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Abstract: Drone-based object detection has been widely applied in ground object surveillance,
urban patrol, and some other fields. However, the dramatic scale changes and complex backgrounds
of drone images usually result in weak feature representation of small objects, which makes it
challenging to achieve high-precision object detection. Aiming to improve small objects detection,
this paper proposes a novel cross-scale knowledge distillation (CSKD) method, which enhances the
features of small objects in a manner similar to image enlargement, so it is termed as ZoomInNet.
First, based on an efficient feature pyramid network structure, the teacher and student network are
trained with images in different scales to introduce the cross-scale feature. Then, the proposed layer
adaption (LA) and feature level alignment (FA) mechanisms are applied to align the feature size of
the two models. After that, the adaptive key distillation point (AKDP) algorithm is used to get the
crucial positions in feature maps that need knowledge distillation. Finally, the position-aware L2
loss is used to measure the difference between feature maps from cross-scale models, realizing the
cross-scale information compression in a single model. Experiments on the challenging Visdrone2018
dataset show that the proposed method draws on the advantages of the image pyramid methods,
while avoids the large calculation of them and significantly improves the detection accuracy of small
objects. Simultaneously, the comparison with mainstream methods proves that our method has the
best performance in small object detection.

Keywords: small object detection; drone image; image pyramid; feature enhancement; cross-scale
knowledge distillation

1. Introduction
1.1. Problem Description

Drones, or unmanned aerial vehicles (UAVs), represent one of the most important
remote sensing platforms [1–3]. In recent years, object detection based on drones has been
widely applied in ground object surveillance [4,5], urban patrol [6,7], and other fields for
its many advantages such as high real-time performance, comprehensive coverage, strong
mobility, low cost, and so on. At present, the state-of-the-art (SOTA) object detection net-
works have achieved high accuracy on the benchmark datasets of general objects such as MS
COCO [8] and ImageNet [9]. In contrast, there is a big gap in drone datasets [6,7,10]. Figure 1
gives the accuracy gap between COCO and Visdrone2018 datasets of some SOTA detectors.

The reason is that natural image objects in COCO and ImageNet are generally shot in
better conditions like simpler background, fewer scale changes, and larger size compared
to objects in drone datasets, making the objects easier to be distinguished. In contrast, the
drone images usually have dramatic changes in the conditions of illumination, scale, and
angle, with smaller objects and more complex background, making it difficult to obtain
strong feature representation of small objects and achieve accurate object detection.
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In order to improve the performance of drone-based object detection, multi-scale
methods are often used to enhance the feature representation of objects, mainly including
image pyramid and feature pyramid.

The image pyramid method uses images in multi-scales or their slices in various
sizes as input. As the position and category information of any object is represented by
several feature points on the output feature map, the enlarged small-sized objects can
be represented by more feature points and significantly improve small object detection
performance. Methods such as SNIP [11], SNIPER [12], and Auto-Focus [13] usually slice
local areas in the first step, and then scale them to appropriate scales for training, thus
enhancing the feature representation of small objects. However, such methods are all
computationally expensive whether in training or inference. When the image is enlarged
by k times, the amount of calculation will increase by k× k times. Besides, image slicing
results must be merged after the inference stage. These problems make the image pyramid
method difficult to apply in the actual environment, so it rarely appears in the research in
recent years. Furthermore, our experiments in Section 3.5.1 show that local slices destroy
the spatial context, which is harmful to object detection.
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Figure 1. Difference comparison. (a) The accuracy gap between some state-of-the-art (SOTA) de-
tectors on MSCOCO and Visdrone2018 datasets, including SSD [14], YOLOv3 [15], RefineDet [15],
Faster-RCNN [16], and RetinaNet [17], the accuracy data on Visdrone2018 is obtained from [10].
(b) The accuracy changes with image size changes of some feature pramid based object detection
networks [14,17–20] and our network.

The feature pyramid methods utilize multiple feature levels in the convolution process
to predict objects of different scales. The shallower levels are often used to predict small
objects as they retain more details, while the deeper levels with more semantic information
are used to predict large objects, such as SSD [14], ION [21], and so on. However, the
shallow feature levels contain more noise, while the deep feature level has less detail
information, so directly using each level to make predictions in isolation will damage the
classification accuracy. To solve this contradiction, Feature Pyramid Network (FPN) [22],
PANET [18], NAS-FPN [19], Libra-RCNN [20], etc. adopt top-down, bottom-up, and cross
fusion for each feature level. Feature pyramid has become the mainstream multi-scale
network method because of its high efficiency, but its feature representation ability is still
weak for small objects in complex background.

In this paper, we aim to improve the detection performance of small objects by drawing
the outstanding advantages of image pyramid in enhancing feature representation of such
objects, but avoiding the local area slicing and massive computational consumption.

1.2. Motivation and Contributions

The task of object detection is to accurately locate and classify objects in images,
zooming in the image size in a specific range can enhance the feature representation of
small objects, thus significantly improving the performance of such objects, which is also
the principle of the image pyramid method. This phenomenon is common in mainstream
obejct detectors, the accuracy variation of some object detection networks and our method
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is given in Figure 1b, so studies about object detection must be compared in the same
input size.

In studying the influence of different image sizes on the network, we find that com-
pared to smaller image inputs, the feature maps obtained by large size image inputs have
higher activation value around the objects, and the activation regions cover the objects more
sharply, as shown in Figure 9. This shows that under the same feature extraction backbone,
large-size inputs can provide better feature representation for objects and improve location
and recognition accuracy. If we can make the feature map of the small-size image closer to
that of the large-size image, the performance can be improved.

Based on the above observations, we proposed a cross-scale knowledge distillation
method, which considers the accuracy gap between image pyramid models as the difference
between their feature maps. Use two models with the same architecture but different image
input sizes, the technique of knowledge distillation [23–25] is used for cross-scale informa-
tion migration, which has the effects of reproducing a large inputs model’s performance on
a small inputs model without causing too much computational growth.

