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Abstract: Conventional multi-view stereo (MVS) approaches based on photo-consistency measures
are generally robust, yet often fail in calculating valid depth pixel estimates in low textured areas
of the scene. In this study, a novel approach is proposed to tackle this challenge by leveraging
semantic priors into a PatchMatch-based MVS in order to increase confidence and support depth
and normal map estimation. Semantic class labels on image pixels are used to impose class-specific
geometric constraints during multiview stereo, optimising the depth estimation on weakly supported,
textureless areas, commonly present in urban scenarios of building facades, indoor scenes, or aerial
datasets. Detecting dominant shapes, e.g., planes, with RANSAC, an adjusted cost function is
introduced that combines and weighs both photometric and semantic scores propagating, thus, more
accurate depth estimates. Being adaptive, it fills in apparent information gaps and smoothing local
roughness in problematic regions while at the same time preserves important details. Experiments
on benchmark and custom datasets demonstrate the effectiveness of the presented approach.

Keywords: multi view stereo (MVS); PatchMatch; depth estimation; dense point cloud; 3D recon-
struction; semantic segmentation; plane detection; RANSAC

1. Introduction

Multi-View Stereo (MVS) algorithms address the problem of generating a complete
and dense 3D representation of the scene, given the camera calibration parameters and
poses in the 3D space commonly obtained by Structure from Motion (SfM) pipelines. Such
procedures have become a common practice for numerous applications that span from
industrial and monitoring scenarios to cultural heritage, city mapping and localization, or
autonomous navigation.

Seitz et al. [1] proposed a taxonomy based on which, a MVS pipeline may refer
to feature point growing-based methods, voxel-based methods, surface evolution-based
methods and depth map merging-based methods. The latter techniques, where depth
maps are fused together into a point cloud or a volumetric representation of the scene, are
widely used under large scale or high precision applications due to their efficiency and
scalability [2,3].

Among the various depth estimation approaches such as semi-global matching [4] or
the recent learning solutions [5–7], PatchMatch-based [8–10] methods have been proven to
work efficiently, especially when it comes to accurate depth estimation of slanted surfaces
due to the usage of support windows to eliminate fronto-parallel bias. PatchMatch for
depth estimation, motivated by the coherent natural structure of the images, applies itera-
tive spatial propagation of the estimated depth in a sequential [11] or diffusion-like fash-
ion [12]. As with other depth estimation methods, PatchMatch relies on photo-consistency
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measures such as the Normalized Cross Correlation (NCC) and thus strongly depends on
the texture variation of the pixel’s neighbourhood. Eventually these algorithms often fail to
reconstruct correctly the depth in the areas of low texture, as photo-consistency measures
alone are not robust enough to tackle depth inconsistencies and matching ambiguities.
Such textureless areas lacking reliable data for depth estimation are also called “weakly
supported” regions [13] and are generally present in urban scenes of smooth, homogeneous
building facades or indoor scenarios surfaces. To overcome this barrier, higher-level scene
understanding constraints have to be introduced [3] to promote the propagation of correct
depth estimates between adjacent pixels.

In the latest years, machine and deep learning algorithms have gained popularity in
various fields of data science due to the increase of computational power and the amount
of available data. Particularly while tackling scene understanding problems such as image
classification, segmentation and object detection, the use of Convolutional Neural Networks
(CNNs) has become common practise [14–16]. Scene understanding information in the
form of semantic annotations has been used for image orientation (pose estimation) [17],
dense point cloud generation [18] or mesh refinement [19–21] .

In this article, we present a new framework in which semantic information is used
to support MVS and improve 3D point cloud accuracy. In particular, constraints derived
from semantically segmented images are used to imply additional class-specific shape
priors during cost computation in PatchMatch MVS (Figure 1). The idea is based on the fact
that semantics can successfully indicate textureless areas derived by the class label of the
scene (e.g., “wall”) where frequently depth miscalculations occur. Geometric constraints
can be assigned to these regions to fill in information gaps, while object boundaries and
depth details are preserved. Standard PatchMatch approaches make however a priori
regularization assumptions to ensure smoothness, yet additional geometric constraints can
be implied directly e.g., local planarity [22–24]. Instead, we formulate geometric constraints
based on semantic priors and benefit from the class-specific geometric properties. RANSAC
planes are detected for all dominant surfaces presented in the scene e.g., under “wall”,
“floor” or “building” label which we assume are planar. A new weighted cost function is
introduced to integrate depth priors and texture information of pixel neighborhood. This
achieves gap filling and local roughness smoothing in textureless areas while promoting the
confidence of photo-consistency measure on highly textureless ones. The method exploits
so far planar regions but can easily be extended to other shapes. Our framework is validated
over the ETH3D benchmark dataset and other custom sequences. Moreover, per-pixel labels
are projected into the 3D point cloud to generate semantically enriched representations.

Figure 1. Overview of the proposed method leveraging semantic information into the 3D dense point cloud reconstruction.
Per pixel labels are used to generate class specific geometric priors to support depth map computation in problematic
textureless areas and produce a more complete point cloud enriched also with the semantic information.

