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Abstract: The U.S. Department of Agriculture’s (USDA) Cropland Data Layer (CDL) is a 30 m
resolution crop-specific land cover map produced annually to assess crops and cropland area across
the conterminous United States. Despite its prominent use and value for monitoring agricultural land
use/land cover (LULC), there remains substantial uncertainty surrounding the CDLs’ performance,
particularly in applications measuring LULC at national scales, within aggregated classes, or changes
across years. To fill this gap, we used state- and land cover class-specific accuracy statistics from
the USDA from 2008 to 2016 to comprehensively characterize the performance of the CDL across
space and time. We estimated nationwide area-weighted accuracies for the CDL for specific crops
as well as for the aggregated classes of cropland and non-cropland. We also derived and reported
new metrics of superclass accuracy and within-domain error rates, which help to quantify and
differentiate the efficacy of mapping aggregated land use classes (e.g., cropland) among constituent
subclasses (i.e., specific crops). We show that aggregate classes embody drastically higher accuracies,
such that the CDL correctly identifies cropland from the user’s perspective 97% of the time or greater
for all years since nationwide coverage began in 2008. We also quantified the mapping biases of
specific crops throughout time and used these data to generate independent bias-adjusted crop
area estimates, which may complement other USDA survey- and census-based crop statistics. Our
overall findings demonstrate that the CDLs provide highly accurate annual measures of crops and
cropland areas, and when used appropriately, are an indispensable tool for monitoring changes to
agricultural landscapes.

Keywords: accuracy assessment; accuracy metrics; map bias; confidence; crop maps; Cropland Data
Layer; land use/land cover change; remote sensing products

1. Introduction

Mapping and monitoring crops and croplands can generate powerful insights about
our environment and agricultural production systems [1–3]. Because satellite-based re-
mote sensing products are able to efficiently capture land use/land cover (LULC) and
their variations across space and time, these data are increasingly chosen as the basis for
agricultural and environmental decision making, including policy creation, evaluation,
and enforcement [4–8]. With the increased availability and use of detailed remotely sensed
land cover products, however, there is a growing need to understand their accuracy and
reliability for different applications [9–12].

In the United States, the Department of Agriculture’s (USDA) Cropland Data Layer
(CDL) is frequently utilized to monitor agricultural land due to its nationwide coverage,
agricultural focus, and annual frequency [13–16]. Produced by the National Agricultural
Statistics Service (NASS), this satellite-derived map has provided complete coverage of
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the conterminous U.S. each year since 2008. Since it tracks specific crops at field-relevant
resolutions, it is an ideal tool to detect geographic trends and changes in cultivation.
Previous studies have used the CDL to track crop rotations and planting patterns [17–20],
evaluate Farm Bill policies such as crop insurance and the Sodsaver program [8,21,22], and
assess the environmental outcomes of various land management systems [20,23,24], among
many other applications. Estimates of cropland area from the CDL are also used internally
by NASS for a variety of reports and survey applications as well as considered by other
government organizations such as the Environmental Protection Agency, for example, to
monitor compliance with land protections in renewable energy policies [4,25].

To characterize the CDL’s performance, NASS calculates land cover class-specific
accuracies at the state level and releases them with each annual state CDL product [26].
These estimates are based on a comparison with parcel level data from the USDA Farm
Service Agency (FSA) [27] and another land cover map, the National Land Cover Dataset
(NLCD) [28,29]. While these comparisons provide insights into the accuracy of the CDL
for a given state and year, applications of the CDL product typically extend well beyond
this scope; many analyses utilize modifications of the original CDL datasets, compare
across the state products, and/or estimate changes in LULC over time [30–34]. Despite the
prevalence of these applications, the performance of the CDLs in many of these extensions
has not been evaluated.

Given this lack of evaluation, several articles have questioned the reliability of analyses
that use CDL data to identify recent agricultural trends, citing concerns about both the
CDL’s accuracy and its appropriateness for measuring changes to the landscape [35–40].
Such critiques often cite low reported accuracies for the CDLs when mapping certain
crops in specific regions or when depicting nonagricultural land covers such as grasslands.
Despite the potential validity of these concerns, all such critiques to date have lacked a
systematic nationwide assessment of the CDL accuracy beyond comparisons with coarse
data, thereby leaving substantial uncertainty surrounding the CDL’s ultimate dependability.
Furthermore, select approaches for measuring LULC change using the CDL and other land
cover products may help overcome some of the CDL’s limitations and improve analysis
outcomes [41], though the efficacy of these techniques has not yet been fully quantified. For
example, aggregating specific land cover classes into broader domains, such as cropland
and non-cropland, can help address low classifier accuracies of specific cover classes by
eliminating errors associated with distinguishing different crop types and among various
non-cropland covers, such as the many grassland categories historically delineated in the
CDL [30,40,42].

In this paper, we comprehensively quantified the accuracy of the CDL at the national
scale and evaluated the outcomes relevant for applications of the CDL for mapping crops
and cropland. First, we investigated the benefits of consolidating classes within remote
sensing products and quantified the CDL’s ability to distinguish between crop and non-
cropland covers at multiple spatial scales and thematic resolutions. Then, we calculated
nationwide accuracies for both specific and aggregate classes of the CDL and mapped
the spatial variation in accuracies across the U.S. based on congruence with FSA and
NLCD data. We then explored the use of pixel-level classifier confidence information
to provide additional higher-resolution understanding of thematic certainty. Finally, we
estimated the annual bias in mapping specific crops within the CDL and derived new,
bias-adjusted area estimates for the major crop types. We conclude with a discussion of the
implications of these analyses with a particular focus on recommendations for improving
LULC change analyses.