Specifically, with the same structure of RetinaNet with ResNet-50 [26], we first use the
original images to train a student network, while images of two times the size train the
teacher network. To solve feature size misalignment between student and teacher models,
we proposed layer adaption (LA) mechanism and feature level alignment (FA) mechanism
to help cross-scale knowledge distillation. Then, the adaptive key distillation positions
(AKDP) algorithm based on intersection over union (IOU) between anchors [16,27] is used
to get the crucial positions in feature maps. Finally, the position-aware L2 loss is applied
as distillation loss. For the student network trained by original images, it benefits a lot
from the teacher network trained by two times the image sizes, which is similar to zoom
in images for feature extraction and prediction, so we termed the proposed network as
ZoomInNet. The contributions of this paper are summarized as follows:

• We proposed a cross-scale knowledge distillation (CSKD) method, by taking the net-
work of large-scale image input as a teacher model, and distilling its ability of feature
representation to the network of small-scale input, which significantly improves the
feature representation of small objects under feature pyramid architecture, without
causing too much computational increase.

• Different from ordinary knowledge distillation, input at the same scale but inconsistent
architecture, we are the first time to apply knowledge distillation in the conditions of
image input of different scales under the same network architecture. Therefore, we
propose layer adaption (LA) and feature layers alignment (FA) mechanisms to solve
the problem of inconsistent scale, which significantly improve the effects of CSKD.

• We use the adaptive key distillation positions (AKDP) algorithm to calculate the key
positions in the feature maps of both teacher and student models, and then based
on the results of AKDP, we use the position-aware L2 loss as the distillation loss.
Fine-grained distillation is directly performed on the feature map, and the student
model has obtained the strong representation ability of the teacher model for small
objects, avoiding complicated alignment process between the two models.

• We make a detailed comparison with the mainstream feature pyramid methods
such as FPN, PAFPN, NAS-FPN, and so on under the unified backbone network
and experimental conditions. The experimental results verify the effectiveness and
advanced nature of the proposed method.The code will be available at https://github.
com/qaz670756/ZoomInNet-cross-scale-distillation (accessed on 6 February 2021).

2. Relation Works
2.1. Image Pyramid

The image pyramid methods scale the image or their slices into different sizes to
balance the feature representation of each scale (as shown in Figure 2a), thus improving
the performance of multi-scale object detection, but it will bring a steep increase in com-
putation. The scale normalization for image pyramid (SNIP) [11] adopts the strategy of

https://github.com/qaz670756/ZoomInNet-cross-scale-distillation
https://github.com/qaz670756/ZoomInNet-cross-scale-distillation
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multi-scale training to deal with objects in different resolution, which is not efficient. By in-
troducing context-regions, the SNIPER algorithm [12] only selects the most helpful regions
for training, which greatly reduces the time cost during training. In SSD-MSN [28], area
proposal network (APN) is used to extract areas with objects, and then upsample them to
the size of the original image for detection. In AutoFocus [13], the object areas are extracted
by predicting a partition graph, and the areas of small and large objects are handled with
high and low resolution, respectively. Such methods mainly utilize image areas sampling
for augmenting feature representation, but result in sharp increase of computation, and the
separated sub-regions of image destroy the context information around the object, which is
bad for accurately locating the objects.

Predict

Predict

Predict

Predict

Predict

Predict

Predict

(a) (b)

Figure 2. Two kinds of pyramid method for handling multi-scale problem in object detection.
(a) Image Pyramid uses multi-scale images for prediction. (b) Feature Pyramid uses different levels
in the feature extraction process for prediction.

2.2. Feature Pyramid

The feature pyramid methods make use of feature levels in the convolution process to
deal with objects from different scales (as shown in Figure 2b). The features from low-level
are considered to retain more details for they go through less fewer convolutional layers,
while the features from high-level are considered to have more semantic information.
In SSD [14] and ION [21], the features from low and high levels are applied to detect small
and large objects, respectively. However, due to the lack of semantic information and more
noise in the low-level feature maps, the recognition accuracy of small objects is not good.

Feature Pyramid Network (FPN) [22] uses a top-down pathway to introduce semantic
information to low-level features at bottom layers, thus suppressing the noise in low-
levels. PANet [18] improves FPN by introducing a bottom-up path to augment the detail
representation for high-level feature maps. NAS-FPN [19] proposes a learnable feature
pyramid fusion method, which allows the network to learn the optimal feature fusion
strategy adaptively, but is hard to converge during training. Libra-RCNN [20] believes
that FPN and other feature hierarchy methods do not make full use of all levels for feature
enhancement, so it proposed the mechanism termed as balanced feature pyramid (BFP) to
aggregate and refine the features of all levels. The feature pyramid methods make full use
of feature levels to enhance the accuracy of recognition and location. However, compared
with the image pyramid methods, it is difficult to get a more robust feature representation
of small objects for feature pyramid methods.

2.3. Knowledge Distillation

Knowledge distillation is a model compression technique where a smaller student
model is trained to reproduce the capability of a larger teacher model [29]. In 2015,
Hinton et al. [23] first proposed applying knowledge distillation in classification tasks. After
that, this technique is widely used in visual tasks such as image classification [30–32],
semantic segmentation [33–35], and saliency detection [36–38]. Although knowledge
distillation has achieved good results in other visual tasks, its application in object detection
is challenging, because the detection task includes the steps of object bounding-boxes
generation, regression, and classification, which should be aligned between teacher and
student models during knowledge distillation. In 2017, Chen et al. [29] proposed to use
knowledge distillation and hint learning to learn a more compact and faster object detection
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network, but the alignment process in the border regression and classification steps are
complicated, which hinders the wide application of the method. Wang et al. [39] designed
a novel mechanism to estimate the key feature points that need to be aligned on the feature
maps and realized the fine-grained knowledge distillation on the feature map without
complex alignment steps.