The rest of the article is organized as follows: Section 2 introduces a review of the
state of the art methods on image segmentation and MVS algorithms, as well as their
potential integration; Section 3 outlines the basics of the used PatchMatch MVS algorithm
and the respective notation; Section 4 presents our proposed methodology, namely the
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prior generation and the new cost function; Experiments on various datasets are detailed
in Section 5, followed by discussion of the results (Section 6) and Conclusions (Section 7).

2. Related Work

This study proposes a method bridging diverse research fields, thus we hereafter
review the respective literature.

2.1. Image Segmentation

Semantic segmentation, i.e., the assignment of every pixel of the image to a seman-
tically meaningful class label, in the past was performed using handcrafted features and
flat classifiers [25–27]. In the deep learning era, CNNs have enjoyed great success as they
tend to outperform other hand-crafted methods in efficiency and accuracy [28]. Origi-
nally introduced in the 1980s, yet gained popularity when AlexNet, the seminal work
of Krizhevsky et al. [29], won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). Thereafter, other CNN architectures are being exploited for image tasks, such
as VGG [30], ResNet [31], GoogleNet [32] and Inception [33,34] or DenseNet [35]. Long
et al. [36] proposed a Fully Convolutional Network (FCN) i.e., a network with only convo-
lutional layers that can manage arbitrary sized images. Commonly used FCN architectures
for image segmentation are DeepLab [14], SegNet [15] and Enet [16]. A detailed overview
of the image segmentation models is presented in [37].

Other than a standalone research task, semantic segmentation is used to support
various pipelines such as navigation and obstacle avoidance. Thus, an extensive bibli-
ography on semantic segmentation applications exists, especially on urban street scenes,
towards the complete scene understanding for autonomous driving purposes. Indeed,
several benchmark datasets of real and synthetic data for semantics and 3D reconstruc-
tion info have been introduced such as CamVid [38], Rue-Monge2014 [39], CityScapes [40].
Considerable work has been done lately on semantic RGB-D datasets such as the Stanford
2D-3D semantics dataset [41], SUN RGBD [42], NYU Depth v2 [43], SceneNet RGB-D [44].
In aerial scenarios, the UDD [45] and the UAVid [46] dataset series are released to test the
performance of various segmentation models over drone image sets of urban areas and
the ISPRS 2D semantic labelling dataset provides very high resolution orthophotos with
semantic classes for remote sesning applications [47].

2.2. Semantic 3D Reconstruction

Several works couple 3D reconstruction and semantics. They either refer to joint seg-
mentation and reconstruction optimization for multi-view [48,49] and monocular setups
using conditional random fields [50] or to the use of depth maps to support 2D segmenta-
tion [51]. In the volumetric representation domain, Häne et al. [19,52] proposed to tackle
joint volumetric 3D with semantics in multi-view scenarios with variational optimization,
while Savinov et al. [53] applied a ray potential computation method in a semantic con-
text. Blaha et al. [21,54], inspired by [19], enabled semantic segmentation and volumetric
reconstruction in a joint fashion for surface refinement of large scale scenes, updating
shapes and labels simultaneously. Similarly, Romanoni and Matteucci [20] implemented
joint optimization of mesh refinement and semantic segmentation, combining also the
photometric-consistency. Cherabier et al. [55] learned semantic priors for TSDF volumetric
reconstruction and joint optimization. Yingze Bao et al. [56] and Ulusoy et al. [57] used
learned data-driven geometric shape priors for volumetric reconstruction without aiming
to a semantically enhanced output. Closer to our work, regarding the optimization of
the depth estimates, research has been shifted towards introducing priors in PatchMatch.
Assumptions may vary among the studies, yet a great part of them implicitly impose
geometric constraints along with semantics. Man-made objects usually conform to clearly
defined geometric shapes and belong to certain semantic classes. Introduced as “object
knowledge information constraints”, common semantic labels indicate the sharing of geo-
metric properties along with local smoothness and can therefore facilitate 3D reconstruction.
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Indeed, some studies adopt the hypothesis that scene objects are piecewise planar [58,59]
or that all pixels belonging to the same semantic label must necessarily share also the same
disparity value to guide depth computation for challenging, poorly textured surfaces [60].
In the same line of thought, other works use a group representation of pixels with common
properties, the so-called semantic stixels [49] or 2.5D shape samples known as displets [61]
to boost efficiency in depth calculation.

2.3. PatchMatch

Barnes et al. [62] introduced PatchMatch as a method to establish matches between
image patches relying on random sampling and performing an efficient nearest neighbour
search. It was based on the idea that a large number of random assignments is likely to
converge to at least one good match. Due to the natural local consistency of the images,
good matches can be propagated to the neighboring pixels, spreading best estimates across
the image. Bleyer et al. [8] adopted this idea for stereo matching, using photometric consis-
tency measures and slanted support windows (planes) instead of single disparity values
assigned to every pixel. Several improvements followed, as the combination of belief prop-
agation to promote smoothness in stereo matching [63] or the use of quadratic relaxation
in the energy function for variational smoothness [64]. Shen [9] extended PatchMatch to
the multi-view stereo case using simple geometric criteria for view selection and Galliani
et al. [12] adjusted the cost aggregation and modified the propagation scheme to achieve
computational efficiency, exploiting GPU parallelization. Other works are more focused on
efficient view selection such as Zheng et al. [11] who proposed an EM probabilistic frame-
work to solve the joint pixel level view selection problem and perform depth estimation.
Schönberger et al. [10] built on top of this method introducing a pixelwise view selection
and normal estimation for support planes, deviating from the randomness of classic Patch-
Match, and imposed additional geometric consistency constraints to the matching score.
Learning methods also have been used to assist PatchMatch depth estimation in stereo [65]
or multi-view approaches [66,67].

