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Abstract: The oceanic tropospheric duct is a structure with an abnormal atmospheric refractive
index. This structure severely affects the remote sensing detection capability of electromagnetic
systems designed for an environment with normal atmospheric refraction. The propagation loss of
electromagnetic waves in the oceanic duct is an important concept in oceanic duct research. Owing
to the long-term stability and short-term irregular changes in marine environmental parameters, the
propagation loss in oceanic ducts has nonstationary and multiscale time characteristics. In this paper,
we propose a multiscale decomposition prediction method for predicting the propagation loss in
oceanic tropospheric ducts. The prediction performance was verified by simulating propagation
loss data with noise. Using different evaluation criteria, the experimental results indicated that the
proposed method outperforms six other comparison methods. Under noisy conditions, ensemble
empirical mode decomposition effectively disassembles the original propagation loss into a limited
number of stable sequences with different scale characteristics. Accordingly, predictive modeling was
conducted based on multiscale propagation loss characteristic sequences. Finally, we reconstructed
the predicted result to obtain the predicted value of the propagation loss in the oceanic duct. Addi-
tionally, a genetic algorithm was used to improve the generalization ability of the proposed method
while avoiding the nonlinear predictor from falling into a local optimum.

Keywords: propagation loss in oceanic tropospheric duct prediction; nonlinear prediction; division-
and-conquest strategy; artificial neural network optimization

1. Introduction

The oceanic tropospheric duct often occurs in sea areas with large negative refraction
gradients. [1]. The propagation process of electromagnetic (EM) waves in an oceanic duct is
shown in Figure 1. The duct traps EM waves at a particular frequency and elevation range
and changes their propagation direction. EM waves propagate periodically in the duct layer
with a weak propagation loss as they propagate in a metal conduit [2]. In oceanic ducts,
the propagation loss of radar radio waves is frequently weaker than in environments with
normal refractive indices; hence, the coverage and range of remote sensing-based detection
capability will be expanded [3,4]. Correspondingly, oceanic ducts will also produce adverse
effects, such as communication blind spots and electromagnetic holes. The propagation
loss of EM waves in the oceanic tropospheric duct is an important concept in oceanic
duct research and has important applications in the performance evaluation of remote
sensing radar, the design and evaluation of maritime communication systems, and the
monitoring theory of oceanic atmospheric ducts. Therefore, the study of the propagation
loss of EM waves in an oceanic duct environment can aid in improving the performance of
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remote sensing radar or communication systems, as well as fully utilizing the information
conveyed by the propagation loss to study the joint inversion of atmospheric ducts [5-8].
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Figure 1. Propagation of electromagnetic waves in an oceanic duct layer.

The random weather process and interaction of meteorological factors in an oceanic
duct environment will cause complex fluctuations in propagation loss in time and space.
For a long time, the prediction of EM wave propagation loss in the oceanic duct environ-
ment has been primarily based on the following three methods: ray tracing (RT) theory [9];
mode theory [10]; and parabolic equation (PE) theory [11]. By introducing the split-step
Fourier transform (SSFT) and its variant, the PE method has been widely used considering
the effects of the atmospheric refractive index [12,13]. However, quantifying the patterns
of oceanic ducts is difficult. As the main factor causing propagation loss in the oceanic
duct, sea breezes are uncertain and seasonal [14,15]. An actual sea breeze is frequently
gusty and varies in intensity; hence, the roughness of the sea surface caused by sea breezes
changes. The PE method has difficulty in describing the effects of this dynamic change
on the propagation loss by introducing a roughness attenuation factor and estimating the
grazing angle [16-18]. In addition, the actual structure of an oceanic duct has horizontal
inhomogeneity. The horizontal inhomogeneity of an oceanic duct is primarily divided into
partial horizontal inhomogeneity caused by obstacles (such as islands and passing ships)
and large-scale horizontal inhomogeneity of the duct caused by the difference between
large-scale meteorological conditions and sea conditions. The horizontal inhomogeneity
of the oceanic duct has a significant effect on the propagation loss [19,20]. The vertical
refractive index distribution of the atmosphere at each step is required when using the
PE method to calculate the propagation loss in an uneven horizontal duct. The refractive
index profile of the oceanic duct can be estimated using wave refraction technology (RFC)
or global positioning system signals [21-23]. However, because of the short iteration step
of the PE (depending on the frequency, the step range is between 200-900 m), the refractive
index profile must still be adjusted through interpolation. Meteorological noise (such as
wind, rain, and hail noise) is an important noise source in various sea areas [24,25]. Its
effects on the propagation loss should not be ignored.

The rapid development of artificial neural networks (ANNs) provides new solutions
for the prediction of propagation loss. ANNs are widely used in the prediction of nonlinear
sequences because of their universal approximation [26]. Moreover, ANNs exhibit better
prediction accuracy than statistical methods [27]. ANNSs have been successfully used
to predict propagation loss in inland environments. For instance, the studies by Mom
et al. and Ostlin et al. successfully predicted propagation loss in urban and rural areas
by considering the distance between the transmitter and receiver, the direction angle of
the road, and the building as the input to an ANN [28,29]. Cheerla et al. proposed a
hybrid propagation-loss-prediction model by considering the difference in propagation
loss between the measured propagation-loss data and the COST231 model as the input of
an ANN, which significantly increased the prediction accuracy of the empirical model [30].
A feedforward neural network (FFNN) was proposed for predicting propagation loss
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in outdoor environments [31]. However, these studies did not consider the sequential
relationship between the propagation losses. Using sequential features as the input of
ANNs, recurrent neural networks (RNNs) are more suitable than FFNNs [32]. RNNs
provide temporal memory properties by storing the activations from each time step in the
internal state of the network [33]. However, the major disadvantages of RNNs are gradient
disappearance and gradient explosion caused by long-range time dependencies [34]. To
overcome this limitation, Hochreiter and Schmidhuber developed the long short-term
memory (LSTM) in 1997 as an extension of RNNs [35]. The LSTM predicts propagation
loss by learning the dynamic changes in the historical propagation-loss data. The LSTM
has also been successfully applied to the prediction of sea-clutter signals. In 2019, Zhao
et al. predicted sea-clutter power based on LSTM and achieved a lower prediction error
than for a backpropagation (BP) NN [36]. Liwen et al. predicted sea-clutter amplitude
based on LSTM and achieved a smaller mean square error than the traditional prediction
methods [37]. There are qualitative similarities between sea clutter and propagation loss.

