
learning the different importance of input bands. To evaluate our model, the results based
on traditional pixel-based classification methods including CART and RF, as well as an
object-based multiresolution segmentation method, were generated for comparison. The
main contributions of this study are listed as follows:

1. We proposed an end-to-end deep learning method which overcame the limitations of
traditional methods for high-resolution remote sensing classification.

2. We investigated the impact of the BA module on model performance which generated
a dynamic weight for each band in CNN.

3. To evaluate the spatial generalizability of the proposed model, we tested the trained
model at other regions of the study area.

2. Materials and Methods
2.1. Study Area

In this study, the TGRA was selected as the study area. It is located in the transition
zone from the Qinghai-Tibet plateau to the lower reaches of the Yangtze River within
106◦16′E–111◦28′E and 28◦56′N–31◦44′N (Figure 1). The TGRA has an area of 58,000 km2

and a population of 20 million. Approximately 74% of this region is mountainous, 4.3% is
plain, and 21.7% is hilly, with the elevation ranging from 73 to 2977 m. The TGRA consists
of 20 counties, with 16 in Chongqing province and 4 in Hubei province. The study area
is ecologically vulnerable with frequent landslides. Due to the monsoon climate, there is
obvious seasonality in the TGRA. Annual precipitation ranges from 1000 to 1200 mm, with
60% of the precipitation occurring during June–September.

Moreover, Wushan county located at the west entrance of the Wu Gorge is called
the ‘core heart’ of TGRA (Figure 2). Its location is within 109◦33′E–110◦11′E and 30◦45′N–
23◦28′N. Wushan county occupies 2958 km2 (∼5% of TGRA) and has a population of
600,000. In this study, our proposed model was first trained and validated in Wushan
county. We then evaluated the model generalizability in other counties in TGRA.
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Figure 1. Location map of the TGRA. The green points show the ground-truth field points.

Figure 2. Wushan county with its LULC map in 2012. This LULC map was used for model training
and validation.

2.2. Data Sources

The RapidEye imagery at 5-m resolution was used in this study. The RapidEye
constellation was launched into orbit on 29 August 2008. RapidEye constellation sensors
provided five bands: blue (440–510 nm), green (520–590 nm), red (630–685 nm), red
edge (690–730 nm), and near infrared (760–850 nm). The abundant spatial and spectral
information in RapidEye imagery has been used for agriculture, forestry, environmental
monitoring, etc. In particular, the unique red edge band, which is sensitive to change in
chlorophyll content, can assist in monitoring vegetation health and improving species
separation [45]. In this study, 198 tiles of RapidEye Surface Reflectance Product in summer
and autumn of 2012 with minimum cloud cover were collected. The atmospheric effects
were removed by atmospheric correction using 6S [46] .
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Topographic attributes such as elevation and slope provide useful terrain information
for land cover classification [47]. The elevation from SRTM 1 arc-second global data at
30-m resolution was used in this study [48]. The slope was calculated from elevation using
the Spatial Analyst toolbox in ArcGIS [49]. The elevation and slope were both re-sampled
to 5 m using the nearest neighbor interpolation to match the RapidEye imagery.

The LULC map of Wushan county in 2012 was generated as the ground truth map us-
ing object-oriented classification methods, which includes six categories: forest, shrubland,
grassland, cropland, built-up, and waterbody Figure 2. The segmentation was processed
by multiresolution segmentation [29] in eCognition [27]. CART [50] was used to classify
the segmented objects. The LULC maps were further corrected manually by visual in-
terpretation and validated by extensive ground survey points [51]. The ground survey
points were collected by technicians driving randomly through a survey area and recording
the homogeneous land cover types within the visible range on both sides of the road
using a smartphone app named GVG (a volunteer geographical information smart phone
app) [52,53]. The location of all points were corrected manually based on Google Maps. In
total, 4174 points were used in this study (Figure 1).

2.3. The Model Architecture

In this study, the U-Net architecture was selected as our based structure (Figure 3).
The U-Net, with a simple and efficient architecture, has become the most widely used
semantic segmentation structure in recent years [36]. The most important innovation of
U-Net is the skip connection, which allows the decoder at each stage to learn back relevant
features that are lost when pooled in the encoder. The skip connection has proved effective
in recovering the details of target objects even on a complex background. As Figure 3
shows, the structure consists of encoder and decoder parts. The encoder extracts feature
map from the input image by passing several convolution-pooling operations and the
decoder is used to predict the classification result and recover the deep hidden feature to
original image size by up sampling.