2.4. Prior-Assisted PatchMatch

The problem of weakly supported textureless areas under PatchMatch scenarios has
been recently undertaken in the literature, towards large scale applications with high over-
lapping percentage. TAPA-MVS [22], following the COLMAP framework [10,68], assumed
piecewise planarity on image superpixels for joint PatchMatch and view selection. Kuhn
et al. [66] extended this framework and achieved depth completion as a post-processing
step using hierarchical superpixel clustering. In contrast to this work, we consider depth
estimation optimization as an integrated problem and we detect planes in the 3D space.
Xu and Tao [23] used adaptive checkerboard sampling propagation and multi-hypothesis
to solve joint view selection. Textureless areas are handled with multi-scale geometric
consistency guidance. In a similar fashion, [24] added direct planar priors using a proba-
bilistic graphical model whereas [69] used a pyramid architecture and coarse to fine MVS.
However, such multi-scale schemes often fail to preserve details. Up to our knowledge,
few works exist integrating straightforward semantic priors into PatchMatch depth es-
timation. Stathopoulou and Remondino, [18], following the framework of [9], semantic
constraints were used to enable semantically selective dense 3D reconstruction. The pre-
sented work also adopts the method in [9] and further extends the depth estimation by
implying class-specific geometric priors (Figure 1).

2.5. 3D Reconstruction Benchmarks

Towards the evaluation of the 3D reconstruction algorithms on a common framework,
several benchmark datasets have been released to the public in the last decades. Bench-
marks may vary based on the purpose, the nature of input data, the available ground truth
(GT) as well as the evaluation metrics. The Middlebury sequences were one of the first
released and served for the evaluation of two-view stereo [70,71] and multi-view stereo
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algorithms [1]. EPFL [72] datasets are real world scenes for MVS purposes with simple
camera configurations and mostly well textured surfaces. The KITTI dataset [73,74] is
a widely used multi-purpose benchmark for stereo, optical flow, visual odometry and
tracking. DTU robotics dataset [75,76] is a laboratory made MVS evaluation dataset. Tanks
and Temples is a modern 3D reconstruction dataset providing a variety of training and
testing sequences [2]. ETH3D is a widely used 3D reconstruction benchmark with high
resolution scenes of real world scenarios. However, up to our knowledge, no semantic high
resolution benchmark images of real world scenarios suitable for MVS 3D reconstruction
purposes exist, although the recent advances of deep learning can facilitate the generation
of semantic labels for most 3D reconstruction scenes.

3. PatchMatch in Multi View Stereo

In this section we revise the details of the PatchMatch MVS algorithm introduced by
Shen [9], in order to introduce basic notation and context since we build upon this work.
Its four steps for depth estimation are:

Stereo pair selection. Candidate views for every target image are chosen based on
intersection angles and visibility criteria. For the sake of robustness, a good potential
pair should fulfil the dual criterion of similar camera viewing direction and adequate
baseline length. The best angles between the principal viewing directions of target and
candidate cameras are selected using the visibility of the already available sparse 3D points,
commonly calculated during the SfM step. An acceptable angle θ is between 5◦ and 60◦.
For the images that meet this requirement, the median distance d between neighbouring
optical centres is computed and acceptable distances are considered to be the ones whose
d < 2d or d > 0.05d. The final set of pairs is sorted in ascending order and the best k
neighboring images are considered.

Depth map computation. For every i-th image of the input set with camera param-
eters Ki, Ri, Ci, a rough depth map is approximated by interpolating the 3D sparse point
cloud resulting from SfM. The depth map is then computed using randomly assigned
slanted support planes to each pixel p. A support plane is defined as a tangent plane of
the local scene surface, represented by a 3D point X and its normal n. The point X lies on
the viewing ray of p. Given the camera intrinsic parameters Ki, for any randomly selected
depth value λ in the range [λmin, λmax] the 3D coordinates of X are computed in the camera
coordinate system,

X = λKi
−1 p (1)

and a random plane normal n is assigned to it. According to the basic principle of Patch-
Match, this random initialization is likely to have at least one good hypothesis for each
depth value. In the case of high resolution images this is even more robust since every
scene plane contains more pixels and thus more guesses.

Since the homography mapping between the images is already known from the
pose estimation, potential pixel correspondences are established for all image pairs. The
aggregated matching cost is calculated using NCC, and more particularly a weighted
zero-mean version of it, which integrates the subtraction of the local mean µ to the NCC
and tends thus to be more robust to light changes and depth discontinuities. This measure
is considered to be reliable enough especially for high resolution images and in this way
more complex aggregation costs are avoided.