2. Materials and Methods
2.1. Overview of Assessed and Reference Datasets

The Cropland Data Layer is a crop-specific land cover map produced annually by
the USDA National Agricultural Statistics Service (NASS). Complete coverage of the
conterminous United States dates back to 2008, while some states and years predate the
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nationwide product. Primary satellite imagery inputs for the CDL vary according to
availability and effectiveness but have included the Resourcesat-1 Advanced Wide Field
Sensor (AWiFS), Resourcesat-2 Linear Imaging Self Scanning (LISS), Landsat-5 Thematic
Mapper (TM), Landsat-7 Enhanced TM Plus (ETM+), Landsat-8 Optical Land Imager (OLI),
Sentinel-2 A/B, and Deimos-1 and UK-2 from the Disaster Monitoring Constellation. Input
images are collected and used internally by NASS throughout the growing season, and the
final, publicly released CDL is intended to capture the area and geospatial distribution of
crops in midsummer. Data processing and classification generally occur independently
at the state level by NASS analysts, and the nationwide CDL mosaic that results contains
up to 155 classes of cultivated crops and 23 classes of non-cropland covers. Most states,
however, contain a smaller subset of applicable classes, typically fewer than 30 crops and a
dozen non-crop covers [26].

In producing the CDL, NASS uses supplementary information from both the FSA and
the USGS. Specifically, NASS leverages a selection of data from the FSA’s Common Land
Unit (CLU) administrative database to train all cultivated crop classes of the CDL and
assess their accuracy. CLU data are collected and confirmed by USDA County Field Service
Centers and constitute a comprehensive geospatially tagged database of all land owned by
agricultural producers who participate in an FSA program [27]. This represents the most
complete dataset on U.S. agricultural land use, but is not available to the public [16].

For training and assessing non-cropland cover categories, NASS uses the USGS-led
NLCD as a reference [26,43]. The NLCD is a nationwide 30-meter resolution, 20-class
land cover map that follows a modified Anderson level I/II classification system [44].
The product’s mapping emphasizes non-cropped vegetative areas, and was historically
produced for 5-year epochs, though the most recent product release has improved coverage
to 2–3-year intervals. It should be noted that while the NLCD is used as an input in
training the CDL classifier, the CDL does not simply revert to the NLCD in non-crop
locations. Instead, the CDL incorporates the NLCD and other data to generate its own
unique mapping of non-crop areas.

During the assessment of the CDL, NASS produces and publishes online the confusion
matrices used to determine the reported accuracies. Referred to as the “error supermatrices,”
these datasets are generated each year at the state or multistate level and report the
number of times specific CDL classes were mapped either consistently or inconsistently
against CLU data from the FSA for all cultivated crops, or against the NLCD for non-
cultivated land covers [26,27]. While the FSA data and NLCD provide valuable references
for comparison, each differs from traditional reference data used for land cover map
evaluation. In particular, the FSA data are not selected via a probability sampling design.
In addition, because the dataset is generated for other USDA programmatic purposes,
its classes do not always align perfectly with the classes of the CDL, leading to potential
mismatch between the target and reference data. Nevertheless, the FSA dataset represents
an incredibly rich and extensive source of reference information that is of a quality rarely
available for remote sensing accuracy assessments. The NLCD, as a satellite-based land
cover map, is not fully independent nor necessarily more accurate than the CDL. The
NLCD is also not produced annually, such that the closest NLCD product available at
the time of CDL production must be utilized, leading to potential temporal mismatch
between the target and reference data. Despite these limitations, these two datasets provide
powerful points of comparison for understanding how CDL performance varies across
space and time.

2.2. Investigating Effects of Aggregation: Superclass and Consolidated Class Accuracies

We used the data reported in the CDL error supermatrices to derive supplemental
accuracy metrics useful for characterizing and understanding the CDL across scales and
applications. A summary and example of each accuracy metric we assessed is presented in
Table 1, with further details of their derivation described in the section below.
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Table 1. Accuracy metrics, measured classes, and associated examples. The table describes each of the four main met-
rics reported in this paper and provides an example of each metric from the producer’s accuracy and user’s accuracy
perspectives.

Metric: Reported For: Measures Accuracy of
Identifying: Producer’s Example User’s Example

Class Accuracy Specific classes Specific classes
The likelihood that

actual corn is mapped
as corn

The likelihood an area
mapped as corn is

actually corn

Superclass
Accuracy Specific classes An aggregated domain

The likelihood that
actual corn is mapped

as cropland

The likelihood an area
mapped as corn is
actually cropland

Consolidated Class
Accuracy An aggregated domain An aggregated domain

The likelihood that
actual cropland is

mapped as cropland

The likelihood an area
mapped as cropland is

actually cropland

Average Class
Accuracy An aggregated domain Specific classes

The likelihood that any
crop is mapped as that

specific crop

The likelihood that any
mapped crop is

actually that crop

Initially, NASS treats their reference data as a simple random sample and calculates
the class accuracies for all specific land cover classes within each state according to the
general formula:

Class Accuracyx =
Pixels correctx

Pixels totalx
(1)

for each specific crop x, where pixels correct is the number of mapped pixels that match the
reference data in a given region, and pixels total is either the total number of reference data
observations (for calculating producer’s accuracy) or mapped pixels (for calculating user’s
accuracy) for each class. Producer’s accuracies reflect errors of omission; they indicate how
likely a feature is to be correctly captured by the remote sensing product. User’s accuracies
reflect errors of commission, and indicate how likely a mapped class correctly resembles
features on the landscape [45].

Aggregating land cover classes to broader thematic classes increases accuracy by
lowering thematic specificity [28,46]. To understand how well the CDL can distinguish
general cropland from non-cropland areas, we assessed the accuracy of aggregated crop-
land and non-cropland domains as delineated in Lark et al. (2015), based on original NASS
distinctions [16,26]. The aggregated cropland category includes all annually cultivated
row, closely planted, and horticultural crops as well as tree crops and actively tilled fallow
(Appendix A Table A1). The non-cropland domain includes all remaining CDL classes.

First, we calculated how frequently each specific class of the CDL is mapped as any
class within the correct cropland or non-cropland domain. We refer to this as the superclass
accuracy for each specific class, and derived it as

Superclass AccuracyC,x =
Pixels in correct domainC

Pixels assessedx
(2)

for each specific class x included in the domain C (e.g., cropland or non-cropland). For
the cropland domain, the superclass producer’s accuracy indicates how frequently a
specific crop on the landscape (e.g., corn) was mapped by the CDL as any type of crop
in the cropland domain. The corresponding superclass user’s accuracy represents how
likely a pixel mapped as a specific crop was actually any type of crop (i.e., cropland) on
the landscape.