Figure 3. The structure of proposed model.

The input bands are fed into the encoder part to generate hidden features. For each
encoder operation, the band number of the feature will be doubled, and the band size
will become half. Each encoder block contains a max pooling layer and two repeat conv
operations. The max pooling down sample the input representation to half size. The conv
operation has a 3 × 3 convolution kernel followed by a rectified linear unit (ReLU) [54]
and a BatchNorm layer [55]. The operation can be formulated as:

Ei = fConv( fdownEi−1) (1)
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where Ei is the hidden feature in i layers, Ei−1 is the upper hidden feature of Ei, fdown repre-
sents the down sampling operation by max pooling, and fConv means the Conv operation.

The decoder adopts a structure similar to the encoder by replacing the max pooling
layer to an up-sampling layer to bilinear extend the deep feature to the original size. For
each decoder block, the upscale was set to 2 to make sure the size of output is the same as
the forward encoder output. A skip connection was used to concatenate the encoder and
decoder at each layer. The original skip connection was simply the residual learning. The
hidden feature from encoder was directly concatenated to the decoder part. The decoder
operation can be formulated as:

Di = fConv
(

fupDi+1
)
+ Ei (2)

where Di is the hidden feature of decoder part in i layers, Di+1 is the lower hidden feature
of Di, and fup presents the up-sampling operation.

In this study, the model input included seven bands by combining RapidEye imagery
and the elevation and slope information. To emphasize the effect of the spectral relationship
between bands, a BA connection module was introduced to replace the skip connection in
original U-Net structure. Four BA modules were added at different depths in the semantic
segmentation model and provided 32, 64, 128, and 256 weights, respectively. The aim
of this operation is to generate a dynamic weight for each band. We first squeezed each
channel to a single numeric vector using pooling layers. Here, we used average and max
pooling to create two values for each channel. Then, the squeezed vector was fed into a
fully connected (FC) layer with ReLU activation, which reduces the dimensionality while
introduces new non-linearities. Sigmoid activation was used at the end to give each channel
a smooth weight and ranged the value to 0–1. At last, the original hidden feature was used
to multiply weights and then send to the decoder part. It can be formulated as:

λweight = σ( f FC(Pavg(Ei)) + fFC(Pmax(Ei))) (3)

where σ, fFC, and P represent the Sigmoid, FC, and pooling operation, respectively. Conse-
quently, the decoder operation with the BA connection can be formulated as:

Di = fConv
(

fupDi+1
)
+ λweightEi (4)

The model was trained by a pixel-wise loss function. The categorical cross entropy
was selected in this work as:

Loss = −
h×w

∑
i=0

yi × logŷi (5)

where yi is ground truth classes in i location and ŷi is the predicted value in the correspond-
ing place.

2.3.1. Data Preprocessing

In this study, we conducted data preprocessing before training and evaluating the
proposed model (Figure 4). First, to standardize the brightness of original RapidEye images,
a histogram matching was performed in mosaicking all images [56]. The original images
and the image mosaic after histogram matching are shown in Figure 5. Then, we stacked the
five-band RapidEye imagery with the topographic data including DEM and slope together.
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Figure 4. The flow chat of the data preprocessing.

Figure 5. RapidEye data coverage in the TGRA. The left and right images are the image mosaic
before and after histogram matching, respectively.

In general, remote sensing images are too large to pass through a CNN. Given the
limited GPU memory, we split our input bands into small patches (256 × 256 pixels) using
an overlapped sliding window Figure 6. The overlap rate was set as half of the patch
size, which doubled the number of training samples. In total, we sampled 6664 image
patches using sliding window. Moreover, to reduce model overfitting, three forms of data
augmentation were used for each sample: random brightness and contrast, vertical and
horizontal flip, and random rotate [57].

Figure 6. Image patches with ground truth label using sliding window. The RGB, red edge, and near
infrared band were from RapidEye imagery. The DEM and slope represent topographic information.

2.3.2. Experiment Design
Models for Comparison

In our proposed model, 80% of the image patches were used for model training and
the left were used for validation. The model was implemented based on PyTorch and
executed on a server with an Intel(R) Xeon(R) CPU E5-2650, NVIDIA 2080TI, and 64 GB
memory. To optimize model parameters, Adam, a stochastic optimization algorithm with a
batch size of 64 samples, was used to train the model. We firstly set the learning rate (LR)
as 1× 10−3. The LR decreased to 1× 10−6 with increasing iterations.