Thus, every pixel is associated with a rough 3D plane that is to be further refined
during the PatchMatch iterations. As in [8], during each PatchMatch iteration on each image
pixel two procedures are performed, namely spatial propagation and refinement. Spatial
propagation, based on the idea that neighboring pixels are likely to belong to the same plane
and have a similar depth value, compares the assigned planes between neighbouring pixels
in order to ensure depth smoothness among them and propagate correct estimates; the
depth value with the highest photometric score is kept and propagated, as it is considered
to be a better estimate. Then, random assignment is performed, i.e., various randomly
assigned planes are tested iteratively, in order to refine the initial calculation and further
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reduce the matching cost. In such a way, pixels with high aggregated matching costs
are removed.

Depth map filtering. Consistency between neighboring views is enforced for every
depth map in order to refine the depth values and remove the errors. To this end, each
point X is reconstructed in 3D using its depth value λ, the camera intrinsic parameters Ki,
the rotation matrix Ri and the camera centre Ci:

X = λRT
i K−1

i p + Ci. (2)

Then, it is back projected to all neighbouring 2D views and it is kept as a valid estimate
only if its depth is consistent, i.e., depth difference is small enough over k neighbouring
images, reducing significantly the errors in the final filtered depth maps.

Depth map merging. The various depth maps referring to the overlapping part of the
scene are fused together to remove the redundant depth values for every 3D point. Using
back projection in the same fashion as in Equation (2), depth values are compared between
neighboring views to remove occluded points and duplicates (neighboring depth map test).
Subsequently, depth maps are projected to the 3D space resulting in a fused dense cloud.

4. Proposed Methodology: Semantic PatchMatch MVS

The proposed semantic PatchMatch MVS approach links the input images with their
semantic equivalent using a direct pixel to pixel mapping (Figure 1). Based on [9], it extends
the initial idea of [18] by imposing class-specific geometric constraints during the depth
map computation step. These geometric constraints are used to optimize the matching cost
computation and support thus the depth estimation in textureless areas, but at the same
time preserve the details and do not over-smooth. Indeed, semantic labels generally imply
geometric constraints, as for pixels belonging to the same class the hypothesis is made
that they potentially share also common geometric properties. Other works assume local
planarity in the form of triangles [24] or superpixels [22], yet we explicitly link the semantic
info to derive geometric constraints by assuming planarity for larger, dominant planar
areas of the scene. For instance, in urban scene scenarios, semantically segmented images
can provide structure hypothesis as for building facades. Planar walls are assumed to be
more likely textureless areas, commonly made of flat surfaces of the same color. However,
the method is extendable to other shape priors as well. As image segmentation per se is
not the main scope of this work, we used a priori generated labels as in [18,77].

As in the PatchMatch MVS implementation explained in Section 3, stereo pair selection
is followed by the depth computation step, where the main core of PatchMatch algorithms
takes place. Initial depth values are estimated using the sparse cloud and are further
refined using spatial propagation. This iterative procedure will probably converge to a
good depth estimate, especially for high resolution images. However, in weakly supported,
textureless regions, the photometric score will be dominated by image noise, resulting in
wrongly estimated dense points. An overview of the steps of the proposed method are
shown in Figure 2.

4.1. Plane Fitting for Depth Prior Generation

The standard PatchMatch iterations output estimated depth values and assigned
normal vectors that are to be further refined in the next steps. We use these pixel depth
estimates to generate depth and normal priors for every dominant plane present in the
scene. In this study, we adopt planar surfaces as they are commonly encountered in urban
scenarios, close-range or aerial. PatchMatch depth maps of each view are first projected
in the 3D space using the camera projection matrix. Instead of projecting all scene pixels,
we use semantic prior masks to project only the subset of points under specific semantic
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labels that are more likely to include planes (i.e., “wall”, “floor”) (Figure 3b,c). Using the
eigenvalues λ1, λ2, λ3, 3D points are classified according to their planarity:

λ2 − λ3

λ1
, (3)

the points with low planarity values (p < 0.3) are filtered out. By doing so, isolated
groups of points are to be excluded from our further process, since they most probably
would not belong to representative dominant planes of the scene but they would rather be
outliers. Subsequently, 3D planes in every view are detected using the Efficient RANSAC
algorithm [78] as enfolded in CGAL library [79]. RANSAC parameters, ε and cluster
thresholds, as well as minimun number of points to fit a plane, are adjusted accordingly
based on the average spacing of every point cloud so that only significantly large planes
are considered valid and avoid, thus, oversegmentation (Figure 3d).

Figure 2. The standard PatchMatch pipeline [9] vs. the proposed method. From left to right: the input image and the
respective estimated depth map after standard PatchMatch iterations. In the upper part, the standard approach outputs
filtered depth maps (gap interpolation and small segment removal) as well as confidence and normal maps. In the proposed
approach (lower part), extra semantic iterations are added after the geometric prior estimation. Resulting depth maps
contain less gaps, normal maps are smoother and confidence is higher (scale black to white, with white representing
higher confidence).

For every detected plane the weighted centroid C(X, Y, Z) and the normal n is cal-
culated. We define the boundaries of each plane in 3D using the minimum bounding
rectangle (extent) of each set belonging to the same RANSAC plane. Finally we assign each
image pixel that passes the semantic label check to the correct plane using raytracing. For
assigning a pixel to its corresponding plane, the pixel has to be inside its extent (projected
back to the image) and the plane has to be the closest to the point. Eventually, planar priors
are generated only for the semantic classes that we consider locally planar e.g., facade
walls. Both depth and normal priors are stored for every image pixel of these regions.
These priors are further used to assist the cost computation (Figure 3e).