The propagation loss in an oceanic duct environment is primarily affected by marine
environmental parameters (such as temperature, humidity, wind speed, and wave height)
and EM equipment parameters (such as transmission frequency, antenna height, and polar-
ization mode). The effects of EM equipment parameters are artificially controllable. Marine
environmental parameters are stable in the long term and fluctuate irregularly in the short
term [38]. This effect causes the nonstationarity and randomness of propagation loss;
regardless of the characteristics of the propagation loss, it will affect the prediction accuracy
of the NN and the generalization ability of the model [39]. Therefore, scholars have pro-
posed the embedding of the data decomposition method into a propagation-loss-prediction
method. The decomposition of the propagation loss data reduces the nonstationarity of the
initial propagation loss sequence and provides multiscale information for the prediction of
propagation loss. By combining data decomposition algorithms, the predictive ability of
nonstationary sequence-prediction models can be effectively improved [40,41]. Ensemble
empirical mode decomposition (EEMD) is a very useful data decomposition method for
analyzing data with high complexity and irregularity [39]. In this article, EEMD was used
to preprocess propagation loss. EEMD decomposes the original propagation-loss sequence
into a limited number of subsequences according to its intrinsic mode functions (IMFs).
The targets of the LSTM predictor are the IMFs. However, the parameters of the ANN
depend on the research problem and dataset. Occasionally, determining the best parameter
set through experience or trial and error is difficult. In the nonlinear sequence prediction
problem, the genetic algorithm (GA) is one of the most commonly used algorithms for
ANN optimization [42]. The GA can effectively optimize parameters such as the number
of hidden neurons and the size of the time window, thereby improving the prediction
performance of the hybrid approaches [43]. Therefore, the GA is used to optimize the
parameters of the LSTM predictor according to the characteristics of each subsequence of
the propagation loss.

Inspired by the above methods, a new method of predicting propagation loss in an
oceanic duct is proposed in this paper by combining EEMD, GA, and LSTM networks. The
specific construction is as follows: (1) using EEMD, the original propagation-loss sequence
in the oceanic duct environment is decomposed into a limited number of propagation loss
subsequences representing different frequency characteristics while stabilizing the data;
(2) according to the characteristics of each subsequence, the GA optimizes the parameters
for the corresponding LSTM predictor; and (3) the optimized LSTM predictors are used
to predict the subsequences. The prediction results are reconstructed into the prediction
value of the propagation loss in the oceanic duct environment.

The remainder of the paper is arranged as follows. Section 2 presents the imple-
mentation process of the proposed prediction method and the principles of the algorithm
involved in the method. The experimental results for the different oceanic ducts are pre-
sented in Section 3. Section 4 provides the results analysis and discussion. Finally, the
conclusions are presented in Section 5.
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2. Prediction of Propagation Loss in Oceanic Ducts
2.1. Overall Structure of the Proposed Propagation-Loss-Prediction Method

The propagation loss of EM waves in an oceanic duct is an important factor for study-
ing the effects of oceanic ducts on the remote sensing of EM equipment. The propagation
loss of EM waves in an oceanic duct consists of two parts. One part is the propagation loss
in the free space. A free space is an isotropic ideal medium that does not absorb energy.
Free-space propagation loss is the natural loss of energy caused by the energy diffusion of
spherical waves as the propagation distance increases. The second part is the propagation
loss of the medium, which is caused by the absorption of EM waves by the medium and
the scattering, reflection, and diffraction of EM waves by obstacles. If the propagation
in free space is denoted as L and the propagation loss of the medium as A, the original
propagation loss (L(t)) in the oceanic duct can be expressed as

Lt)=Ls+ A M

The framework of the proposed method of predicting propagation loss in oceanic
ducts is shown in Figure 2. The EM waves are trapped in an oceanic duct layer, and the
detailed propagation-loss prediction steps are described as follows:

A. Propagation-loss preprocessing. As a data preprocessing method, EEMD decomposes
the original propagation loss sequence (L(t)) into a limited number of subsequences
C,, called IMFs; and the last IMF is the residual term Residual:

L(t) = Zil C, = Zl]\i_ll IMF,, + Residual, 2)

N represents the total number of propagation loss subsequences. Meanwhile, the
EEMD reduces noise and stabilizes the propagation-loss sequence.

B. Parameter optimization for LSTM. A GA optimizes the parameters (i.e., epochs,
hidden neurons, and window size) of the corresponding LSTM network according
to each IMF. The GA generates chromosomes based on the optimized parameters.
According to the fitness function and termination conditions (maximum number of
iterations), the final output chromosome is the optimal parameter for each LSTM NN.
The equation for the fitness function is as follows:

2
fitness = J % Yo e =y, 3)

where H represents the size of the validation set, y]ml and y]md are the true value

and corresponding predicted value of the j — th propagation loss in the verification
set, respectively.