From the relationship between specific class accuracy and superclass accuracy, it is
possible to quantify the relative number of mapping errors where confusion occurs with
another class within the same broader domain. We define this metric, which we refer
to as the within-domain error rate, as the difference between a class’s error rate and its
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superclass error rate, normalized by the class error rate. It can also be derived directly from
the previously calculated accuracy metrics as

Within Domain Error RateC,x =
Superclass AccuracyC,x − Class Accuracyx

1− Class Accuracyx
(3)

for each specific class x included in the domain C.
Then, we calculated the overall consolidated class accuracy for the entire cropland

domain according the following equation:

Consolidated Class AccuracyC =
∑xεC(areax × Superclass AccuracyC,x)

∑xεC(areax)
(4)

where x is each specific class belonging to the set of all classes in domain C, area is the area
of class x, and superclass accuracy is the value calculated in Equation (2) above. Because
the superclass accuracies give the likelihood that a specific class will correctly identify the
broader domain, taking the area-weighted mean of the superclass accuracies across all
classes within a domain depicts the likelihood that any class in a domain will correctly
identify the broader domain. For the consolidated cropland domain, this calculation
generates a single value that represents the accuracy with which the CDL can identify
cropland in a given state and year. The user’s accuracy for consolidated cropland represents
the likelihood that any randomly selected pixel mapped as cropland in the CDL is actually
cropland on the landscape. The producer’s accuracy for consolidated cropland is the
likelihood that cropland on the landscape is correctly mapped as cropland in the CDL. In
similar fashions, Equations (2) and (4) can be used to calculate superclass accuracies for
each specific non-crop class and for the single consolidated non-cropland domain.

For thoroughness and comparison, we also calculated the average specific class accu-
racy for each domain, according to the following equation:

Average Class AccuracyC =
∑xεC(areax × Class AccuracyC,x)

∑xεC(areax)
(5)

The average specific class accuracy indicates how accurately, on average across the
full domain, a randomly selected class is mapped in a given year. Tracking the average
specific class accuracy across several years can thus indicate how well the CDL historically
performed and improved over time at delineating specific crops.

2.3. Calculating Nationwide Accuracies

We next estimated nationwide accuracies for each original CDL class as well as for
the newly derived aggregated metrics. To calculate nationwide accuracies, we weighed
each state accuracy to account for disproportionate class areas and reference observa-
tions. For specific class accuracies of the original CDL, we normalized according to the
following equation:

Nationwide Accuracyx =
∑iεS(Accuracyx,i × areax,i)

∑iεS(areax,i)
(6)

where S is the set of states or multistate regions for which data are produced in a given
year, Area is the total area of class x mapped within the state or region i, and accuracy is the
user’s or producer’s accuracy (Equation (1)) for region i. Similarly, Equation (6) was used to
calculate the nationwide superclass accuracies for each crop by replacing the specific class
accuracies with the appropriate superclass accuracies derived from Equation (2) above.

To derive the nationwide accuracies for consolidated land cover classes, we also
area-weighed by each constituent class. This accounted for unequal areas of each class
within the consolidated domain and ensured proportional contributions to the accuracy
of the combined class. We considered only classes for which accuracy data existed when
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summing class accuracies and areas, since failure to exclude the area of classes without data
would falsely skew the nationwide mean values. Using the available data, we calculated
nationwide accuracies for consolidated classes using the following formula:

Nationwide Consolidated AccuracyC =
∑xεC(Nationwide Superclass Accuracyx × nationwide areax)

∑xεC(nationwide areax)
(7)

Using the specific class accuracy in this formula gives the nationwide-specific class
accuracy averaged across all land covers in the broader domain. Specifically:

Nationwide Average Class AccuracyC =
∑xεC(Nationwide Accuracyx × nationwide areax)

∑xεC(nationwide areax)
(8)

2.4. Mapping Spatial Patterns of CDL Accuracy and Confidence

We mapped a composite of all state- and class-level users’ and producers’ accuracies
for each specific crop and non-cropland cover to better understand how the accuracy of
CDL data varies spatially across the U.S. To generate these maps, each original CDL pixel
was assigned the value of its specific class accuracy for that state and year and rounded to
the nearest integer to facilitate storage as an eight-bit raster. We also mapped and delineated
crop and non-crop components of the CDL confidence layer, which was provided courtesy
of USDA NASS. The confidence layer is a coproduct of the remote sensing classification
process and provides a measure of how well a specific pixel fits within the decision tree
ruleset used to classify it [26,47]. A unique benefit of the confidence dataset is that it
provides an independent value for each individual pixel, rather than a single value for all
pixels of a given class within a state. It thus varies at the pixel level, enabling improved
spatial understanding of expected errors within the CDL product [26].

We then combined the assessed accuracy and classifier confidence data into a single
metric of CDL certainty to better understand the spatial variation in CDL performance.
By integrating the pixel-resolution confidence layer into the state- and class-resolution
accuracy estimates, a combined metric may offer additional insight or improved spatial
representation of expected errors compared to standalone accuracy indicators. This is
similar to the approach of using posterior probability spaces in change vector analysis [48].

We considered several ways to combine the accuracy and confidence data, including
multiplying the two components (Equation (9)), averaging them (Equation (10)), and
additional more elaborate combinations (e.g., Equation (11)):

Certainty = Class Accuracy × Pixel Con f idence (9)

Certainty =
(Class Accuracy + Pixel Con f idence)

2
(10)

Certainty = Class Accuracy
[

1 +
(Pixel Con f idence)− (Average Class Con f idence)

(Average Class Con f idence)

]
(11)

The approaches of Equations (9) and (10) benefit from their simplicity and intuitiveness.
In Equation (11), the confidence data are used as a scalar multiplier to modify the class-
level accuracy: if a pixel is mapped more confidently than the average of the other pixels
in its class, then its certainty value will be greater than its class accuracy; if a pixel is
mapped less confidently than average, then its certainty value will be lower than its class
accuracy. Ultimately, the selection of a formula should be based on the needs of the specific
application [48]. Thus, we present results only from the simple product combination
(Equation (9)) in order to illustrate the concept and potential value of combining accuracy
and confidence data but leave further investigation to future work and specific applications.