4.2. Proposed Cost Function

PatchMatch highly relies on the photometric consistency measure (NCC) to correctly
select which value from the random estimates is the best depth hypothesis. Our method
starts from the mostly good depth estimates calculated by the first iterations of the standard
PatchMatch (commonly set i = 4) and refines the results using the plane priors. Spatial
propagation, a fundamental step in PatchMatch, is the procedure when the photometric
cost of the current pixel is compared to its neighboring ones and if the values of the latter are
better (i.e., lower) they are assigned to the current pixel. On the contrary, the initial estimate
is kept if the costs of the neighbors are less reliable (i.e., higher). The cost is defined:

costph = 1− NCC. (4)
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(a) (b) (c) (d) (e)
Figure 3. Plane prior estimation: input image (a); respective labels (b) for semantic classes: sky (yellow), wall (blue),
window (green), door (purple), other (red); binary mask for planar classes (c); the estimated normal prior map for the
RANSAC planes detected in 3D (d) and their respective depth priors in color scale (e) with blue being the closest and red
the farthest.

The lower the cost, the higher the photometric consistency metric is, resulting in
better depth estimates. Even though this approach produces generally accurate results, in
textureless areas it often causes the propagation of wrong depth estimates. One possible
solution for this would be to directly substitute the estimated depth values in problematic
areas with the plane priors calculated in the previous step. However, this would create
unreliable outcomes, forcing planarity and smoothing out details. Instead, we propose to
adjust the cost function in order to leverage the plane priors, if previously generated for
this area, by introducing two additional metrics. Our first metric is based on the shape
priors (inherited from the semantic labels in our case) of the pixels that imply geometric
constraints and measures the consistency between PatchMatch estimates and plane priors
using shift-invariant Gaussian kernel:

Cs = e
−D2

2σ2
1 , (5)

where D is the difference between shape priors generated by RANSAC and PatchMatch
estimates and σ1 is a constant. Given the depth prior dprior and the original PatchMatch
estimation dph, we define D as:

D =
|dprior − dph|

dprior
. (6)

If D is very small (i.e., close to zero), it means that the initial estimate is close enough to
the “ideal” prior, i.e., we get a reliable hypothesis and PatchMatch depth value is retained
and thus propagated. On the contrary, if the depth difference is large, we assume that we
are in a problematic region, PatchMatch likely has propagated a wrong estimate and we
trust more the prior value.

The second metric, represents the textureness of the pixel’s neighbourhood by calcu-
lating the standard deviation of the intensity (color) values in a N × N window:

st =

√
∑(i− µ)2

N × N
. (7)

In the presence of evenly colored, textureless surfaces, standard deviation would have
very small values, close to zero. This metric indicates the reliability of the photometric score
and is critical for avoiding over-smoothing and preserving details. Textureness metrics
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were also used in [22] but in a different fashion than our formulation. Our textureness
coefficient is defined similarly to the semantic prior coefficient in Equation (5) as:

Ct = e
−s2

t
2σ2

2 , (8)

where s2
t is the variance and σ2 a constant. We leverage both the semantic coefficient Cs

(Equation (5)) and the textureness coefficient Ct (Equation (8)) into the initial photometric
cost costph (Equation (4)) to get the combined cost:

costph,s = costph(1− Ct) + w(1− Cs)Ct, (9)

where w is a weight factor.
Planar regions for which plane priors are available are very likely to be assigned

with high photometric cost values, since most of the matches will be ambiguous and thus
unreliable. The standard deviation st of the intensity of the pixel neighbourhood will
probably be close to zero, since color similarity is maximized. In this way, for the planar
regions that have high scores, the new cost function will give priority to the prior estimates.
On the contrary, for the regions where the original photometric score is reliably calculated
the depth estimates will trust more the photometric score. In such a way, plane priors are
alleviated with color similarity and erroneous estimates vanish resulting in more reliable
depth maps. In other words, when the surface deviates from the plane but has a significant
texture variance, the photometric cost is trusted more. Possible outliers will be filtered out
from PatchMatch because of no coherence with the neighborhood and in the worst case
scenario it will degenerate to the standard case. Example behaviour of the cost function
with respect to D and s2

t variations are shown in Figure 4.

(a) (b)
Figure 4. The combined score cph,s given a standard photometric score cph = 0.4 (relatively low confidence) with respect to:
(a) the depth difference D for and s2

t = 0.0001 (textureless area); (b) the s2
t and D = 0.01.

The cost function affects directly not only the depth maps, but also the normal and
confidence ones (Figure 2). Noisy regions of the normal maps are also smoothed and
information gaps are filled in, since estimated normals are leveraged with the normal prior
information. Same holds for confidence maps that reflect the depth estimate reliability of
every pixel. In our experiments we show that only two additional PatchMatch iterations
with the new cost function were enough to significantly improve the depth and normal
map quality, as well as the confidence of every pixel and the final dense 3D point cloud.
Indeed, our solution converges relatively fast. Depth maps are further fused adopting the
standard approach of [9] as described in Section 3 resulting in a unique dense point cloud.