C. Propagation loss subsequence prediction. The optimized LSTM NN learns the chang-
ing laws of each subsequence through three gates: input, forget, and output gates.
The gate is a fully connected layer in which the input is a subsequence vector, and the
output is a real vector between 0 and 1. The equation is

gate(x) = 6(Wx +b), 4)

where x is the input subsequence vector, W is the weight vector, b is the bias term, 6 is
the activation function, and gate(x) is the corresponding output. The final subsequence
prediction value is provided by the output gate.

D. Propagation-loss reconstruction. The prediction results of each IMF and residual term
are reconstructed according to Equation (5), and the final prediction results of the EM
wave propagation loss in the oceanic duct are obtained:

PropagationLossPredicted = Y= ppppredicted | Rogjgyqfpredicted, (5)
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Figure 2. Flow chart of predicting propagation loss. (A) propagation-loss preprocessing; (B) parameter optimization for
LSTM; (C) propagation-loss subsequence prediction; (D) propagation-loss reconstruction.

2.2. Propagation-Loss Preprocessing

An at-sea EM application system emits EM waves that are trapped in the oceanic
duct layer. EM waves inevitably experience losses during the propagation process. This is
caused by the natural diffusion of EM waves with distance, the absorption of media, and
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the refraction and scattering by obstacles in the propagation space. In other words, the EM
wave propagation loss in an actual oceanic duct is a multivariate nonlinear function com-
posed of EM system parameters (for example, emission frequency, polarization mode, and
emission angle), marine environment parameters, and noise signals. In actual large-scale
sea areas, the marine environmental factors that cause EM wave propagation loss change
gradually and randomly. The original EM wave propagation-loss sequence is a nonlin-
ear and nonstationary signal. Therefore, we propose EEMD [41] as a data preprocessing
method. EEMD is an adaptive signal time-frequency analysis method. It autonomously
extracts the IMFs and a residual term of the signal based on the characteristics of the
propagation loss signal. This method is suitable for analyzing nonlinear and nonstationary
signals. According to the characteristics of the original propagation loss sequence, EEMD
can adaptively decompose the propagation-loss sequence into a limited number of IMFs
while reducing noise and maintaining data stability. Each IMF component decomposed
by EEMD contains the local characteristic signals of different time scales of the original
propagation loss. The propagation-loss preprocessing is shown in Figure 3.
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Figure 3. Preprocessing of propagation loss in an oceanic tropospheric duct based on ensemble empirical mode decomposi-

tion (EEMD).

EEMD is a method of preprocessing propagation-loss data that introduce white noise
sequences into the original propagation-loss sequence; owing to the characteristics of
white noise (uniform spectrum distribution and zero mean), the white noise signal will
be uniformly distributed in the original propagation-loss sequence, and the effect on the
original propagation-loss sequence will be offset by the combination of multiple empirical
modal decomposition and averaging. The specific process of preprocessing EM wave
propagation-loss data in the oceanic duct is as follows, where L(t) represents the original
EM wave propagation-loss sequence collected
(1) The ensemble number (M) (that is, the total number of white noises added to the

original propagation loss sequence) and the amplitude of the added white noise

sequence Ny, (t) are initialized. Additionally, m = 1.
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(2) A new sequence Sy (t) is created by adding the m — th white noise signal N, (¢) to the
original EM propagation-loss sequence L(f), and the specific equation is as follows:

Sm(t) = L(t) + Ny (), m € [1, M], )

(3) The empirical mode decomposition (EMD) algorithm is applied to S,,(t), which is
decomposed into a set of IMFs (im fy, ,) and a residual term res follows:

Sm(t) = 27]:]:_11 im fin,n + res, )

where im fy, , is the n — th IMF obtained after the S, (t) is decomposed, res is the
corresponding residual term, and N is the total number of subsequences obtained
after EMD decomposition.

(4) Steps (2) and (3) are repeated until m reaches the maximum. After each new sequence
Sm(t) is decomposed, the set of IMFs is:

imf1,, imMfon, . ..... Jimfy,(n=12,...,N—-1), (8)

(5) Perform the set average operation on the IMFs set obtained in step (4), and the IMF
components that can represent the different frequency domain characteristics of the
original propagation loss sequence after data preprocessing are obtained:

1 M .
IMF, = i Y i, )

After the above steps, The original propagation-loss sequence L(t) is decomposed
into N propagation-loss subsequences C,,(n = 1,2,...,N). The first N — 1 subsequences
are called IMFs(IMF,(n =1,2,...,N — 1)), and the last subsequence is the residual term
Residual, as shown in Equation (2).

2.3. Principle of Propagation-Loss Prediction

The original propagation loss is decomposed using EEMD to obtain a limited number
of IMF,(n =1,2,...,N — 1) from a high to low frequency and a residual term Residual
(n stands for the order of IMF,;). The higher the order, the lower the frequency. This
means that [ MF; represents the high-frequency characteristics of the original propagation-
loss sequence, and IMFy_; represents the low-frequency characteristics. Each IMF has
a corresponding physical meaning. We propose the use of an optimized LSTM network
to predict the propagation-loss subsequences C,(n = 1,2,...,N) and obtain the corre-
sponding prediction value. Finally, these predicted values are reconstructed to obtain the
final prediction value of propagation loss in the oceanic duct. Figure 4 shows a schematic
diagram of the propagation-loss subsequence prediction based on the LSTM network. The
propagation-loss subsequence performs a sliding reconstruction according to the time
window size (m) selected by the GA. The propagation-loss subsequence is converted to a
supervised learning data pair: the input of the LSTM network (X;), and the propagation-
loss subsequence values at the current distance between the EM wave transmitting end and
the propagation loss receiving end ¢, respectively. The LSTM NN learns the nonlinear rela-
tionship of the historical trend information of the propagation-loss subsequences and then
predicts the propagation-loss subsequence value Y. h;_1 is the historical trend information
of the propagation-loss subsequence, X; is the input into the LSTM forecaster, and Y; is
the prediction result. Equation (10) shows the prediction principle of the propagation-loss
subsequence:

Y = f(Xt, 1), (10)

where f(.) is a nonlinear model.
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Figure 4. Propagation-loss subsequence predictor based on long short-term memory (LSTM).