3. Proposed Method
3.1. Overview

The cross-scale knowledge distillation (CSKD) architecture of the proposed ZoomIn-
Net is shown in Figure 3. Based on the same feature pyramid structure, the input image
size of the student network is the original, while that of the teacher network is the double.
To perform knowledge migration from teacher network to student network, layer adapta-
tion (LA) and feature layer alignment (FA) are used to align the size of feature maps, and
then the adaptive key distillation positions algorithm (AKDP) is applied to realize CSKD
between the two models. In addition to classification and location losses, position-aware
L2 loss is used to measure the difference between feature maps from the two models.

Image 2x

Image 1x
Student Network

Teacher Network

Cross-scale
Knowledge distillation

FA LA

hconvs

hconvs

hconvs

hconvs

hconvs

hconvs

hconvs

Position-aware L2 loss

Class loss

Location loss

Head convolution layer 
with 4 CBR block

Feature Layer Alignment

Layer Adaption Module

FA 

LA 

AKDP

Adaptive Key Distillation 
positions Algorithm

CBR block: Conv + BN + Relu

hconvs

AKDP

S4 S2 S1S3

T1 T2 T3

T4

Figure 3. Cross-scale knowledge distillation architecture of proposed ZoomInNet. The feature maps
from teacher and student networks are aligned via LA and FA mechanism, and then AKDP algorithm
is used to calculate the key positions at feature maps, the position-aware L2 loss is used to measure
the difference between feature maps from the teacher and student models.

The rest of this section is organized as follows. In Section 3.2, we first describe the
optimization objectives and difficulties of cross-scale knowledge distillation, and propose
two mechanisms to solve them: LA and FA. In Section 3.3, we propose an AKDP algorithm
for knowledge distillation between student network and teacher network, which calculates
key feature positions that cause differences in student and teacher models’ performance,
and position-aware L2 loss is used as the loss function.

3.2. Knowledge Distillation under Cross-Scale Conditions

In this section, we first formulated the convolution process of teacher and student net-
work in the proposed CSKD architecture. A set containing adjacent convolution, Batch Nor-
malization (BN) Layer [40] and Relu [41] operators is called a CBR module. The purpose
of knowledge distillation is to make a series of CBR (as shown in Figure 4) modules in
student network learn the information in corresponding components of teacher. Then, the
proposed layer adaption (LA) mechanism is used to align the feature maps from teacher
and student models. Furthermore, we point out that knowledge distillation becomes an
ill-conditioned problem when the input size of image is different and proposes using
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feature level alignment (FA) to make the problem follow the general knowledge distillation
paradigm.
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Figure 4. A 3× 3 input is filled and processed by the 3× 3 CBR module.

If the input vector XM×N is convoluted with the convolution kernel ConvP×Q and the
input XM×N is filled, it can be expressed as

ỸM×N(i, j) =
P

∑
p=1

Q

∑
q=1

cpqX(i− p, j− q), (1)

the above equation can be expressed by matrix multiplication as follows:

ỸMN×1=AMN×MN XMN×1, (2)

where AMN×MN is a sparse matrix; there are PQ unknown parameters, which are dis-
tributed in PQ×MN positions in the matrix; and the rest positions are zero. The BN layer
is to normalize the convolution output, and the Relu function activation is to perform a
nonlinear mapping on the BN layer output. Both processes do not change the shape of the
convolution output. For convenience, let

YMN×1 = Relu(BN(AMN×MN XMN×1))

= CBRMN×MN XMN×1,
(3)

then for the student network, the convolution process can be expressed as

S̃LKS×1 = CBRLKS×LKS−1
· CBRLKS−1×LKS−2

. . . CBRL1×LMN · XMN×1

=
KS

∏
i=2

CBRLi×Li−1 . . . CBRL1×LMN · XMN×1.
(4)

The convolution stride of the first CBR module of the student network is
√

MN/L1.
For the teacher network, the image input is twice the length of XMN×1, that is, X4MN×1.
Because the two networks have the same structure, their convolution stride of each CBR
module is also the same. For teacher network, the first CBR module is CBR4L1×4MN , so the
convolution process of the teacher network is formulated as follows:

T4LKT×1
=

KT

∏
i=2

CBR4Li×4Li−1 · CBR4L1×4MN · X4MN×1. (5)

The goal of knowledge distillation (KD) is to minimize the gap between the outputs
from the student and teacher network, that is,

T4LKT×1

KD→ SLKS×1
, (6)
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However, the size of X and Y is not the same. Therefore, LA is used to upsamples the
feature maps from student networks. Here, we use the nearest neighbor interpolation to
perform upsampling, which is also used in PAFPN [18]. It can be expressed as

T4LKT×1

KD→UP2×SLKS×1
KT

∏
i=2

CBR4Li×4Li−1 · CBR4L1×4MN
KD→UP2×

KS

∏
i=2

CBRLi×Li−1 · CBRL1×MN .
(7)

However, the above is an ill-conditioned problem, even if the adaptive upsampling
layer is used to align the feature map size, it still cannot be solved because the two networks
are inconsistent on the input. The output feature T4LKT×1

comes from X4MN×1, while SLKS×1

comes from XMN×1. In order to solve this ill-conditioned problem, it is necessary to unify
the input of both.

Therefore, we propose to use feature level alignment (FA) to align the inputs of the
both networks, which is equivalent to using the shallow feature levels of the student
network for prediction. As shown in Figure 3, the teacher network gets four feature layers
after FPN. There are totally KT CBR modules among these four feature layers, and

KT =KT1+KT2+KT3+KT4 , (8)

where KT1 ,KT2 ,KT3 , and KT4 are the number of CBR modules of the four layers, respectively.
In student network, the number of CBR modules with FA is

KS =KS2+KS3+KS4 . (9)

Moreover, the last CBR module is CBRLKS×LKS−1
, where LKS=L4LKT . After feature

level alignment, the optimization equation of the top feature level is expressed as

min F=min |
KS

∏
i=2

CBRLi×Li−1 · CBRL1×MN · XMN×1−T4LKT×1|, (10)

where XMN is the input image of the student network.