2.5. Estimating Map Biases and Bias-Adjusted Crop Acreages

Due to misclassifications within remote sensing products, area estimates derived
directly from pixel counts are likely to be incorrect and either over- or under-predict actual
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class area. Using data derived from confusion matrices, it is possible to quantify this
bias relative to the reference data and subsequently make bias-adjusted area estimates
accordingly [10,49]. While best practices in accuracy assessment stipulate the use of bias
adjusted estimators with a probability sampling design [12,50], a simplified estimate of
map bias and adjusted area estimates may still be derived and useful for products such as
the CDL, where a large and high quality—though non-probabilistic—reference dataset is
available. To illustrate this, we calculated the nationwide relative bias of each crop using
the producer’s and user’s accuracy:

Simple Biasx =
Producer′s Accuracyx

User′s Accuracyx
− 1 (12)

for each class x where the producer’s and user’s accuracies were those derived in Eq 6.
This indicator of bias is equivalent to the number of assessed pixels mapped as class x
divided by the number of assessed pixels classified as class x in the reference data, such
that it reflects the relative over- or under-mapping of a class compared to the reference
data. We then calculated bias-adjusted area estimates for each class x by scaling the raw
CDL acreage estimates by the amount of over or underprediction suggested by the bias:

Bias Adjusted Areax = Class Areax − (Class Areax × Simple Biasx) (13)

where Class Area is the area estimate for each class x derived from pixel counting and the
Simple Bias is that derived in Equation (12).

3. Results

We first present results from our nationwide analysis of specific class accuracies,
followed by nationwide results for the aggregated superclass and consolidated class metrics.
Throughout the results section, we focus on data for the year 2012 as an example because
it represents an intermediate year within the CDL’s modern era of nationwide coverage,
it was used in multiple applications [22,35,51], and it aligns well with the Census of
Agriculture, the Natural Resources Inventory, and other intermittent data sources often
used for comparisons with the CDL. The year 2012 was also particularly challenging for
mapping agricultural LULC—moderate resolution imagery was limited, and a severe
drought impacted crop development in many regions—such that our findings should
be considered a conservative estimate of the performance of the CDL. For completeness,
results were also generated for all years of nationwide CDL coverage 2008–2016 and have
been reposited online as companion datasets at https://doi.org/10.5281/zenodo.4579863
(accessed on 1 January 2021).

3.1. Nationwide Accuracy of Specific CDL Classes

Nationwide area-weighted accuracies for the major crop classes of the CDL are gen-
erally very high. In 2012, corn, soybeans, and winter wheat—the three largest crops by
area—were mapped correctly 95, 94, and 92% of the time from both the producer’s and
user’s perspectives. The top 20 CDL land cover classes by area and their associated pro-
ducer and user accuracies for 2012 are presented in Table 2, with accuracies for all 130
assessed land cover classes for 2012 included in Appendix A Table A2.

Overall, 10 crops had nationwide producer’s accuracies of 90% or greater in 2012.
These included sugarcane (97%); rice (96%); corn (95%); soybeans (94%); sugarbeets (94%);
canola (94%); winter wheat (92%); cotton (91%); almonds (91%); and cranberries (91%).
Five additional crops had class producer’s accuracies higher than the average for all crops,
88.7%, and the remaining 90 crops with computable accuracies fell below the average class
accuracy. In the same year, 17 crops had nationwide user’s accuracies of 90% or greater
(Appendix A Table A2). The remaining 88 crops had user’s accuracies below the average
of 90.3%. The disproportionate number of crops with below-average accuracy reinforces
observations that the CDL performs best for major crops (defined by area) and less so for

https://doi.org/10.5281/zenodo.4579863


Remote Sens. 2021, 13, 968 8 of 29

minor crops. To this end, the 10 crops with the highest producer’s accuracies made up
71.5% of the total mapped crop area.

Table 2. Nationwide class accuracies of major individual land covers in the 2012 Cropland Data Layer (CDL). Table shows
area-weighted national average accuracies for the 20 most common classes by area in the 2012 CDL, calculated according to
Equation (6), based on data from USDA National Agricultural Statistics Service (NASS). National accuracies of all crops and
land covers for 2012 are listed in Appendix A Table A2.

Class Name ID Producer
Accuracy

Omission
Error

User
Accuracy

Commission
Error

Corn 1 95% 5% 95% 5%

Cotton 2 91% 9% 89% 11%

Soybeans 5 94% 6% 94% 6%

Spring Wheat 23 89% 11% 87% 13%

Winter Wheat 24 92% 8% 92% 8%

Alfalfa 36 75% 25% 80% 20%

Other Hay/No Alfalfa 37 57% 43% 57% 43%

Fallow/Idle Cropland 61 69% 31% 79% 21%

Open Water 111 90% 10% 81% 19%

Developed/Open Space 121 89% 11% 61% 39%

Developed/Low Intensity 122 83% 17% 74% 26%

Developed/Med Intensity 123 84% 16% 81% 19%

Barren 131 74% 26% 75% 25%

Deciduous Forest 141 88% 12% 75% 25%

Evergreen Forest 142 87% 13% 73% 27%

Mixed Forest 143 44% 56% 51% 49%

Shrubland 152 87% 13% 71% 29%

Grassland/Pasture 176 79% 21% 50% 50%

Woody Wetlands 190 70% 30% 63% 37%

Herbaceous Wetlands 195 61% 39% 47% 53%
Average of All Crops N/A 88.7% 11.3% 90.3% 9.7%

Average of All Non-Crops N/A 82.4 % 17.6% 69.4% 30.6%

Reported accuracies of specific non-crop classes of the CDL were generally lower
than those of major crops (Table 2). However, it is important to acknowledge that the
reported figures do not represent congruence with a verified ground or truth dataset
of non-cropped areas, but rather are assessed against a reference dataset consisting of
both FSA administrative crop data and the NLCD, itself a remotely sensed land cover
map subject to misclassifications. Nonetheless, the lower levels of reported accuracy in
the CDL non-crop classes suggest higher levels of uncertainty and potential error in the
product and/or reference data, particularly when compared to the high-performance crop
classes. The specific categories of open-, low-, and medium-intensity developed land as
well as deciduous and coniferous forest, shrubland, and open water were all mapped with
nationwide accuracies of greater than 80 percent, whereas specific classes of herbaceous and
woody wetlands and grassland/pasture had lower nationwide performance that ranged
from 47–79% (Table 2).
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3.2. Consolidated Cropland and Non-Cropland Accuracies

Specific land cover classes of the CDLs are often combined into aggregated categories
for applications such as measuring cropland area or conversion between major land cover
types. As an example of aggregation, we assessed the accuracy of consolidated cropland
and non-cropland domains across the U.S. from 2008–2016.