Moreover, two commonly used pixel-based classification methods, CART and RF,
were selected for results comparison. CART, often referred to as ‘decision trees’, is strictly a
nonparametric model that can be trained on any input without parameter adjustment, and
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the prediction is rapid without complex computation. Due to its simplicity, CART has many
advantages in land cover analysis. RF is an ensemble classifier that uses a set of CARTs. In
a RF model, the out-of-Bag (OOB) and permutation tests can determine the importance
of each feature. RF is also computationally efficient and deals better with high-dimension
data without over-fitting. In this study, we randomly selected 2000 pixels for each category
from training images to train the pixel-based classifiers. The pixel-based classifiers were
implemented in python with Scikit-Learn package [58]. Detailed parameters are shown in
Table 1.

Table 1. Pixel-based classifiers and parameter setting.

Classifier Parameters Standardize Method

CART

num_leaves = 20

StandardScalerWrapper

min_samples_leaf = 1
min_samples_split = 2
degree = 3
gamma = auto_deprecated
max_iter = −1

RF n_estimators = 10
min_samples_leaf = 1

Accuracy Metrics

Two metrics derived from confusion matrix were calculated to assess the classification
accuracy of each method: the overall accuracy (OA) and F1-score. OA is used to evaluate
the overall effectiveness of an algorithm and F1-score measures the accuracy by combining
the precision and recall measures. OA and F1-score are formulated as:

OA =
Sd
n
× 100 (6)

F1score =
Precision× Recall
Precision + Recall

× 2 (7)

Precision =
Xij

Xj
× 100 (8)

Recall =
Xij

Xi
× 100 (9)

where Sd is the total number of correctly classified pixels, n means total number of vali-
dation pixels, and Xij is the observation in row i column j in confusion matrix. Xi is the
marginal total of row I and Xj is the marginal total of column j in confusion matrix.

The Intersection over Union (IoU) was also used to evaluate the segmentation perfor-
mance of each method. IoU is the ratio of overlapped area to the area of union between
predicted and ground truth category (Figure 7). This metric ranges 0–1 (0–100%) with 0
signifying no overlap and 1 signifying perfect segmentation. The mean IoU (MIoU) is
calculated by averaging the IoU of each category.



Remote Sens. 2021, 13, 1225 9 of 17

Figure 7. Illustration of IoU calculation. Source: Wikipedia.

3. Results
3.1. Classification Results

The performance of our proposed model with or without the BA module was signifi-
cantly better than that based on traditional pixel-based classification methods (Table 2). For
pixel-based classification methods, the performance of RF was better than CART. The OA
and MIoU of RF were 0.510 and 0.265, respectively, while the OA and MIoU of CART were
only 0.390 and 0.175, respectively. However, the OA and MIoU of our model were 0.771
and 0.596, respectively, and were 0.754 and 0.578, respectively, without the BA module.

Table 2. The classification performance between pixel-based classification methods and our proposed
model without and with the band attention (BA) module.

Method CART RF Proposed Model
w/o BA

Proposed Model
with BA

F1-Score ± Std

Forest 0.427 ± 0.028 0.667 ± 0.032 0.795 ± 0.017 0.811 ± 0.018
Shrubland 0.273 ± 0.021 0.427 ± 0.038 0.706 ± 0.026 0.731 ± 0.024
Grassland 0.204 ± 0.044 0.247 ± 0.030 0.585 ± 0.107 0.631 ± 0.099
Cropland 0.240 ± 0.041 0.488 ± 0.050 0.758 ± 0.018 0.767 ± 0.015
Built-up 0.260 ± 0.068 0.212 ± 0.018 0.549 ± 0.096 0.574 ± 0.074

Waterbody 0.842 ± 0.072 0.905 ± 0.003 0.907 ± 0.101 0.892 ± 0.118

OA ± Std 0.390 ± 0.020 0.510 ± 0.014 0.754 ± 0.010 0.771 ± 0.011

MIoU ± Std 0.175 ± 0.038 0.265 ± 0.051 0.578 ± 0.035 0.596 ± 0.036

Among the six categories, the classification result of waterbody had the highest
accuracy in each method (Figure 8). Overall, 91–96% of waterbody pixels could be correctly
classified. Among vegetation categories, the classification accuracy of forest was higher
than the others. Specifically, 52% and 67% of forest pixels were correctly classified using
CART and RF, respectively, and 80% and 82% forest pixels were correctly classified using
our proposed model without and with band attention module, respectively. For the two
pixel-based classification methods, the classification accuracy of shrubland and grassland
were the lowest, with an accuracy of 32–36% for shrubland and 39–53% for grassland
Figure 8b. Moreover, a small proportion of cropland was classified into built-up, especially
based on our proposed model.
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Figure 8. Confusion matrix of the classification results achieved by CART, RF, and our proposed
model without and with BA.