3.3. Fine-Grained Feature Distillation
3.3.1. Adaptive Key Distillation Position Algorithm (AKDP)

Directly performing knowledge distillation on all positions on the feature maps would
only get a minor improvement, based on the principle in [39], we proposed an adaptive key
distillation position (AKDP) algorithm, as shown in Figure 5. An anchor is a rectangular
bounding box represented by two vertex coordinates. At each position on the output
feature maps, anchor-based detector such as Fast-RCNN [27] and Faster-RCNN [16] take K
anchors as the prior range of the ground truth at the location, which converting to predict
the ground truth coordinate of real object into the postional gap between the ground truth
and the anchor. In our experiments, K is set to 9.

Given the output feature map f eat ∈ RC×M×N , C is the number of channels and
M× N is the size of the feature maps. For each feature point f eat(i, j) ∈ RC×1×1, if we set
K anchor, the total number of anchors is numA = KMN, which can be expressed by the
tensor anchors ∈ RM×N×K×4. Denote G ground truth as gts ∈ RG×4, and calculate the IOU
between numA anchors and gts, the result is

IOU_map ∈ RnumA×G, (11)

where the calculation equation for the IOU is

IOUbox_A, boxB =
box_A ∩ box_B
box_A ∪ box_B

. (12)
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For gts ∈ RG×4, calculate the maximum IOU between itself and anchors ∈ RM×N×K×4,
and get the following:

max _IOU ∈ RG×1. (13)

Further, multiplying by the λthresh gets

thresh_IOU =λthreshmax_IOU ∈ RG×1, (14)

where λthresh is an adaptive parameter determined by

λthresh= mean(IOU_map) + std(IOU_map). (15)

For IOU_map ∈ RKMN×G=RM×N×K×G, calculate whether each IOU value is greater
than the threshold, denoted by = mask ∈ RM×N×K×G, and calculated as

mask(i, j, k, g) =
{

1 i f IOU_map(m, n, k, g) > thresh_IOU(g)
0 otherwise

. (16)

Overlay the mask according to the latter two dimensions, which is expressed as

mask_ f inal(i, j) =
K

∑
k

G

∑
g

mask(i, j, k, g). (17)

Finally, we get:
mask_ f inal ∈ RM×N . (18)

There are only 0 and 1 in mask_ f inal, and 1 represents the key positions that need to
perform distillation in feature maps from the two models.
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Figure 5. The Adaptive Key Distillation Positions (AKDP) Algorithm for anchor-based feature map
distillation. In the first step, feature mask is computed based on the IOU between the preset anchors
and true bounding boxes, which indicates the attention area in both teacher’s and student’s feature
map. Then, the position-aware L2 distance is used to measure the gap between the teacher-network
and student-network.

3.3.2. Position-Aware L2 Distillation Loss

First, calculate the L2 norm distance between the teacher output T_ f eat ∈ RC×M×N

and the student output S_ f eat ∈ RC×M×N :

L2_distance = (T_ f eat− S_ f eat)2. (19)

The position-aware L2 distance is

PA_L2_distance(i, j) = L2_distance(i, j) ∗mask(i, j). (20)
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The final distillation loss is

lossdistill=λdistill ·

M
∑
i

N
∑
j

PA_L2_distance(i, j)

M
∑
i

N
∑
j

mask(i, j)
. (21)

The overall loss of the model is

loss =λdistill · lossdistill + λloc · lossloc + λcls · losscls, (22)

where lossloc and losscls are the location and classification loss of the model, respectively.
λdistill , λcls, and λloc represent the weight of various losses. More details about the lossloc
and losscls can be found in [17]. The parameters λdistill , λcls, and λloc are set to 0.01, 1.0,
and 1.0, respectively, in our experiments.

3.4. Experiment
3.4.1. Dataset

The experiments are performed on the Visdrone2018 [10] dataset, which has 8599 im-
ages (6471 for training, 548 for validation, and 1580 for testing), containing more than
340,000 labeled objects, with a total of 10 classes, including pedestrian, person, car, van,
bus, truck, motor, bicycle, awning-tricycle, and tricycle. Some of the images and their
annotations are shown in Figure 6. The angle, scale and illumination changes, and dense
small objects in this dataset make high-precision object detection very challenging.

V
E
H
I
C
L
E
S

H
U
M
A
N

Figure 6. Some images in Visdrone2018 dataset. The angle, scale and illumination changes, and
dense small objects in this dataset make high-precision object detection very challenging.

Figure 7 shows the number and proportion of objects in each category. We can see
that the Visdrone2018 dataset is a category unbalanced dataset, with a minimum of 3246
awning-tricycle and a maximum of 144,865 cars. What needs further explanation are the
categories of pedestrian and people; the former is the standing persons, and the latter is
the non-standing persons.
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79338
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Figure 7. The visdrone2018 dataset of (a) the number of objects and (b) the proportion of
various classes.

3.4.2. Evaluation Metrics

Following the evaluation protocol in MS COCO [8], we use the mean average precision
(mAP); average precision of small, medium, and large objects (AP_small, AP_medium,
AP_large); and average recall of small, medium, and large objects (AR_small, AR_medium,
AR_large) metrics to evaluate the results. Specifically, mAP is computed by averaging
over all 10 intersection-over-union (IoU) thresholds (i.e., in the range [0.50:0.95] with the
uniform step size 0.05) of all classes. In MS COCO, the small, medium ,and large objects
refer to these area < 322, 322 < area < 962 and area > 962, respectively. Please refer to the
work in [8] for more details. In Section 3.5.2, Giga Floating-point Operations Per Second
(GFlops) is used to measure the calculating consumption.

3.4.3. Implementation Details

All experiments were completed on a piece of RTX TITAN 24G with the MMDetec-
tion [42] framework. The backbone network used in the experiments is ResNet-50 [26].
The SGD optimizers with an initial learning rate of 0.01, momentum of 0.9, and weight-
decay of 0.01 are used. In the first 500 iteration, we use warmup method to adjust the
learning rate, from 0.001 to 0.01. In epochs 7 and 15, the learning rate is set to 0.2 times the
previous. The input image size is 512× 512. Other parameter settings used by RetinaNet
are the same as in [17]. The other networks in the comparison experiment keep the back-
bone network, optimizer, and image input size consistent with the above conditions. All
the networks in this paper are trained for 20 epochs, because all of their mAPs almost stop
rising after 15 epochs of training.