The LSTM NN can learn the dynamic change law of propagation loss through the

characteristic information of the historical propagation-loss subsequence, primarily through
three gates (forget, input, and output gates). The forget gate determines how much of the
cell state at historical distance (C;_1) is retained by the cell state at current distance (C;).
The input gate determines which propagation-loss subsequence characteristic information
is retained in C;, and the output gate controls C; to the current output value of the LSTM Y;.
The concrete steps of learning the dynamic change law of the propagation-loss subsequence
in a gated unit are as follows.

1.

The first step is activating the forget gate (f;), and f; determines which information of
the propagation-loss characteristics will be discarded from C;:

fr = 5(Wf * (-1, Xi] + bf), (11)

The second step is the activation of the input gate (i;), which determines which
characteristic information of the propagation loss will be accumulated in the cell state;
the function of the input gate is realized in two steps:

it = 6(Wix [hy—1, Xe] + b;), (12)

Ct = tanh(W, * [l;_1, X¢] + bc), (13)

The cell state at current distance (C;) is then updated, and the cell state at historical

distance (C;_1) is introduced to update C;:

Ci=fi*Cry +irxCe (14)

where C; is the candidate vector created by tanh.

Finally, the output gate (O;) is activated, and the predicted output value of propaga-
tion loss subsequence at current distance (Y;) primarily depends on two parts. One is
that the output gate determines which parts of the output unit state are the output,
and the other is to push the unit state value between —1 and 1 through the activation
function (tanh); subsequently, the two parts are multiplied as follows:

O = 5(Wo * [ht—ll Xt] + Z’JO)
Y = hy = Of % tanh(Ct),

(15)
(16)
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The propagation-loss subsequence is input to the corresponding LSTM predictor,
which then outputs corresponding predicted value. Finally, according to Equation (5), the
predicted value is reconstructed, and the prediction result of the EM wave propagation
loss in the oceanic duct environment is obtained.

3. Experimental Results
3.1. Evaluation Criteria for Prediction Capacity

To fairly evaluate the prediction ability of the propagation-loss-prediction mode, the
root mean square error (RMSE) and mean absolute error (MAE) were used to evaluate
the prediction capacity of the propagation-loss-prediction methods from different scales.
The smaller the RMSE and MAE, the better the prediction capacity of the propagation
loss prediction method and the better the prediction accuracy of the propagation loss.
In contrast, larger RMSE and MAE values mean that the prediction performance of the
propagation-loss prediction method is poor, and the prediction accuracy is lower.

(1) The RMSE [44] represented the deviation of the square root between the predicted

propagation loss value (yf ”d) the actual propagation loss value (y;e‘”) in the total data
size ratio. The specific equation is

1 2
RMSE = \/ L (e =y (17)

(2) The MAE [44] was the average of the absolute error between y;’ red and y]r-ml ,and K

represents the size of the propagation loss test set. The MAE was a more general form
of the average error as shown in Equation (18).

K pred real
i ‘yj —Y;
K 7

MAE =

(18)

(3) To analyze the prediction ability improvement of the proposed method, the improve-
ment percentage of the evaluation index was proposed; Prpssg and Paar represented
the improvements in RMSE and MAE, respectively. These indicators are defined as

follows: |PMSE; — RMSE,|
P = L 21 £100% 1
RMSE RMSE1 * 00/, ( 9)
IMAE; — MAE,|
P = 100% 2
MAE MAEl * 00/, ( 0)

3.2. Experimental Data Set

The oceanic duct types that affect radar remote sensing and communication equipment
are primarily evaporation and surface ducts. To verify the prediction capability of the
proposed EM wave propagation-loss-prediction method for an oceanic duct environment,
the simulation hypothesis of this study is as follows: frequency= 10 GHz, Gauss antenna
type, beamwidth = 0.4°, elevation = 0.0°, horizontal polarization. The lower boundary of
the oceanic duct was set as the impedance boundary with a complex dielectric constant of
(70.0,9i). The simulation conditions included Gaussian white noise. The sampling range
of the experimental dataset was between 3 and 200 km from the signal transmitting end,
with a sampling interval of 100 m and a total of 1970 propagation-loss data. The dataset of
propagation loss in an oceanic evaporation duct environment was denoted as sequence 1,
and that of a surface duct environment was denoted as sequence 2. In each propagation
loss series, the first 1576 path loss values (accounting for 80% of the total data set) were
used to construct and train the LSTM prediction layer of the proposed prediction method,
and the remaining 394 path loss values (accounting for 20% of the total data) were used to
test the prediction performance of the prediction method.
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3.3. Comparison Method

To verify the predictive capacity of the proposed prediction method fairly, we com-
pared it with six comparison methods: the BP, RNN, gated recurrent unit (GRU), LSTM,
GA-LSTM, and EEMD-LSTM methods.

1. BP method

The BP algorithm is a multi-layer feed-forward neural network trained according
to the error back propagation algorithm [45]. The BP comparison method represents a
comparison with a basic deep learning algorithm.

2. RNN method

The traditional RNN is a commonly used sequential prediction method. It enables the
network to describe the dynamic performance of the system through delay recursion [33].
This is to compare the learning abilities of the long-term rules.

3. GRU method

The GRU is a variant of the LSTM neural network [46]. It combines the forget and
output gates in the LSTM neural network into a new gate called the update gate [47].
Thus, GRU has fewer parameters and faster training speed. The comparison with the
GRU method involves comparing the predictive capacity of the LSTM neural network and
its variants.