Following a common dense cloud coloring technique where each fused point in 3D
inherits the pixel color of the image from which it is better seen, we use the semantic
labels to color the fused dense cloud and generate semantically enriched point clouds. Our
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semantic PatchMatch approach is built upon the open source library OpenMVS [80], which
follows the approach of [9] for the the dense reconstruction.

5. Experiments and Results
5.1. Datasets

Benchmarks with semantically segmented images for accurate 3D reconstruction
using MVS are not currently available up to our knowledge. Our method cannot be
directly applied to benchmark 3D reconstruction datasets such as ETH3D [3] or Tanks and
Temples [2] as other MVS algorithms do [22,23,66], due to the fact that these MVS datasets
lack accompanied labelled data. However, in order to be in-line and comparable with the
other state of the art techniques, we used three representative ETH3D datasets for which
the GT labels were manually annotated. Along with this, we tested our algorithm on our
custom datasets [18,77] and the UDD5 benchmark dataset.

ETH3D: We use sequences from the high-resolution (6048 × 4032) datasets for which
ground truth 3D data is available: ETH3D-courtyard (38 images) and ETH3D-terrace (23
images) as typical outdoor scenarios and ETH3D-pipes (13 images) for the indoor one. We
performed manual labelling for the building facades in order to extract planar regions,
as shown in Figure 3. Class labels are the same used in [18,77] for the ETH3D-courtyard
and ETH3D-terrace datasets while for the interior scenario ETH3D-pipes we introduce the
semantic labels “wall”, “floor”, “door”, “closet” and “other”. In this specific dataset, planes
estimation is performed within the classes “wall”, “floor” and “closet”, whereas for the
other two only “wall” is considered. For being comparable with the publicly available
results of the other state of the art methods tested on the benchmark, images are resampled
to 3200 pixels as in [23]. This is a common practice in order to reduce the computational
cost and handle large scale datasets, and although dense cloud density is, as expected,
partially affected it is considered to be enough for such datasets. For these datasets we
perform qualitative comparisons for depth maps (Figure 5) and confidence maps (Figure 6).
The resulting 3D dense clouds are evaluated qualitatively (Figure 7) and quantitatively
(Table 1). Results derived with the proposed method are compared against the baseline
OpenMVS [80], as well as COLMAP [10] and four recent methods that use geometric
prior-assisted PatchMatch: TAPA-MVS [20], ACMM [23], ACMP [24] and PCF-MVS [66].

Custom datasets: Two more scenarios are used in our evaluation, namely PiazzaDuomo
(12 high resolution images, 6048 × 4032 px) and PiazzaNavona (5 high resolution images,
4000 × 3000 px). Again, images are resampled to 3200 pixels. Ground truth semantic
labels are available from our previous work [77] for the classes “wall”, “window”, “door”,
“other”, where “wall” is considered a class in which we search for planar areas. For the
dataset PiazzaDuomo, a ground truth 3D point cloud from terrestrial laser scanning is also
available. In this scenario, we compare our results with COLMAP [10], TAPA-MVS [20],
ACMM [23]and ACMP [24] (Table 2, Figure 8). Qualitative comparison for the dense and
confidence maps is also presented (Figure 9).

UDD5: UrbanDrone Dataset UDD5 [45] is a large scale benchmark dataset for seg-
mentation of aerial urban scenarios. We use the training data for which the images labels
are given as ground truth (200 images, 4000 × 3000 pixels). UDD5 labels are defined as
“vegetation”, “building”, “vehicle”, “road” and “other”. Plane priors are estimated for
the class “building” (which includes roofs and facades). Since 3D ground truth data are
not available for this dataset, we use it only for qualitative evaluation (Figure 9). For
computational efficiency, depth maps are generated in 1/4 of the original resolution, i.e.,
2000 × 1500 pixels.
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(a) (b) (c) (d) (e)
Figure 5. Qualitative depth map comparison of our method with other state of the art algorithms for the ETH3D benchmark
sequences terrace, courtyard, and pipes. Labels for walls and ceilings have been used in our method to improve the depth
estimation. GT depth maps look sparse as they contain empty pixels [3]. All other depth maps are scaled to the GT color
scale. (a) RGB image; (b) GT; (c) COLMAP; (d) OpenMVS; (e) proposed.

(a) (b) (c)
Figure 6. Qualitative confidence map comparison of our method with respect to the baseline OpenMVS on the ETH3D
datasets. Scale black to white, where black means lower confidence. It is evident that the plane priors increase the
confidence, especially where textureless areas are present in ETH3D-terrace (ceiling) and ETH3D-pipes (orange panel, closet).
For ETH3D-courtyard where the not particularly textureless areas exist, the confidence remains mostly the same. (a) RGB
image; (b) OpenMVS; (c) proposed.