3.5. Experimental Results
3.5.1. Image Cropping and Sampling for Object Detection

The image slices are used in image pyramid methods such as SNIP [11], SNIPER [12],
and AutoFocus [13], which cause the destruction of object detection context. However,
feature pyramid networks in this paper use the whole image to train, thus avoiding the
same problem. In this section, to study the influences of background context on object
detection, we conducted a simple comparative experiment. Based on a RetinaNet trained
on the original image, part of the background in the test images was then removed to
study the object detection model’s performance changes. Some experimental pictures are
shown in Figure 8.

From the results of Table 1, it can be seen that after cropping the background area
around the target in the original image, it has a significant impact on various metric
indicators. As the cropping area decreases, the performance gradually recovers. However,
even if it retains five times the background area around the objects (as shown in the second
column of Figure 8) still weakens the detection performance. Therefore, a series of image
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pyramids based on image region slices nearly destroy the object detection context and
cannot achieve optimal performance.

Original Image Keep_bg_5 Keep_bg_3 Keep_bg_1

Figure 8. The original image and the counterparts but cropped part of the background, keep_bg_k
means to keep the background k times the area around the target. (a) Original image. (b) Keep five
times the background. (c) Keep three times the background. (d) Keep one times the background
(equivalent to the ground truth of target objects).

Table 1. The influences of area cropping on object detection performance. Bold font indicates the
best results.

Metric mAP Avg. Precision, Area Avg. Recall, Area

Small Medium Large Small Medium Large

Original Image 0.111 0.028 0.184 0.377 0.061 0.302 0.472
Keep_bg_1.0 0.039 0.005 0.051 0.197 0.014 0.127 0.317
Keep_bg_2.0 0.051 0.004 0.072 0.281 0.01 0.147 0.395
Keep_bg_3.0 0.079 0.011 0.125 0.343 0.027 0.231 0.441
Keep_bg_4.0 0.104 0.023 0.173 0.375 0.051 0.292 0.475
Keep_bg_5.0 0.111 0.028 0.184 0.365 0.059 0.304 0.478

In Table 2, we conducted an experiment to pointed out the impact of image size
changes on detection performance. All images are scaled to a size of 512× 512 during
training the network. Next, in the inference stage, the input images are enlarged or reduced
to be tested by the trained model. It can be seen that the mean average accuracy (mAP) of
the network trained in the size of 512× 512 is 0.111, which indicates the overall performance
of the detector. As the input images shrink, the mAP gradually decreases, and when the
images are enlarged, the mAP increases by 0.032 in absolute value (over 28.8%) at most.

Table 2. The influences of image size on object detection performance. Bold font indicates the
best results.

Metric mAP Avg. Precision, Area Avg. Recall, Area

Small Medium Large Small Medium Large

Imgsize256 0.043 0.002 0.056 0.34 0.014 0.112 0.465
Imgsize384 0.079 0.011 0.127 0.349 0.035 0.212 0.471

Imgsize512 (initial) 0.111 0.028 0.184 0.377 0.061 0.302 0.472
Imgsize768 0.143 0.062 0.226 0.301 0.116 0.359 0.435

Imgsize1024 0.143 0.077 0.21 0.264 0.157 0.344 0.36
Imgsize1024 + retrain 0.217 0.123 0.338 0.446 0.198 0.474 0.586

The overall improvement mainly comes from the improvement of medium and small
objects. When the image is enlarged, the detection performance of large objects decreases.
When the network was retrained at the image size of 1024× 1024, mAP increased by 0.106
(more than 95.4%), and various indicators such as AP_small, AP_medium, and AP_large
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were significantly improved. Therefore, it can be concluded that compared with the training
image size of 512× 512, proper image magnification can greatly improve the performance
of various indicators of object detection. From the visualized feature map in Figure 9,
it can also be seen that the feature maps of enlarged image have a sharper activation area
for small and medium objects, which are easier to achieve higher accuracy in subsequent
positioning and recognition steps.

（c）（b） （d）（a）

Figure 9. Original Image and feature visualization for images of different sizes. (a) Original Image.
(b) Feature map of original size image. (c) Feature map of 2× size image. (d) Feature map of 4× size
image. Warmer color indicates higher activation value in feature map, where would more likely to
achieve better results in the subsequent identification and positioning steps.

3.5.2. Results of Cross-Scale Knowledge Distillation

We trained the student network (SNet) with the original input images, and trained
the teacher network (TNet) with the input of two times the size. In Table 3, we carried out
detailed ablation experiments by gradually adding structures such as layer adaption (LA)
and feature layer alignment (FA), and then carried out cross-scale knowledge distillation
(CSKD) via adaptive key distillation positions (AKDP) algorithm. For each network with
added structure, we compared the changes of calculation and accuracy, in which the amount
of calculation was measured by Giga Floating-point Operations Per Second (GFLOPs).

It can be seen in Table 3 that TNet has the highest performance, but its calculation
amount is four times that of SNet, which is difficult to apply in the actual environment.
Directly performing knowledge distillation on SNet (subsampling the feature map of the
teacher model) can only get a 0.005 (4.5%) mAP improvement, and it can be seen from the
AP_S (0.028) that direct distillation without any additional component has no effect on the
detection performance of small objects.
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Table 3. Ablation experiment of distillation results. Layer Adaption (LA) and Feature Layer Align-
ment (FA) are used to align the output feature maps of the student net (SNet) and the teacher net
(TNet), and then cross-scale knowledge distillation (CSKD) is carried out.