4.  Hybrid neural network method

The GA-LSTM and EEMD-LSTM hybrid neural networks exhibited an improvement
in the prediction performance of the propagation-loss prediction method proposed in
this paper.

3.4. Optimization of the LSTM Prediction Layer

This section discusses the hyperparameter optimization of the LSTM prediction layer
of the proposed method. A GA was used to optimize the three high-frequency hyper-
parameters (namely, number of epochs, number of hidden neurons, and window size).
First, the GA randomly generated the initial population of chromosomes composed of
the three hyperparameters according to the restriction conditions. The RMSE was used
as an individual fitness evaluation function, and the GA operations (selection, mutation,
and crossover) simulated the rule of natural superiority after several generations until
the number of generations reached the stopping criterion. Finally, the chromosome with
the best fitness index was used to configure the LSTM NN. Figure 5 shows that in the
oceanic evaporation duct environment, the validation-set RMSE of the subsequence of
propagation-loss 1 changed with the generated iteration times. Figure 5 also shows that the
trend of the validation-set RMSE fluctuated at the beginning, and after the validation-set
RMSE attained its minimum value, the overall trend was to increase and become stable.
This also indicated that when the GA was used to optimize the hyperparameter of the pro-
posed propagation-loss-prediction method, more was not always better for the generated
iteration number.

Figure 6 shows the change trend of the valid RMSE of the subsequence (propagation-
loss sequence 2) with the number of generated iterations in the surface duct environment. In
addition, after the RMSE reached the minimum value, it exhibited a steady upward trend.
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Figure 5. Propagation-loss subsequence validation set error and generated iteration (evaporation duct).
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Figure 6. Propagation-loss subsequence validation set error and generated iteration (surface duct).

According to the above analysis, the hyperparameter selection results of each LSTM
predictor under the oceanic evaporation duct (sequence 1) and surface duct (sequence 2)
are shown in Table 1.
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Table 1. Result of hyperparameter optimization based on the genetic algorithm (GA).
Propagation-Loss Hidden Windows Propagation-Loss Hidden Windows
Subsequence Epochs . Subsequence Epochs .
. Neurons Size Neurons Size
Evaporation Duct Surface Duct
IMF1 815 5 1 IMF1 987 1 1
IMF2 331 1 3 IMF2 987 1 5
IMF3 663 2 1 IMF3 663 1 5
IMF4 1554 1 5 IMF4 392 1 5
IMF5 987 1 5 IMF5 987 1 5
IMFe6 392 5 1 IMFe6 663 2 1
IMF7 751 2 1 IMF7 392 5 1
IMF8 1154 4 1 IMF8 1554 2 1
Residual 751 4 1 IMF9 815 5 3
Residual 392 5 1
3.5. Propagation Loss Prediction Results
To verify the prediction capability of the EM wave propagation-loss prediction method
for an oceanic tropospheric duct environment proposed in this paper, we applied the
abovementioned six comparison methods and the proposed prediction method to the
propagation loss sequences (sequences 1 and 2) in two different oceanic duct environments
(evaporation duct and surface duct). Figure 7 shows a comparison of the prediction
performance of all propagation-loss prediction methods on the test set of sequence 1. The
evaluation index results of the prediction ability of different propagation loss prediction
methods on the propagation loss of the sequence 1 test set are shown in Table 2.
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Figure 7. Comparison result of prediction performance of all prediction approaches (evaporation duct).
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Table 2. Evaluation results of predictive capacity (evaporation duct).

Prediction Approaches RMSE MAE
BP 1.1163 0.8969

RNN 1.0636 0.8492

GRU 1.0315 0.7486

LSTM 0.8836 0.6646
GA-LSTM 0.4220 0.2790
EEMD-LSTM 0.5288 0.4577
Proposed method 0.3304 0.2683

Figure 8 shows the comparison of the prediction performance of all propagation-loss
prediction methods on the sequence 2 test set. Similarly, Table 3 shows the performance of
different propagation loss prediction methods on the evaluation index of sequence 2.

— = — Original Value
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—>— GA-LSTM
EEMD-LSTM
— +— Proposed Method

150

145

Propagation Loss(dB)

140

1 1 1 1
150 160 170 180 190 200
Distance(Km)

Figure 8. Comparison result of prediction performance of all prediction approaches (surface duct).

Table 3. Evaluation results of predictive capacity (surface duct).

Prediction Approaches RMSE MAE
BP 1.3030 0.8849

RNN 1.2333 0.8274

GRU 1.0455 0.7865

LSTM 0.7842 0.3734
GA-LSTM 0.4594 0.3127
EEMD-LSTM 0.5256 0.5014
Proposed method 0.3140 0.2613

4. Results Analysis and Discussion
4.1. Simulation Data

(@) The proposed method exhibited an optimal prediction ability for propagation loss for
an oceanic tropospheric duct environment.

As Table 4 shows, for the propagation loss predictions for the evaporation duct envi-
ronment, the proposed method had a higher propagation-loss prediction accuracy than the
other comparison methods; for instance, compared with the BP, RNN, GRU, LSTM, GA-
LSTM, and EEMD-LSTM methods, the percentage improvements in RMSE were 57.41%,
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74.54%, 69.97%, 59.96%, 31.65%, and 40.26%, respectively; and the percentage improve-
ments in the MAE were 70.47%, 68.42%, 66.78%, 30.02%, 16.44%, and 47.89%, respectively.
Table 5 shows the evaluation results of the prediction performance of the propagation-loss
prediction method for the oceanic surface duct environment. The predictive capacity of
the proposed method was superior among the six propagation loss prediction methods
(i.e., BP NN, RNN, GRU, LSTM, GA-LSTM, and EEMD-LSTM). The percentage improve-
ment of the MAE for the proposed method compared with the BP, RNN, GRU, LSTM,
GA-LSTM, and EEMD-LSTM methods was 70.09%, 68.41%, 64.16%, 59.63%, 3.84%, and
41.38%, respectively. The percentage improvement of RMSE of the proposed prediction
method compared with the BP, RNN, GRU, LSTM, GA-LSTM, and EEMD-LSTM methods
was 70.40%, 68.94%, 67.97%, 62.61%, 21.71%, and 37.52%, respectively.