The area- and class-weighted nationwide accuracies for consolidated cropland in 2012
were 95.0% (producer’s) and 97.4% (user’s). Accuracies for the consolidated non-cropland
domain were 97.8 and 88.8%, respectively. Consolidated classes also performed consistently
well across time (Table 3). For example, in 2008—the oldest year for which nationwide data
were produced—cropland user and producer accuracies were 95% and 98%, respectively.

Table 3. Average specific class and consolidated class accuracies for each year of the CDL. Data from USDA NASS (2016)
based on the comparison of CDL with data from Farm Service Agency (FSA) and National Land Cover Dataset (NLCD)
and processed according to equations (7) and (8). Cropland and non-cropland domains based on class distinctions in
Appendix A Table A1.

Metric Type 2008 2009 2010 2011 2012 2013 2014 2015 2016

Average Crop Accuracy Prod: 88% 89% 89% 89% 89% 89% 90% 90% 92%

User: 90% 90% 91% 91% 90% 91% 92% 91% 92%

Average Non-Crop Accuracy Prod: 82% 82% 81% 82% 82% 82% 81% 85% 85%

User: 63% 64% 65% 61% 69% 67% 69% 82% 82%

Consolidated Cropland
Accuracy

Prod: 95% 95% 95% 95% 95% 96% 96% 96% 98%

User: 98% 98% 97% 98% 97% 99% 99% 98% 99%

Consolidated Non-Cropland
Accuracy

Prod: 97% 97% 98% 98% 98% 98% 97% 99% 99%

User: 84% 85% 89% 82% 89% 87% 89% 98% 98%

In 2012, 30 of the 40 state or multistate assessment regions of the CDL had consolidated
cropland producer’s accuracies of 90% or greater (Appendix A Table A3). On the user’s
sides, all but two states—New York and Pennsylvania—mapped cropland correctly 90% of
the time or greater. Oklahoma (OK) and Arizona (AZ)—more arid states where cropland
contrasts with the surrounding landscape and is often irrigated—had the highest cropland
user’s accuracies, with values over 99%. More broadly, states with greater amounts of
cropland typically had higher consolidated cropland accuracies (Figure 1), though this
effect appeared to saturate beyond a certain threshold of crop area (e.g., 5 million acres).
Similar trends were also observed when assessed by proportion (rather than total area) of
cropland within each state [16,35].
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Figure 1. Plot of consolidated cropland user and producer accuracies for each state for 2012. Accuracies plotted against
total crop area in each state. States with greater amounts of cropland typically had higher consolidated cropland accuracies.
Plotting accuracy against the proportion of cropland within each state generated similar trends (data not shown).

3.3. Superclass Accuracies of Specific Crops and Land Covers

Within the aggregated domains, certain classes are more (or less) likely to align with
their broader domain. Among crops mapped in the CDL with greater than one million
acres, rice was the most accurate predictor of cropland on the landscape and most likely
to be correctly identified as cropland, having superclass user’s and producer’s accuracies
both over 99% in 2012 (Table 4). Areas of corn, the most prevalent crop, were labeled as
cropland by the CDL 98% of the time in 2012 (superclass producer’s accuracy), and pixels
mapped as corn in the CDL were actually cropland on the landscape 98.5% of the time
(superclass user’s). Fields of alfalfa, oats, and fallow/idle cropland, on the other hand,
were correctly labeled as cropland by the CDL just over 80% of the time. On the user’s
side, alfalfa was the only low outlier, yet still had an 86% superclass user’s accuracy for the
cropland domain.

Within the non-cropland domain, most superclass accuracies were high, with only a
few exceptions (Table 5). Developed/Open Space was incorrectly mapped in locations that
were actually cropland 25% of the time in 2012. Grassland/Pasture had an even lower user’s
accuracy and was mapped in cropped locations 32% of the time that year. Furthermore, the
high ratio of superclass producer’s accuracy to superclass user’s accuracy—indicative of
bias—in each of these classes suggests they are both considerably overmapped in locations
that are actually cropland.
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Table 4. Superclass producer and user accuracies for the top 20 classes by area in the cropland domain in 2012 as well as
the relative rate of within-domain errors. Superclass accuracy is the likelihood that a given crop is identified correctly as
cropland. Percentage of errors within domain is the proportion of errors in the original CDL where the confusion occurs
among two crops within the cropland domain, rather than between a crop and non-cropland cover.