Remote Sens. 2021, 13, 1053 12 of 19

5.2. Parameter Settings

We ran our tests on an AMD Ryzen 2950X CPU and a GeForce GTX 1070Ti GPU. For
a fair comparison with the baseline PatchMatch MVS approach [9] of OpenMVS [80], we
keep the same parameter configuration and change only the cost computation for including
the class-specific priors. The combined score is computed using w = 0.1, N = 7, σ1 = 0.05
and σ2 = 0.03 that experimentally were proven to be the best trade off values. The depth
map filtering step is skipped for the reconstruction of this experimental setup and it is
substituted with point cloud filtering, following the OpenMVS parameter settings for
the published results available in the ETH3D website. Depth map fusion is then used as
enfolded in OpenMVS library [80].

(a) (b) (c) (d) (e) (f)
Figure 7. Qualitative point cloud comparison of our method with other state of the art algorithms for the ETH3D benchmark
sequences terrace, courtyard and pipes. Dense reconstructions for the state of the art methods are as in ETH3D evaluation site.
(a) COLMAP; (b) TAPA-MVS; (c) ACMM; (d) ACMP; (e) OpenMVS; (f) ours.

Table 1. Accuracy, completeness and F1 score comparisons for tolerance τ = 2 cm and τ = 10 cm for the ETH3D benchmark
datasets. Values for the other methods are taken from the ETH3D evaluation site. Best values in bold.

τ = 2 cm τ = 10 cm

Method Accuracy Completeness F1 Accuracy Completeness F1

ETH3D-terrace

COLMAP 96.79 75.67 84.94 99.29 93.83 96.48
TAPA-MVS 94.00 82.37 87.80 98.45 98.15 98.30

ACMM 96.19 84.13 89.76 99.13 96.16 97.62
ACMP 96.14 84.45 89.92 99.14 96.42 97.76

PCF-MVS 92.72 84.75 88.56 98.09 97.46 97.78
OpenMVS 88.72 87.52 88.12 98.00 98.53 98.27

ours 89.81 88.83 89.32 98.28 98.98 98.63
ours-no labels 89.77 88.65 89.21 98.26 98.94 98.60

ETH3D-courtyard

COLMAP 88.98 73.47 80.49 99.14 92.20 95.54
TAPA-MVS 84.69 77.04 80.68 97.64 96.14 96.89

ACMM 91.35 82.85 86.89 99.51 91.90 95.56
ACMP 90.83 80.96 85.61 99.43 90.80 94.92

PCF-MVS 86.12 83.67 84.88 98.43 94.44 96.39
OpenMVS 80.46 90.10 85.01 97.85 97.63 97.74

ours 79.66 90.58 84.77 97.61 97.22 97.41
ours-no labels 79.69 90.43 84.72 97.60 97.04 97.32

ETH3D-pipes

COLMAP 97.77 34.24 50.72 99.18 62.75 76.86
TAPA-MVS 93.71 63.80 75.91 97.90 86.70 91.96

ACMM 96.63 53.97 69.26 98.89 66.25 79.34
ACMP 97.65 53.54 69.16 99.20 65.80 79.12

PCF-MVS 90.40 69.18 78.38 98.48 88.47 93.21
OpenMVS 82.33 64.55 72.36 95.95 85.42 90.38

ours 85.33 73.50 78.97 96.89 93.63 95.23
ours-no labels 84.19 69.88 76.37 97.32 91.08 94.10



Remote Sens. 2021, 13, 1053 13 of 19

Table 2. Accuracy, completeness and F1 score comparisons of the PiazzaDuomo dataset for τ = 10 cm.

Method Acc. Compl. F1

PiazzaDuomo

COLMAP 88.89 38.00 52.24
TAPA-MVS 25.56 23.74 24.62

ACMM 50.87 50.51 50.69
ACMP 40.92 25.93 31.75

OpenMVS 70.53 68.55 69.52
ours 71.08 69.38 70.22

(a) (b) (c) (d) (e) (f)
Figure 8. Qualitative point cloud comparison for PiazzaDuomo (first two rows) and PiazzaNavona: state of the art baselines
results versus the proposed method (last column). (a) COLMAP; (b) ACMM; (c) ACMP; (d) TAPA-MVS; (e) OpenMVS;
(f) proposed.

(a) (b) (c) (d) (e)
Figure 9. Qualitative depth and confidence map comparison of our method with respect to the baseline OpenMVS on our
custom datasets (PiazzaDuomo and PiazzaNavona) and the UDD5 dataset. The proposed method improves depth estimations
and achieve higher confidence scores in problematic planar areas for PiazzaDuomo and PiazzaNavona. In UDD5, where no
evident textureless areas exist, it performs like standard OpenMVS. (a) RGB image; (b) OpenMVS-depth; (c) proposed-depth;
(d) OpenMVS-conf; (e) proposed-conf.
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5.3. Evaluation Metrics

According to [2,3], completeness (or recall) r is calculated as the amount of ground
truth points for which the distance to the MVS reconstructed points are below a certain
threshold. On the contrary, accuracy (or precision) p refers to the ratio of reconstructed
points which are within the threshold distance from the ground truth points, without
taking into consideration the GT information gaps. Both accuracy and completeness are
considered important, and F1 score is the harmonic mean of the above measures, defined
as F1 = 2(p × r)/(p + r).