Table 4. Percentage improvements of the proposed method in comparison with the other approaches
on propagation loss sequence 1 (evaporation duct).

Prediction Approaches Prumse Pyar
BP 57.41% 70.47%
RNN 74.54% 68.42%
GRU 69.97% 66.78%
LSTM 59.96% 30.02%
GA-LSTM 31.65% 16.44%
EEMD-LSTM 40.26% 47.89%

Table 5. Percentage improvements of the proposed method in comparison with the other approaches
on propagation loss sequence 2 (surface duct).

Prediction Approaches PrysE Pyiae
BP 70.40% 70.09%
RNN 68.94% 68.41%
GRU 67.97% 64.16%
LSTM 62.61% 59.63%
GA-LSTM 21.71% 3.84%
EEMD-LSTM 37.52% 41.38%

(b) The LSTM method had a higher propagation-loss prediction accuracy than other
single NN-based prediction methods.

The results in Tables 6 and 7 indicate that the prediction capacity of the LSTM method
was superior to that of the other single NN approaches. For the evaporation duct envi-
ronment, the percentage improvement of RMSE for the LSTM method compared with
the BP, RNN, and GRU approaches was 20.85%, 16.92%, and 14.34%, respectively. The
percentage improvement of MAE for the LSTM method compared with the BP, RNN,
and GRU approaches was 25.9%, 21.74%, and 11.22%, respectively. For the surface duct
environment, the percentage improvement of RMSE for the LSTM method compared with
the BP, RNN, and GRU approaches was 39.82%, 36.41%, and 24.99%, respectively. The
percentage improvement of MAE for the LSTM method compared with the BP, RNN, and
GRU method was 57.8%, 54.87%, and 52.52%, respectively.

Table 6. Percentage improvements of the LSTM method in comparison with the other single NN
approaches on propagation loss sequence 1 (evaporation duct).

Prediction Approaches Praise Ppag
BP 20.85% 25.90%
RNN 16.92% 21.74%

GRU 14.34% 11.22%




Remote Sens. 2021, 13,1173

15 of 23

Table 7. Percentage improvements of the LSTM method in comparison with the other single NN
approaches on propagation loss sequence 2 (surface duct).

Prediction Approaches Pryse Parrag
BP 39.82% 57.80%
RNN 36.41% 54.87%
GRU 24.99% 52.52%

(c) The EEMD, as a data preprocessing method, effectively increased the prediction
accuracy of propagation loss.

Table 8 shows the prediction error estimated results of different propagation-loss fore-
cast methods under two different oceanic duct environments: the LSTM-based prediction
method, LSTM NN combined with parameter optimization strategy (GA-LSTM), LSTM
NN hybrid data preprocessing method (EEMD-LSTM), and propagation-loss prediction
method proposed in this paper.

Table 8. Error estimated results of prediction approaches.

Prediction A.pproaches RMSE MAE
(Evaporation duct)
LSTM 0.8836 0.6646
EEMD-LSTM 0.5288 0.4577
GA-LSTM 0.4220 0.2790
Proposed method 0.3304 0.2683
Prediction Approaches
(Surface duct) RMSE MAE
LSTM 0.7842 0.3734
EEMD-LSTM 0.5255 0.5014
GA-LSTM 0.4594 0.3127
Proposed method 0.3140 0.2613

For the evaporation duct environment, the percentage improvements of the RMSE and
MAE for the EEMD-LSTM method compared with the LSTM approach, were 40.15% and
31.13%, respectively. The percentage improvements of the RMSE and MAE for the proposed
method compared with the GA-LSTM approach were 9.16% and 1.07%, respectively. In
the surface duct environment, the percentage improvements of the RMSE and MAE for
the EEMD-LSTM method compared with the LSTM approach, were 32.99% and —34.28%,
respectively. The percentage improvements of the RMSE and MAE for the proposed
method compared with the GA-LSTM approach were 31.65% and 16.44%, respectively.

(d) GA effectively increased the prediction accuracy of the propagation-loss predic-
tion method.

Figure 9 shows the performance of the GA in increasing the propagation-loss subse-
quence predictive ability in the ocean evaporation duct. The GA effectively reduced the
prediction error (in MAE and RMSE) of the propagation-loss subsequence predictor and
improved the prediction ability of the LSTM network. The results are shown in Figure 10
for an oceanic surface duct environment. Tables 9 and 10 show the results for the percent-
age improvement in propagation-loss subsequence prediction capability by GA for two
different oceanic ducts.



Remote Sens. 2021, 13,1173 16 of 23

I Proposed Method I Proposed Method
I EEMD-LSTM B CLMD-LSTM

id4

144

RMSE

IFL BMEZ M3 IMEDIMES IMEG IME? IMER Residual

IMEL M2 IMIS IMId IMES IMEG IMIT IMIE Residual

(a) (b)

Figure 9. Error estimate results for propagation-loss subsequences in an oceanic evaporation duct: (a) root mean square
error (RMSE); (b) mean absolute error (MAE).
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Figure 10. Error estimate results for propagation-loss subsequences in an oceanic surface duct: (a) root mean square error
(RMSE); (b) mean absolute error (MAE).

Table 9. Percentage improvement in propagation-loss subsequences prediction capability by GA
(evaporation duct).