CDL ID Crop Class CDL Acreage
Superclass Accuracy % of Errors within Domain

Producer’s User’s Omission
Errors

Commission
Errors

1 Corn 94,983,301 98% 99% 57% 73%

2 Cotton 13,114,321 98% 100% 77% 96%

3 Rice 2,671,894 99% 100% 84% 95%

4 Sorghum 6,262,444 96% 99% 81% 95%

5 Soybeans 69,810,086 98% 99% 65% 76%

6 Sunflower 1,595,069 94% 99% 52% 79%

10 Peanuts 1,657,438 98% 99% 88% 93%

21 Barley 2,852,300 94% 99% 78% 92%

22 Durum Wheat 1,860,552 98% 99% 92% 97%

23 Spring Wheat 12,303,171 96% 99% 64% 92%

24 Winter Wheat 34,784,199 97% 99% 55% 88%

26 Dbl Win-
Wht/Soybeans 5,311,121 97% 98% 73% 87%

28 Oats 1,285,192 81% 93% 67% 84%

31 Canola 1,700,926 97% 99% 53% 86%

36 Alfalfa 16,167,152 80% 86% 27% 40%

41 Sugarbeets 1,238,159 99% 100% 77% 94%

42 Dry Beans 1,743,309 97% 99% 84% 94%

61 Fallow/Idle
Cropland 24,395,076 80% 92% 35% 67%

69 Grapes 1,136,718 96% 98% 69% 82%

75 Almonds 1,155,344 98% 99% 78% 94%

Overall, the high superclass accuracies of non-crop classes compared to their low
specific class accuracies reported in Table 2 suggests that a sizable portion of the mapping
errors result from within-domain confusion among the various non-crop classes, rather
than between non-cropland covers and crops. To quantify this, we calculated the relative
within-domain error rate for each CDL class. This metric indicates what percentage of
mapping errors were a result of confusion within the same domain. For example, corn
had a relative within-domain omission error rate of 57% in 2012, which means that slightly
more than half of the missed (i.e., omitted) corn fields were mapped as another crop in the
CDL, rather than mapped as a non-cropland cover (Table 4). The within-domain proportion
of commission errors for corn was 73%, which indicates that roughly three-quarters of all
pixels that were incorrectly mapped as corn in the CDL were actually another crop on the
landscape rather than a non-cropland cover.
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Table 5. Superclass producer and user accuracies for all 16 classes in the non-cropland domain in 2012. Superclass accuracy
is the likelihood a given class is correctly identified as non-cropland. Percentage of errors within domain is the proportion
of errors in the original CDL where the confusion occurs among two land covers within the non-cropland domain, rather
than between a crop and non-cropland cover.

CDL ID Land Cover Class CDL Acreage
Superclass Accuracy % of Errors within Domain

Producer’s User’s Omission
Errors

Commission
Errors

37 Other Hay/Non
Alfalfa 23,881,755 89% 86% 68% 62%

92 Aquaculture 203,750 87% 84% 58% 17%

111 Open Water 32,373,788 99% 95% 89% 76%

112 Perennial Ice/Snow 427,601 100% 99% 100% 97%

121 Developed/Open
Space 64,041,431 97% 75% 72% 41%

122 Developed/Low
Intensity 28,380,971 99% 91% 96% 69%

123 Developed/Med
Intensity 11,279,299 100% 96% 98% 81%

124 Developed/High
Intensity 3,900,690 100% 98% 99% 87%

131 Barren 20,800,191 99% 96% 96% 87%

141 Deciduous Forest 239,843,277 100% 97% 94% 89%

142 Evergreen Forest 249,399,532 100% 99% 99% 96%

143 Mixed Forest 29,952,005 100% 99% 100% 98%

152 Shrubland 429,532,225 99% 89% 89% 64%

176 Grassland/Pasture 383,816,367 93% 68% 66% 37%

190 Woody Wetlands 75,447,681 99% 93% 97% 83%

195 Herbaceous
Wetlands 23,005,862 94% 86% 88% 75%

Nationwide, most crops had within-domain error proportions greater than 50%,
which signifies that they were most frequently confused with another crop when mapped
incorrectly. Two notable exceptions were alfalfa and fallow/idle cropland, which had
within-domain omission error rates of 27 and 35%, respectively. Thus, alfalfa and fallow
fields that were incorrectly captured by the CDL were most frequently classified as a
non-cropland cover. Alfalfa’s within-domain commission error rate was also less than 50%,
which suggests that pixels incorrectly mapped as alfalfa in the CDL were most likely to be
non-cropland covers on the landscape.

The proportion of within-domain errors for errors of omission for all non-cropland
covers were greater than 50%, indicating that misclassified non-cropland covers were
most likely to be labeled as another non-crop cover by the CDL. However, aquaculture,
developed/open space, and grassland/pasture all had low within-class rates of errors
of commission, which indicates that when incorrect, these land covers were frequently
mapped in locations that were actually cropland.

3.4. Spatial Patterns of CDL Accuracy, Confidence, and Certainty

CDL accuracy for specific crops varied greatly across the U.S. In general, most crop
accuracies in 2012 were highest within major cropping regions such as the Corn Belt,
Central Plains, and Mississippi Delta (Figure 2a; Appendix A Figure A1). Conversely,
crop accuracies were lower along the periphery of these core production zones and in
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less dominant agricultural regions of the eastern, southern, and western parts of the U.S.
These locations with lower accuracy have a higher prevalence of less common crops (e.g.,
crops other than corn and soybeans), which are typically mapped less accurately due
to more limited reference and training data from FSA and a charter by USDA to focus
mapping efforts on major program crops [15,41]. In addition, a greater mixture of crop and
non-cropland covers in these areas generates more opportunities for misclassification.

Figure 2. Panel of the user’s accuracy (a,b), confidence layer (c,d), and combined product of user’s accuracy and confidence
layer (e,f) delineated for crop (a,c,e) and non-crop (b,d,f) classes of the CDL for 2012.
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Non-crop classes had the highest levels of reported disagreement between mapped
and reference sources in the northern and southern plains (Figure 2b). Most western states,
on the other hand, had a clearer identification of non-cropland cover types, particularly
across the vast non-cultivated areas in the region. Mid-Atlantic states and the eastern
Corn Belt also contained relatively high non-crop accuracies considering their diverse
composition of land cover classes.

The visual inspection of confidence layers suggests that the locations of mixed pixels—
map units which fall across two or more land covers—are often mapped with lower
confidence than adjacent single cover pixels. For example, in heavily cultivated regions of
the country such as Iowa, mixed pixels commonly occur between adjacent fields and along
roadways, where they are often the cause of misclassification in the CDL and other remote
sensing products [52,53]. In forested regions of the U.S., confidence levels were also low,
even across large uninterrupted swaths of forest land cover. In these such locations, the
low confidence reflects difficulty by the classification algorithm in delineating the specific
type of forest cover—i.e., deciduous, coniferous, mixed forest, or woody wetland.