6. Discussion

Experimental results on ETH3D sequences and custom datasets show the effectiveness of
our approach in handling textureless areas and generating more complete point clouds. Please
note that ETH3D-courtyard and ETH3D-terrace are generally complete sequences acquired
with dense image networks of high overlap where no particularly problematic textureless
areas are present. Indeed, most of the state of the art algorithms achieve good results as
shown in Table 1. Even in this case, our approach performs in a competitive way. On the
other hand, ETH3D-pipes is one of the most challenging sequences, featuring lower overlap
and large textureless areas or reflective surfaces. Our method outperforms the other methods
in completeness and F1 score in this particular sequence. Overall, the proposed method
generates more complete depth maps (Figure 5) and higher confidence values (Figure 6) for
the ETH3D datasets with respect to other MVS methods and the respective point clouds
contain less gaps (Figure 7). As shown in Table 1, we achieved better completeness results
with respect to all other methods in all three ETH3D datasets for τ = 2 cm and for τ = 10 cm
except for ETH3D-courtyard in τ = 10 cm where we rank second. Accuracy and F1 score
values are significantly higher than the baseline OpenMVS for ETH3D-pipes, marginally better
for ETH3D-terrace, and slightly lower for ETH3D-courtyard for both τ = 2 cm and τ = 10 m.
However, our F1 score is always among the best ones; other methods that perform well in
accuracy (such as COLMAP) suffer in completeness scores since they generate significantly
sparser point clouds. The qualitative comparisons of the depth and confidence maps, where
available, show that our method delivers more complete depth maps and higher confidence
values even in textureless areas where other algorithms fail.

For PiazzaDuomo and PiazzaNavona datasets, the proposed approach generates more
complete point clouds with respect to the baseline and other MVS methods. Especially
in the low textured regions, we achieve satisfying results in gap filling in the depth maps
and higher confidence values (Figure 9, first two rows) while the 3D point clouds lack less
information in textureless areas (Figure 8). This is also proven by the completeness score
which outperforms all other methods and the second best accuracy after COLMAP (Table 2)
that however produces very sparse results (Figure 8a). The PiazzaDuomo and PiazzaNavona
datasets have been proven to be challenging, as they feature relatively small overlap with
respect to ETH3D datasets and the scenes include many textureless regions (Figure 8). UDD5
dataset is a dense sequence of 200 highly overlapping images. The standard OpenMVS
reconstruction was not particularly problematic since the scene was generally well textured.
Gaps in depth maps still exist, though they are mainly caused by occlusions. In such cases,
our algorithm performs equally well as the standard approach (Figure 9, lower row).

The proposed method relies on the estimation of planar priors in the scene. Typically,
regions with erroneous depth estimations result in outliers in 3D and, consequently, the
plane fitting procedure is less robust in those regions. Indeed, over some thresholds,
RANSAC is not able to cope with these errors, plane priors cannot be accurately calculated
and wrong depth estimations will still exist in a similar way as the standard PatchMatch
approach of OpenMVS. To validate the effectiveness of our approach in general scenarios
where no semantic information is available, we remove the input labels and we search
for valid dominant planes across the entire image (ours-no labels). The results show
similar performance with our semantic PatchMatch method for the ETH3D-courtyard and
ETH3D-terrace sequences with marginally lower accuracy, completeness and F1score values
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(Table 1). For the ETH3D-pipes sequence, more evident improvement is proven while using
the labels (ours), especially in completeness (2–4%) and F1 score (1–2%) with respect to the
variant without the labels (ours-no labels) as well as with respect to our baseline OpenMVS.
This proves the effectiveness of the semantic PatchMatch approach, as the labels constrain
the plane search area performing class-specific assumptions. In this way, it is more likely
to fit better planes and propagate correct depth estimates using the priors. Regarding
runtime analysis, our method behaves similar to standard OpenMVS, as the two additional
iterations add little computational cost to the entire MVS procedure.

As by-product and added value, the proposed method generates also semantically
enriched point clouds (Figure 10); each 3D point, beside the real texture information, has
also a semantic meaningful attribute inherited from the image annotations.

Figure 10. Dense point clouds generated by our method (left) and their semantically enriched equivalents (right). PiazzaDuomo,
PiazzaNavona, ETH-terrace and ETH-courtyard follow the same class labels, namely “wall” (blue), “window” (green), “door”
(pink), “other” (red). For the interior dataset ETH-pipes we set “wall” (blue), “floor” (orange), “closet” (grey), “door” (pink)
and “other” (red). Aerial dataset UDD5 follows: “vegetation” (green), “building” (purple), “road” (pink), “vehicle” (blue).
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7. Conclusions

The article introduced a novel approach to leverage plane priors inherited from seman-
tic labels into the MVS process. Based on the standard PatchMatch algorithm implemented
in OpenMVS library, we proposed an adapted cost function for improving depth estima-
tions on textureless areas. The method was successfully evaluated on outdoor urban scenes
and indoor scenarios available in well-known benchmarks and custom datasets. Although
overall metrics do not not always outperform other MVS methods, the presented visual
and quantitative results show that depth maps and point clouds are more complete with
the proposed method. Lastly, our method also generates semantically enriched dense
clouds by projecting the image labels to the 3D points. The additional semantic informa-
tion used to support depth estimation could be a limitation in the generalization of the
proposed method, yet semantically segmented images are increasingly becoming available
due to the broad use of deep learning methods. Our code and labelled datasets are to be
publicly available.
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