Metric ImageSize GFLOPs mAP AP_S AP_M AP_L

TNet (2×Image) 1024 213.2 0.217 0.123 0.338 0.446

SNet (1×Image) 512 53.3 0.111 0.028 0.184 0.377
SNet + CSKD 512 53.3 0.116 0.028 0.191 0.359

SNet + LA 512 58.05 0.125 0.054 0.201 0.318
SNet + LA + CSKD 512 58.05 0.135 0.06 0.215 0.352

SNet + FA_ThinHead 512 94.56 0.14 0.067 0.217 0.323
SNet + FA_ThinHead + CSKD 512 94.56 0.142 0.065 0.221 0.333

SNet + FA 512 146.09 0.15 0.077 0.233 0.335
SNet + FA + CSKD 512 146.09 0.162 0.079 0.251 0.369

After introducing LA, mAP has increased by 0.014 (12.61%) compared with SNet,
and AP_S has almost doubled (92.85%), indicating that the LA structure we introduced
is effective especially for small objects. After the CSKD of the SNet with the layer adap-
tive structure, the mAP continues to increase to 21.62%, indicating that the introduction
structure is conducive to better knowledge distillation. At the same time, by comparing
the amount of calculation, it is found that compared with the SNet with 53.3 GFLOPs of
calculation consumption, the introduction of LA only brings the calculation of SNet to
58.05 GFLOPs, which only increases by 8.9%.

Because the LA structure only aligns the output size of the two models through up-
sampling forcibly, the inputs of SNet and TNet are still different, which influences the effec-
tiveness of CSKD. Furthermore, we introduce the FA mechanism to align the feature level,
and the mAP is raised from 0.111 to 0.15 (35.13%), and to 0.162 (45.94%) after CSKD, but it
also brings a huge increase in computational complexity. This is because the output feature
map of the network continues to be convoluted by four layers in RetinaNet, and then the
categories and locations of the objects are predicted. The convolution of these four layers
leads to a sharp increase in the amount of computation after the introduction of FA. We con-
ducted a comparative experiment using only two-layer convolution (SNet+FA_ThinHead).
It is found that after reducing the two-layer convolution, the amount of computation is
reduced from 146.09 GFLOPs to 94.56 GFLOPs (35.27%). However, the simplified FA
method still increases the mAP from 0.111 to 0.140 (26.13%) and to 0.142 (27.93%) after
CSKD, which shows the effectiveness of the FA structure. The amount of computation
brought by the FA structure can be optimized by simplifying the subsequent convolution
layer of the output feature map. In fact, it can be optimized by the BottleNeck structure
used in ResNet [26] or the depthwise separable convolution used in MobileNet [43], but it is
not the focus of this paper. Here, we only discuss the effectiveness and good optimizability
of CSKD based on FA structure.

3.5.3. Comparison to the SOTA FPNs

In Table 4, we compare the large, medium, and small object detection accuracy
(AP_S/AP_M/AP_L); recall rate (AR_S/AR_M/AR_L); and mAP with five SOTA fea-
ture pyramid methods under unified conditions. Note that Ours-FA_CSKD_th is the same
as SNet with FA_ThinHead and CSKD.
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Table 4. Compare with the SOTA methods. The top three methods are highlighted in red,
blue, and green.

Metric mAP
Avg. Precision, Area Avg. Recall, Area

Small Medium Large Small Medium Large

SSD [14] 0.083 0.017 0.135 0.292 0.043 0.237 0.417
ReinaNet(FPN) [17] 0.111 0.028 0.184 0.377 0.061 0.302 0.472
PANET(PAFPN) [18] 0.111 0.027 0.185 0.338 0.063 0.303 0.448

NAS-FPN [19] 0.111 0.029 0.194 0.319 0.067 0.301 0.422
Libra-RCNN [20] 0.110 0.024 0.188 0.366 0.060 0.295 0.489
Ours-LA_CSKD 0.135 0.060 0.215 0.352 0.110 0.341 0.452

Ours-FA_CSKD_th 0.142 0.065 0.221 0.333 0.118 0.348 0.426
Ours-FA_CSKD 0.162 0.079 0.251 0.369 0.140 0.380 0.491

Due to the direct use of each feature level for prediction without fusion of shallow
and deep features, all metrics of SSD are the worst. Compared with SSD, FPN, PAFPN,
NAS-FPN, and Libra-RCNN use different methods for feature fusion, and all indicators
have been improved. However, it can be seen that the performance of these methods is
very close, which shows that it is difficult to get a more robust feature representation of
small objects by relying solely on the feature pyramid fusion.

Based on the most basic feature pyramid structure, we introduced LA, FA, and CSKD
strategy, the average detection accuracy has been significantly improved. Because the
teacher network in our CSKD architecture is trained by enlarged images, the improvement
mainly comes from small and medium-sized objects. It can see that our method exceeds
five networks in AP_S, AP_M, AR_S, and AR_M. Among them, LA_CSKD is the lightest
version, whose results of mAP, AP_S, AP_M, AR_S, and AR_M are increased by 21.62%,
106.89%, 10.82%, 64.17%, and 12.54%, respectively, compared to SNet.

Figure 10 shows the precision–recall (PR) curves of medium, small, and all objects.
At the same recall point, the higher the accuracy, the better the model performance. It can
be seen that all versions of our method are better than the other five methods in the
performance of small and medium objects (Figure 10a,b), especially the small objects,
making the overall performance (Figure 10c) better than other methods.

Figure 10. The precision–recall (PR) curves of car (first row) and motor (second row). (a) The PR
curve of small objects. (b) The PR curve of medium objects. (c) The PR curve of all objects.

In comparing the average accuracy of each category in Table 5, we can see that the
sample imbalance and size imbalance lead to differences in accuracy. Categories of car, van,
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and bus with larger sizes have the better average accuracy, while small object categories
such as people and pedestrian have worse accuracy. Our proposed approach is superior to
the other five mainstream methods in most categories (except truck and awning-tricycle).

Table 5. Performance comparison between our method and other SOTAs on metric of average precision of each class.
The top three methods are highlighted in red, blue, and green.