Regionally, CDL confidence levels are high across the Midwest and west, and lowest
in the southeast, northeast, and Great Lakes regions (Figure 2c,d). Within specific regions of
similar land cover, there is also variation. For example, in the cultivated region of the Texas
panhandle, cotton and corn on the western edge are both mapped with lower confidence,
perhaps due to a greater amount of land use change and intermittent cropping patterns in
that area. Across the North and South Dakota, crops tend to be consistently mapped with
lower confidence the farther west they are located (Appendix A Figure A2).

To extract further insights about the within-class spatial variation of CDL performance,
we combined the classifier confidence data with assessed class accuracy into a single
measure of CDL certainty. Figure 2e,f shows an example of the combined accuracy x
confidence product at the national scale. Integrating pixel resolution spatial variation
from the confidence layer into the existing state and class resolution accuracy estimates
is particularly applicable to nationwide and multistate analyses since the confidence data
have greater continuity among state products.

In addition to helping normalize certainty across regions, the use of both accuracy
and confidence information independently or in combination may provide improved
insights into local uncertainty. Figure 3 shows an example of an agriculturally intensive
region of southern Iowa. Here, accuracy data help demarcate field-sized tracts of land
that have low class accuracies (Figure 3a), which are locations that data users may wish
to withhold from analyses due to the large uncertainty associated with their classification.
Alternatively, the confidence layer captures finer levels of uncertainty due to mixed pixels
or other contributors to local uncertainty such as topography or ambiguity among land
covers (Figure 3b) but fails to consider the likelihood of the mapped class being incorrect.
Considering both accuracy and confidence data (Figure 3c) thus provides insights into
multiple dimensions of uncertainty and may be valuable for improving the certitude of
mapping and map applications.
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Figure 3. Maps of CDL user’s accuracy (a), confidence levels (b), and a combined layer of certainty,
shown as the product of accuracy and confidence (c).

3.5. Measured Biases and Adjusted Crop Area Estimates

Adjusted estimates of crop area informed by map biases can improve upon raw pixel-
count area estimates by calibrating them against the reference data used for assessment.
Table 6 presents the simple map biases (Equation (12)) and associated adjusted acreage
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estimates (Equation (13)) for the 18 largest crop classes for the CDL for which there are also
relevant data from official USDA acreage estimates. Given that the CDL represents mid-
summer estimates of crop extent, we include NASS data for both planted and harvested
areas, as well as the average of these two metrics. For ten of the 16 crops with comparable
NASS planted and harvested data, the simple bias-adjusted acreage estimate was closer
than the raw pixel-count estimate to the average of NASS planted and harvested areas. As
such, the adjusted results provide refined measures of crop area that are independent of
(but more consistent with) other acreage estimates such as the NASS Surveys or Census
of Agriculture and could be used to complement or replace raw CDL pixel count area
estimates in various applications.

Table 6. Simple bias and bias-adjusted acreage estimates for major crops for 2012. CDL area represents the summed area of
all pixels in the CDL. CDL bias and bias-adjusted acreage were calculated for each crop according to Equations (12) and (13)
using the producer’s and user’s accuracy data of Appendix A Table A2. NASS planted and harvested areas are from the
annual NASS acreage report, released on June 29, 2012. Harvested cotton from 2012 October production report. All area
values are reported in acres.

Crop Name CDL Area CDL Bias Bias-Adjusted
Acreage

NASS Planted
Area

NASS Harvested
Area NASS Ave

Corn 94,983,301 0.43% 94,572,035 96,405,000 88,851,000 92,628,000

Soybeans 69,810,086 −0.03% 69,829,899 76,080,000 75,315,000 75,697,500

Winter Wheat 34,784,199 −0.22% 34,860,122 41,819,000 35,023,000 38,421,000

Fallow/Idle
Cropland 24,395,076 −12.24% 27,382,251 * 14,145,567 ** 36,382,032 n/a

Alfalfa 16,167,152 −5.52% 17,059,748 19,213,000 18,827,000 19,020,000

Cotton 13,114,321 1.88% 12,868,014 12,635,000 10,443,400 11,539,200

Spring Wheat 12,303,171 2.97% 11,937,985 11,995,000 11,681,000 11,838,000

Sorghum 6,262,444 −6.60% 6,675,868 6,210,000 5,238,000 5,724,000

Dbl Win-
Wht/Soybeans 5,311,121 2.85% 5,159,595 *** *** ***

Barley 2,852,300 −12.90% 3,220,316 3,678,000 3,268,000 3,473,000

Rice 2,671,894 −1.51% 2,712,326 2,661,000 2,640,000 2,650,500

Durum Wheat 1,860,552 −9.80% 2,042,794 2,203,000 2,122,000 2,162,500

Dry Beans 1,743,309 −6.65% 1,859,213 1,632,700 1,573,600 1,603,150

Canola 1,700,926 −2.23% 1,738,835 1,631,500 1,593,100 1,612,300

Peanuts 1,657,438 −1.42% 1,680,900 1,526,000 1,486,000 1,506,000

Sunflower 1,595,069 −8.79% 1,735,327 1,804,500 1,735,400 1,769,950

Oats 1,285,192 −33.81% 1,719,707 2,746,000 1,091,000 1,918,500

Sugarbeets 1,238,159 −0.55% 1,244,915 1,244,100 1,215,900 1,230,000

* Estimate of fallow cropland area from the 2012 Census of Agriculture. ** Estimate of idle cropland area from the 2012 Census of
Agriculture. *** Double cropped winter wheat/soybean area from the CDL may be added to both CDL soybeans and CDL winter wheat
areas to facilitate comparison with NASS estimates for each individual crop.

Assessing the changes in mapped biases over time may also aid in understanding
the true dynamic compositions of crops on the landscape. Figure 4 charts the simple bias
of four major crops over time. According to the estimates, the mapping of both corn and
soybeans by the CDL relative to their reference data have increased only slightly, and
in tandem, over time. In contrast, alfalfa has gone from being under-mapped by 12.6%
relative to the reference data in 2008 to being under-mapped by only 1.6% in 2016, which
marks a considerable change over time. As a result, estimates of alfalfa area based on direct
CDL pixel counts could embody a sizeable artificial increase.
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Figure 4. Mapping bias of select crops over time. The biases represent the relative over-representation (positive values)
or under-representation (negative values) of crops by the CDL in each year according to comparison with the products’
reference data.