3.2. Model Generalizability

In total, 4174 fields ground truth points were used to evaluate the generalizability and
adaptability of the proposed model in other counties. Our proposed model was originally
trained in Wushan county and further evaluated by this independent dataset. As Figure 9
shows, in many counties, the OA of classification was above 70%. The lowest OA estimates
occurred in Wuxi and Yuyang counties where there were a few ground truth points. The
OA for the whole TGRA was 72.7% based on all ground truth points.

Figure 9. The OA of the trained proposed model in other counties based on field validation points.
Solid points represent number of validation points. Blue bars represent the OA.
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4. Discussion

In this study, we developed a novel adaptive BA deep learning model based on U-Net
to classify the LULC in the TGRA using RapidEye imagery and topographic information.
We comprehensively evaluated the performance of the proposed model by comparison with
two traditional pixel-based classification methods. Given the relationship of the spectral
information between input bands, we also investigated the effectiveness of an adaptive
BA module which generates a dynamic weight for each band in CNN. As the results show,
the accuracy of our proposed model was considerably higher than that of the pixel-based
methods. By adding the BA module, the model performance could be further improved.
Our proposed deep learning model not only showed a higher classification accuracy in
training region, but also demonstrated strong spatial generalizability in other regions,
which allows for large-scale LULC mapping based on a model trained at a local region.

4.1. Traditional Methods vs CNN Based Methods

The pixel-based classification methods only use the spectral information of each
pixel, as shown in Figure 10. The waterbody has lower reflectance in NIR and is mostly
distributed in low and flat areas Figure 10. Thus, waterbody had the highest accuracy
using all methods in our study Figure 8). However, the vegetation categories such as
forest, shrubland, grassland, and cropland share similar spectral properties, which makes
it difficult to distinguish them. Forest had a relatively higher accuracy than the other
vegetation types because forests are usually distributed in the mountainous area with high
elevation. In our study, many cropland pixels were assigned to built-up. One reason is that
Wushan county is a farming-based county where most croplands are distributed around
residential areas, which increases the misclassification. Another reason is that RapidEye
images were acquired in summer and autumn when most cropland is near harvest or after
harvest, which results in the misclassification of bare ground cropland into built-up.

Figure 10. Spectral and topographic features for each category.

In comparison, the classification output based on our proposed model showed a much
smoother look than that based on pixel-based method (e.g., RF) and matched well with
the ground truth labels (Figure 11). The disadvantage of pixel-based methods relying
on spectral information will be amplified when dealing with higher spatial resolution
imagery, resulting in severe “salt and pepper” noise in the classified images. This was also
demonstrated by the lower MIoU (<30%) estimates using pixel-based classification methods
(Table 2). In our proposed model, the CNN can deal with joint spatial-spectral information
using convolution kernels. All values in adjacent pixels are fed into a convolution filter to
extract feature information. The pooling layers further extract the average or maximum
value of adjacent pixels while excluding the abnormal and unimportant information, which
avoids the “salt and pepper” effect in results.
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Figure 11. Comparison of random forest and proposed model outputs. The first column shows
the RGB image, the second column shows the ground truth label, the third column shows the
classification results from Random forest, and the fourth column shows the classification results from
proposed model.

Furthermore, as the proposed model can generate a segmented result, we compared
the segmentation performance between the proposed model with a tradition object-based
method. In this work, the multiresolution segmentation algorithm, which is the most widely
used segmentation method and has been integrated in the eCognition land cover mapping
software, was selected. The LULC map of Wushan county (Ground truth map) was also
generated using this method. This method creates objects using an iterative algorithm.
Objects (beginning with individual pixels) are clustered until an upper object variance
threshold is reached. To minimize the fractal borders of the objects, the variance threshold
(scale parameter) is weighted with shape parameters. Larger objects will be generated
when the scale parameter is raised, but their exact size and dimensions will be determined
by the underlying data [59]. In this study, given the large size of the remote sensing images
and the 5 m spatial resolution, the scale parameter was set as 30 for the segmentation.
Figure 12 shows the segmentation results using the multiresolution segmentation method
and our proposed model. As shown in the second column of Figure 12, the edge of each
segmented object looks rough due to the scale effect of segmentation. However, the results
of our proposed model were smoother and more realistic by visual check.