Methods Pedes. People Bicycle Car Van Truck Tric. Aw-Tric. Bus Motor

SSD 0.037 0.019 0.000 0.342 0.126 0.090 0.034 0.009 0.140 0.035
FPN 0.060 0.039 0.013 0.383 0.162 0.138 0.057 0.029 0.220 0.063

NAS-FPN 0.060 0.032 0.009 0.363 0.152 0.128 0.063 0.033 0.209 0.055
PAFPN 0.059 0.034 0.012 0.373 0.157 0.133 0.055 0.022 0.203 0.057

Libra-RCNN 0.055 0.028 0.012 0.370 0.155 0.146 0.054 0.022 0.199 0.056

Ours-LA_CSKD 0.070 0.057 0.020 0.424 0.192 0.138 0.073 0.025 0.250 0.098
Ours-FA_CSKD_th 0.083 0.060 0.019 0.448 0.202 0.142 0.072 0.031 0.252 0.109

Ours- FA_CSKD 0.105 0.075 0.026 0.477 0.222 0.169 0.086 0.040 0.288 0.127

The first row in Figure 11 shows a difficult situation in the visdrone2018 dataset.
People sitting in motors are highly overlapping, but they need to be accurately divided
into two categories: people (red) and motor (yellow). It can be seen that Libra-RCNN,
PAFPN and SSD almost all missed or misclassified these two categories of objects, while our
results have only a few errors. Among them, the green border is a pedestrian. The difference
between a pedestrian and a person is that the former is standing and the latter is sitting.
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Figure 11. Visual comparison. From left to right are ground-truth, our results, Libra-RCNN,
PAFPN, and SSD.

In the second row, several motors and pedestrians in the image have only weak feature
representation. Our ZoomInNet successfully detected some of them, while other methods
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missed all of them. The third and fourth rows are similar, our method always outperforms
other methods in detecting small objects.

3.5.4. Comparison to the SOTAs in VisDrone-DET2019

Note that the small detection accuracy is still low in this paper and mAPs of our
method are lower than ones of these SOTA reported in VisDrone-DET2019 [44]. In this
section, we conducted experiments to explain the “low accuracy” in this paper. The main
reason is that the experiments above are conducted under uniform conditions without
additional accessories.

In fact, both VisDrone-DET2018 [10] and VisDrone-DET2019 are data challenges,
which means that any technique or trick can be used for improving the results. Such tricks
include data augmentation, deeper backbone network, larger image size and technique in
training or inference stages. For example, among the 33 methods represented by A.1–A.33
in VisDrone-DET2019, backbones of ResNet-101 [26], ResNeXt-101 [45], and ResNet-50 [26]
are used in methods A.1–A.3, respectively; a guide anchor [46] is used in A.2 for training;
Test time augmentation (TTA) and Soft-NMS [47] are used for inference in A.13.

In Table 6, we show that with several tricks, even the baseline of our method can
achieve results similar to those reported in VisDrone-DET2019.

Table 6. The results of our baseline with some tricks compared to methods in [44]. Among these
tricks, ”Optim_test_args” means to use optimal testing arguments. TTA is test time augmentation.

Tricks mAP AP50 AP75 AP_S Speed (FPS)

Our baseline (imgsize512) 0.1110 0.1930 0.1130 0.0280 27.8
+Large image size (1024) 0.2170 0.3660 0.2240 0.1230 16.2

+Deeper backbone 0.2270 0.3830 0.2330 0.1300 10.4
+Better Anchor Asiginment 0.2430 0.4300 0.2380 0.1680 10.4

+Optim_test_args 0.2760 0.4720 0.2820 0.1870 7.6
+TTA 0.2800 0.4780 0.2840 0.1920 3.9

DPNet-ensemble (A.15) 0.2962 0.5400 0.2870 —– 6
S+D (A.31) 0.2859 0.5097 0.2829 —– 10

HRDet+ (A.21) 0.2839 0.5453 0.2606 —– 5
SGE-cascade R-CNN (A.30) 0.2733 0.4956 0.2655 —– 4.3

CenterNet (A.6) 0.2603 0.4869 0.2429 —– 50
HTC-drone (A.22) 0.2261 0.4516 0.1994 —– 1.7

It can be seen that with some tricks, the mAP results of our baseline have greatly
improved from 11.1% to 28.0%, while the AP_S also rise from 2.8% to 19.2%. Among the
six compared methods, DPNet-ensemble (A.15) has the best mAP in [44]. Without any
efficiency optimization, our method roughly uses some tricks, but still achieves a moderate
speed with a TITAN RTX 24G. However, the speed of our baseline decreased from 27.8 to
3.9 FPS. Therefore, methods with many tricks in [44] are hard to apply in real environment.
Furthermore, while comparing CSKD with FPNs, the tricks such as multi-scale training
or inference become interfering factors. Base on the above analysis, we eliminated all the
tricks used in [44].

To compare the methods in VisDrone-DET2019, we must implement them under
unified framework and experimental conditions. Therefore, the detection models mainly
involved in 33 algorithms in VisDrone-DET2019 are counted as shown in Table 7.
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Table 7. The number of occurrences (Occ.) of 12 basic models among the 33 methods in [44].
The method with * indicates that it has been compared in Section 3.5.3.

Models Number of Occ. Years Prop (%)

Cascade-RCNN [48] 13 2018 30.95
Faster RCNN [16] 6 2015 14.29

CenterNet [49] 6 2019 14.29
RetinaNet [17] * 5 2017 11.9

Libra-RCNN [20] * 3 2019 7.14
HRNet [50] 2 2019 4.76

Deeplab [51] 2 2018 4.76
Segmentation [52] 1 2019 2.38

TridentNet [53] 1 2019 2.38
Mask RCNN [54] 1 2017 2.38

HTC [55] 1 2019 2.38
YOLOv3 [15] 1 2018 2.38

According to the statistical results in Table 7, the number of occurrences of top 6 de-
tectors accounted for 83.3% among the 12 detectors, where RetinaNet and Libra-RCNN
have already compared in Section 3.5.3. For CenterNet, it has no pre-implemented model
in the MMDetection [42] framework. Therefore, we conducted further comparison with
Cascade-RCNN, Faster RCNN (FR) with HRNet and Faster RCNN with ResNet-50. The
results are shown in Table 8.