Propagation-Loss

Subsequences Pruse Prmae
IMF1 5.25% 5.56%
IMF2 7.50% 7.42%
IME3 7.70% 3.94%
IMF4 12.45% 9.49%
IMF5 9.04% 1.69%
IMF6 1.70% 0.93%
IMF7 36.79% 35.32%
IMF8 73.55% 75.37%

Residual 66.27% 70.47%

(e) The propagation-loss prediction accuracy based on a hybrid LSTM method was higher
than that of a single LSTM NN.

Table 11 shows the estimated results of the prediction error of the different propagation-
loss forecast methods under two different oceanic duct environments. For the evaporation
duct environment, the percentage improvements of the RMSE and MAE for the GA-LSTM
method compared with the LSTM approach were 52.24% and 58.02%, respectively. The
percentage improvements of the RMSE and MAE for the proposed method compared with
the EEMD-LSTM approach were 37.52% and 41.38%, respectively. For the surface duct
environment, the percentage improvements of the RMSE and MAE for the GA-LSTM
method compared with the LSTM approach were 41.42% and 16.26%, respectively. The
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percentage improvements of the RMSE and MAE for the proposed method compared with
the EEMD-LSTM approach were 40.26% and 47.89%, respectively.

Table 10. Percentage improvement in propagation-loss subsequences prediction capability by GA
(surface duct).

Propagation-Loss

Subsequences Prumse Priae
IMF1 7.68% 8.92%
IME2 11.80% 12.37%
IMF3 5.57% 4.71%
IMF4 3.92% 5.68%
IMF5 23.55% 22.56%
IMF6 69.82% 67.75%
IMF7 34.27% 35.25%
IMF8 19.54% 18.60%
IMF9 71.00% 72.21%

Residual 40.86% 46.78%

Table 11. Error estimation result based on the LSTM and hybrid LSTM methods.

Prediction Approaches

Evaporation Duct RMSE MAE
LSTM 0.8836 0.6646
GA-LSTM 0.4220 0.2790
EEMD-LSTM 0.5288 0.4577
Proposed method 0.3304 0.2683
Prediction Approaches RMSE MAE
Surface Duct
LSTM 0.7842 0.3734
GA-LSTM 0.4594 0.3127
EEMD-LSTM 0.5255 0.5014
Proposed method 0.3140 0.2613

(f)  Figures 11 and 12 show the evaluation index results of the prediction performance of
all the EM wave propagation loss-prediction methods under the oceanic evaporative
duct and surface duct environments, respectively.
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Figure 11. Error estimation result of propagation-loss prediction methods (evaporation duct).
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Figure 12. Error estimation result of propagation-loss prediction methods (surface duct).

We observed the following: (1) among the four single intelligent propagation-loss
prediction methods discussed in this paper, the LSTM method had the highest prediction
accuracy; (2) compared with the single LSTM method, the forecasting capacities of the
hybrid LSTM NN approaches were superior; (3) although the EEMD effectively increased
the accuracy of the propagation-loss prediction, for the surface duct environment, the
percentage improvement of MAE for the EEMD-LSTM method compared with the LSTM
approach was —34.28%, and the percentage improvement of MAE for the proposed method
compared with the EEMD-LSTM approach was 47.89%, and thus, by combining with the
hyperparameter optimization algorithm of the GA, the forecasting capacity of the EEMD-
LSTM was increased; and (4) compared with the other six methods, the propagation-loss
prediction method proposed in this paper was superior in terms of both MAE and RMSE
indices under both oceanic duct environments.

4.2. Field Data Testing

To further test the predictive performance of the proposed method in the actual oceanic
duct environment, real field data was used. True doppler weather radar echoes power
observation data from the observation at Qingdao Meteorological Bureau (120°E, 36°N)
on 18 July 2014(4:04 UTC). The corresponding field data are the two sets of radar echoes
power measured in 90° and 120° azimuth (assuming that true north is 0° azimuth) in the
nearby sea area (sampling approximately 1 km at distances <90 km) under a non-uniform
oceanic duct environment. In the ocean duct environment, according to the basic theory
of radar, the distance between the radar receiving antenna and the sea surface scattering
unit is 7, and the corresponding relationship between radar echoes power P(r, M) and
propagation loss L(r) is as follows:

2
P(r, M) = HGATAR 1)
L(r)°A2

where M is the atmospheric modified refractive index profile, P; is the transmit power of
the radar, oy is the backscatter coefficient(need to be analyzed based on sea conditions),
G is the radar antenna gain, and A is the EM wavelength. The parameters of the Doppler
weather radar used are shown in Table 12. The relationship between the original echoes
power in 90° and 120° azimuth and their prediction for the proposed method is illustrated
in Figure 13, and Table 13 is the evaluation result of the prediction ability of different
prediction methods on the radar echoes power testing data.
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Table 12. Doppler weather radar parameters.

Radar Parameter Value
Frequency (GHz) 3.0
Antenna elevation(degree) 0.57
Antenna height (m) 169
Transmitting power (kW) 700
Antenna gain (dB) 45
Antenna horizontal beam width (degree) 1.0
Antenna vertical beam width (degree) 1.0
Pulse width (us) 1.0
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Figure 13. The radar echoes power predicted result of the proposed method: (a) 90° azimuth; (b) 120° azimuth.

Table 13. Evaluation results of predictive capacity.