In this study, we evaluated our model generalization in other counties using an
independent ground truth points. The accuracy in these counties was still acceptable,
which demonstrated the strong model generalizability. In our study, our proposed model
was trained using massive training samples. The data augmentation randomly transformed
the training images to offer more possibilities of the data, which enables the CNN based
model to have good generalizability.
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Figure 12. Segmentation results of multiresolution segmentation method and the proposed method.

4.2. The Importance of Band Weighting

In this study, the topographic datasets were combined with RapidEye imagery to
provide more attribute information. Benediktsson et al. demonstrated that the elevation
information is responsible for up to 80% of contribution on land cover classification [47].
Figure 13 shows the importance score of each band in pixel-based classification; the DEM
showed the highest feature importance and the near-infrared, which is generally consid-
ered as the most important band for identifying vegetation, provided the second highest
importance. The blue band showed a negative importance, which can also be explained by
the similar spectral distribution shared by each category in Figure 10.

Figure 13. The importance score of model inputs in pixel-based classification.
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However, in CNN-based models, the weights of each band are generally set equal. It
is reasonable when dealing with traditional RGB or BW images which only have three and
one bands. In this study, the model input has a total of seven bands including RapidEye
imagery and elevation and slope information. We introduced a BA module which generated
an adaptive weight for each band in the convolution operation. Four BA modules were
added at different depths in the semantic segmentation model. The number of bands was
extended to 32, 64, 128, and 258 in hidden features, and the band weights were multiplied
on the hidden features. Based on the adaptive weight for each band for each category
in Figure 14, the weight of each class varied, which demonstrated that the BA module
changed the weight of each band in the prediction. The F1-score of forest, shrubland
grassland, cropland, and built-up increased by adding the BA module (Table 2). Especially,
for the three most difficult categories, namely built-up, grassland, and shrubland, the
F1-score increased by 0.025, 0.046, and 0.025, respectively. The OA and MIoU improved
from 0.754 to 0.771 and 0.578 to 0.596, respectively, which demonstrated the effectiveness
of band weighting in our proposed model for classification. However, the F1-score of the
water body slightly dropped by adding the band attention module (Table 2). One of the
reasons is that the ground truth land cover data were corrected by visual interpretation
and validated by extensive ground survey points. It cannot be guaranteed that the field
data were collected on the acquisition date of the remote sensing data. Thus, some seasonal
water bodies might be assigned into water bodies in ground truth map. However, the
remote sensing images were captured in summer when these water bodies might dry out.
This situation can lead to the slight decline in accuracy of proposed model with BA module.
Moreover, the deep learning method is usually referred as “black box” and its mechanism
is difficult to explain by traditional methods. Although we analyzed the impact of the BA
module on the classification results, we still cannot explain clearly how BA modules have
affected the results. How to explain the mechanism of the BA module in deep learning is
also a direction of our future work.

Figure 14. The band weights induced by the BA module at different depths in the proposed model.
Six images from different categories were fed into the trained model and the weights for each band
were class specific.

5. Conclusions

Land use and land cover mapping is a critical work in remote sensing application. It
is still challenging with the increasing high spatial resolution remote sensing data. The
traditional commonly used pixel-based classification methods cannot fully represent the
feature information from objects and thus have limitations in classification results, such as
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the “salt and pepper” effect. Although the object-oriented classification methods provide a
way to solve this challenge, they usually include two steps, namely image segmentation
and classification, which requires great human involvement by adjusting the parameters in
each step and lacks generalization and adaptability when dealing with large areas. In this
study, an end-to-end CNN based method integrated with a band attention (BA) module
was proposed. The BA module was introduced to leverage the spectral information in our
proposed model. The results show that the proposed CNN model outperformed traditional
pixel-based methods in classifying high-resolution images. By adding the BA module, the
model performance increased further. By evaluating the trained model at independent
regions outside the training area, the classification accuracy was still acceptable, which
demonstrated the strong model generalizability at the spatial domain.
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