Table 8. Further comparison with 3 methods in VisDrone-DET2019. The top three methods are
highlighted in red, blue, and green.

Metric mAP
Avg. Precision, Area Avg. Recall, Area

Small Medium Large Small Medium Large

Cascade R-CNN 0.129 0.033 0.237 0.367 0.055 0.372 0.492
FR with ResNet-50 0.128 0.032 0.242 0.385 0.054 0.392 0.515

FR with HRNet 0.143 0.042 0.275 0.379 0.066 0.426 0.538

Ours-LA_CSKD 0.135 0.060 0.215 0.326 0.110 0.341 0.452
Ours-FA_CSKD_th 0.142 0.065 0.221 0.333 0.118 0.348 0.426

Ours-FA_CSKD 0.162 0.079 0.251 0.369 0.14 0.380 0.491

It can be seen that under uniform conditions, our method is better than the three most
commonly used methods in [44] in AP and AR of small objects. Our results on medium and
large objects are slightly worse than other methods. This is because we use the small-scale
images to train the student network and the large-scale images to train the teacher network.
Therefore, what we improve is the detection performance of small objects, but maybe the
detection performance of medium and large objects can also be improved with CSKD,
which is also the direction of our future work.

3.5.5. Comparison to Fine-Tuning Method

In this paper, we proposed to use CSKD for utilizing the advantages of network
trained by large-scale images, while fine-tuning is the other method can achieve the similar
purpose. Therefore, in this section, we conducted comparison to the fine-tuning method
for further demonstration of the effectiveness of CSKD. To explore it, we pre-trained the
baseline using double size images (1024 × 1024) for 20 epochs, which is the same as TNet
in Table 3, and then fine-tuned the network using the original size images (512 × 512) for
10 epochs. There are two ways to set the fine-tune learning rate (LR) in our experiments:

• keep the same as the 20th epoch and set to 0.1 times the previous after 3 epochs
• set to 0.1 times the previous at the beginning of fine-tuning
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The first setting way considers keeping the LR consistent with the pre-training to keep
the initial fine-tuning smooth, and after a few epochs, it becomes smaller to help the model
converge to a higher accuracy. The second setting method considers the large difference
in image input between pre-training and fine-tuning. In the initial stage of fine-tuning, a
smaller learning rate is required to avoid shocks. The results are shown in Table 9.

Table 9. Fine-tuning results from “train1024” pre-trained model with 2 learning rate setting ways,
and the result of CSKD with LA. lr1_fine-tune_e25 means the 25th fine-tuning epoch with the second
learning rate setting way. Bold font indicates the best results.

Metric mAP
Avg. Precision, Area Avg. Recall, Area

Small Medium Large Small Medium Large

train1024 + test1024 0.217 0.123 0.338 0.446 0.198 0.474 0.586
train1024 + test512 0.117 0.027 0.205 0.480 0.058 0.318 0.624
train512 + test512 0.111 0.028 0.184 0.377 0.061 0.302 0.472

lr1_fine-tune_e25 0.120 0.026 0.212 0.461 0.056 0.315 0.605
lr1_fine-tune_e30 0.120 0.026 0.214 0.463 0.056 0.319 0.604
lr2_fine-tune_e25 0.118 0.026 0.206 0.481 0.056 0.313 0.618
lr2_fine-tune_e30 0.118 0.026 0.207 0.481 0.056 0.313 0.618

LA_CSKD 0.135 0.060 0.215 0.326 0.110 0.341 0.452

With the network pretrained with image size of 1024 × 1024, the mAP obtained by
inference under image size of 512 × 512 is 11.7%, which drops a lot compared to inference
result under image size of 1024 × 1024 (21.7%), but is still better than the network with
image size of 512 × 512 for both training and inference (11.1%). This shows that pre-training
at a large size is helpful to improve mAP.

The fine-tuning methods with two LR setting ways can slightly improve the results
of mAP, while have almost no influences on the average accuracy and recall rate of small
objects. This is consistent with the ablation study in Table 3. The experiment “SNet + CSKD”
shows that without changing the model structure, CSKD also obtained weak effect on
mAP and AP_S. After the introduction of LA, the mAP and AP_S have been significantly
improved.

In this paper, we aim to use cross-scale models for improving the performance of
small objects, and the two most critical points are that

• the training of small-scale model (SSM) should be guided by the knowledge of large-
scale model (LSM) and

• there should be corresponding structures in SSM to maintain knowledge of LSM.

For the fine-tuning method, the huge change in the image size leads to the huge
change in the features, which in turn leads to a sharp drop in the model performance
during the fine-tuning process. This is because the cross-scale fine-tuning lacks supervised
guidance, and the SSM cannot retain the knowledge learned in the LSM. In contrast, our
method uses knowledge distillation to play the guiding role of LSM to SSM, and at the
same time maintains cross-scale knowledge through two improved structures of LA and
FA, which achieve better results.

4. Conclusions

In this paper, we have drawn on the advantages of image pyramid methods for
enhancing the feature representation of small objects, and proposed a cross-scale knowledge
distillation (CSKD) architecture to compress cross-scale information into a single model.
The experiments conducted on VisDrone-DET2018 challenging dataset demonstrate that the
proposed LA and FA mechanism can help better CSKD, which improve the performance
of small objects detection significantly. Based on the basic feature pyramid structure,
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our ZoomInNet achieves higher accuracy in small objects detection compared to five SOTA
feature pyramid methods.

By comparative experiments with methods in VisDrone-DET2019, we show that
with some tricks, even our baseline can achieve a high accuracy as reported in VisDrone-
DET2019. Without these tricks, the comparison with SOTA in VisDrone-DET2019 shows
that our method can give better results for small object detection.

The comparison with the fine-tuning method further proves that CSKD proposed in
this paper can effectively utilize the cross-scale model to improve the performance of small
object detection.
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