Prediction Approaches

90° Azimuth RMSE MAE

BP 3.7338 3.3076

RNN 3.2216 2.8937

GRU 3.6098 3.2750

LSTM 1.8432 1.4385

GA-LSTM 1.8323 1.4264

EEMD-LSTM 1.4729 1.1208

Proposed method 1.0644 0.8700
Prediction Approaches

120° Azimuth RMSE MAE

BP 4.3998 2.4776

RNN 2.8040 2.1168

GRU 2.7277 2.0772

LSTM 2.2747 1.9604

GA-LSTM 2.0859 1.7750

EEMD-LSTM 1.6657 1.3358

Proposed method 1.4515 1.0816

It is shown in Figure 13, when using real radar echoes power data, although the field
data contains some observation deviations, the prediction results can better fit the change
trend of field data, and the prediction error is between —2dB and 2dB. As Table 13 shows,
for the radar echoes power field data predictions in the actual oceanic duct environment,
the proposed method had a higher prediction accuracy than the other comparison methods
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in 90° and 120° azimuth; for instance, in 90° azimuth, compared with the BP, RNN, GRU,
LSTM, GA-LSTM, and EEMD-LSTM methods, the percentage improvement in RMSE
was 71.49%, 66.96%, 70.51%, 42.25%, 41.91%, and 27.73%, respectively; and the percentage
improvements in the MAE was 73.70%, 69.93%, 73.43%, 39.52%, 39.00%, and 22.38%,
respectively. In 120° azimuth, the percentage improvement of the MAE for the proposed
method compared with the BP, RNN, GRU, LSTM, GA-LSTM, and EEMD-LSTM methods
was 56.34%, 48.90%, 47.93%, 44.83%, 39.06%, and 19.03%, respectively. The percentage
improvement of RMSE of the proposed prediction method compared with the BP, RNN,
GRU, LSTM, GA-LSTM, and EEMD-LSTM methods was 67.01%, 48.24%, 46.79%, 36.19%,
30.42%, and 12.86%, respectively. Overall, based on the prediction results of the field data,
we can see that the proposed prediction method is relatively successful.

5. Conclusions

Ocean tropospheric ducts severely affect the performance of EM systems designed
for environments with normal atmospheric refraction. The oceanic duct types that affect
radar performance and communication equipment are primarily the evaporation and
surface ducts. Based on the simulated propagation loss data of the above two oceanic duct
environments, we propose a propagation-loss prediction method based on an improved
LSTM neural network. The propagation-loss prediction results were compared with six
other prediction methods (i.e., BP method, RNN method, GRU method, LSTM method, and
GA-LSTM and EEMD-LSTM hybrid methods), and the experimental results demonstrated
that the prediction performance of the proposed method is generally better. Owing to
the uncertainty, volatility, and noisy characteristics of marine environmental parameters,
the EEMD method was used to predict propagation loss to extract the data characteristics
of different frequencies while stabilizing the data. The error estimation results indicated
that the combination with the EEMD method enables the LSTM predictor to have strong
anti-noise ability and is more suitable for actual marine environments. Simultaneously;,
the GA can effectively improve the prediction ability of the LSTM predictor. Although a
prediction error exists, the field data testing shows that the field data in the actual oceanic
duct environment predicted by the proposed prediction method conforms to the changing
trend of real field data.

In the future, prediction data based on the measured propagation loss can be used to
predict the occurrence and strength information of the oceanic duct. It can also be used as
a priori information to increase the real-time inversion accuracy of regional nonuniform
oceanic ducts.

Author Contributions: Conceptualization, M.D. and J.W,; Data curation, J W., 5.C., X.G., H.W. and
Z.W.; Formal analysis, M.D. and Y.C.; Funding acquisition, ] W., X.G., S.C. and H.W.; Investigation,
M.D. and X.G.; Methodology, M.D.; Project administration, ].W.; Resources, ].W. and S.C.; Software,
M.D.; Supervision, J.W. Validation, M.D., J.W,, S.C. and X.G.; Visualization, Y.C.; Writing—original
draft, M.D.; Writing—review & editing, ].W., Y.C. and Z.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by [the National Natural Science Foundation of China] grant
number [61775175], [Basic research program of Natural Science Foundation in Shaanxi Province]
grant number [2020JQ-331] ,[the National Natural Science Foundation of China] grant number
[61901335] and [National Natural Science Foundation of China] grant number 61771378.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2021, 13,1173

Abbreviations

Symbols Definitions and Description

L(t) The original EM wave propagation-loss sequence

L¢ The propagation loss in free space

A The propagation loss of the medium

Cn The propagation-loss subsequence obtained by EEMD decomposition of propagation loss, n € [1,2,...,N]
IMEF;, The intrinsic mode function (the first N — 1 of the propagation loss subsequences C;;) n € [1,2,...,N — 1]
Residual The residual term (the last item of the propagation loss subsequences Cyy)

y]r eal The true value of the j — th propagation loss

y]p red The corresponding predicted value of the j — th propagation loss

K The size of the propagation loss test set.

M The ensemble number

N (£) The added white noise sequence, m € [1,2,..., M]

Sm(t) The new sequence (created by adding the m — th Ny, (¢) to L(t),m € [1,2,..., M])

iM fmn the n — th IMF obtained by EMD decomposition of the S, ()

res The corresponding residual term(obtained by EMD decomposition of the Sy, (t))

t The current distance between the EM wave transmitting end and the propagation loss receiving end
t—1 The historical distance between the EM wave transmitting end and the propagation loss receiving end
Xy The input of the LSTM network

Y= hy The predicted value of C, at current distance

hi_q The predicted value of C;, at historical distance

Cy The cell state at current distance

Ci1 the cell state at historical distance

fi The forget gate

it The input gate

Ot The output gate

b,b;, by, b, b ¢ The bias term corresponding to the gate unit

W, Wi, Wo, We, Wy The weight vector corresponding to the gate unit

tanh the activation function

@ The candidate vector created by tanh

H The size of the validation set

r The radar receiving antenna and the sea surface scattering unit

M The atmospheric modified refractive index profile

P(r,M) The radar echoes power

Py The transmit power of the radar

o) The backscatter coefficient

G The radar antenna gain

A The EM wavelength.
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