4. Discussion

The Cropland Data Layer currently provides the only annual information on agricul-
tural land use/land cover across the United States that is geographically comprehensive,
spatially explicit, and crop specific. Despite its prominent use and application, the accu-
racy of the CDL had not been well characterized at national scales nor across common
aggregated classes. To fill this gap, we derived and analyzed multiple metrics of certainty
for the CDL across space and time to better understand its performance and associated
implications for measuring LULC and its change.

4.1. CDL Performance

Based on nationwide assessment, it is evident that the CDL consistently identifies
specific major crops like corn and soybeans with very high accuracy. On the other hand,
select land cover classes such as alfalfa and grassland/pasture are captured correctly only
about 75% of the time, which reflects the CDL’s generally lower performance outside of the
major crop classes, a point frequently discussed in state and regional evaluations [35,40].

To accommodate low accuracies, specific classes can be aggregated into broader land
cover domains such as cropland or non-cropland. Our results spatially and numerically
quantify the effectiveness of this approach and show that across the U.S., cropland areas are
mapped correctly by the CDL at least 97% of the time for all years. These findings confirm
the CDL’s acuity of identification and demonstrate its validity for monitoring cropland
locations and associated shifts over time.

Mapping the spatial variation in class accuracies across the United States reveals
clear geographic trends and patterns in the CDL’s performance. In general, specific crop
accuracies are highest within core agricultural areas and among major USDA program
crops. Cropland superclass and consolidated cropland accuracies, however, are consistently
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high across the country, and further illustrate the value of aggregating to broader domains
when attempting to measure land cover across large areas or across all CDL classes,
particularly on the margins of major crop zones.

The use of map bias information to adjust area estimates provides a quantitative means
to improve crop area calculations based on remote sensing products [10,50]. Similarly, the
simplified bias-adjusted approach for estimating crop area reported here improved upon
raw CDL pixel-based estimates by correcting for misclassifications and also provides a
more comprehensive accounting of cropland than the FSA reference data would provide
on its own, since that data source only captures land with crops that participate in FSA
programs. Our approach thus combines desirable features of both the CDL and FSA
datasets, while remaining independent of other USDA data sources like the NASS surveys
or Census of Agriculture that are occasionally used for calibration or comparison.

4.2. Improvements over Time

For most metrics, we reported on the performance of the 2012 CDL, although variabil-
ity exists across years. Overall, CDL accuracy has improved over time, due in part to use of
additional satellite input (more sources and more images per year), a more robust classifica-
tion process (an ensemble decision tree instead of maximum likelihood methodology), and
increasing amounts of training data from the FSA and elsewhere [41]. As a result, average
class-specific accuracy for all crop classes has improved from 87% in 2008 to 92% in 2016.
By 2016, a total of 17 crops were mapped with 90% or higher producer’s accuracy, up from
just 10 crops in 2008. Aggregate metrics, including consolidated and superclass accuracies
for the cropland and non-cropland domains, have also improved. However, the magnitude
of their increases is more limited due to their already high performance across time.

The annual changes in performance of the CDL can have important ramifications for
CDL-based analyses. If the bias or relative over- or under-mapping of a class changes over
time, it can induce false signals of LULC change or skew estimates of crop area change.
Lark et al. (2017) explore the implications from the change in total cropland bias and
suggest potential solutions [41]. Here, we show that there are also sizable changes in bias
for specific crop types. These changes, if disregarded, may influence the results of analyses
of those crops over time. For example, unadjusted estimates of the increase in corn acreage
following the biofuels boom could be affected by artificial changes in corn mapping across
time. However, the magnitude and direction of impact depends on the specific years of
analysis and may be counterbalanced by parallel biases in soybeans and other crops. Thus,
analyses that focus on the relationship among corn, soybeans, and cropland—or any classes
that have experienced synchronized changes in bias—likely remain valid despite potential
eccentricities in the underlying data. Nonetheless, it is important to consider the biases of
mapped data in applied analyses, particularly when results may influence industry and
policymaking.

4.3. Implications for Measuring LULC Change

The use of aggregated classes to measure LULC change benefits from the high acuity of
the product to detect a broader domain while avoiding challenges of delineating spectrally
similar land covers within the same domain. When measuring conversions between
cropland and non-cropland, the consolidated classes can thus be used to initially detect
change, followed by subsequent identification of the specific land cover or crop planted
before and after the conversion [22]. The assessment of crop specificity after detecting
change maintains the thematic richness of the original CDL dataset without adversely
affecting detection of a conversion between the aggregated domains. In practice, this
isolates the known uncertainty in specific class identification and removes it from the
change detection process.

Using this two-stage approach, the likelihood that a conversion occurred becomes a
function of the highly accurate aggregated classes, whereas the certainty of which specific
land cover class preceded and followed a conversion (given that the conversion was
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correctly identified) is dependent upon the land cover’s specific class accuracy. Thus, for
cropland conversion estimates such as Lark et al. (2015) or Morefield et al. (2016), the class
accuracies reported in our Table 2 most closely represent the likelihood that a given crop
was planted on newly converted land, rather than directly indicate the likelihood that a
conversion occurred [22,54].

The challenges of mapping less-common specific crops and the ease of mapping
aggregate cropland have additional implications for CDL-based applications. For example,
it might be argued that the CDL is more appropriate for detecting broad land use changes
(e.g., conversion between cropland and non-cropland) than for identifying nuanced changes
among specific crops (e.g., identifying crop rotations) unless the focus of rotations remains
on major crop types [18,19,55]. Crop-specific applications should also consider each class’s
prevalence and accuracy and how such factors may influence results.

Our findings can also be used to guide how specific crops should be treated within
analyses. Alfalfa, for example, is often cited as a problem crop due to its semi-perennial
nature, spectral similarity to non-cropland covers, and occasional interplanting within
mixed species hay and pasture. The crop was incorrectly mapped in non-cultivated areas
14% of the time in 2012. By 2016, this superclass error rate dropped to just 8%. From a
producer’s perspective, alfalfa was mapped as a non-cultivated land cover 20% of the time
in 2012, but this error rate dropped to 8% by 2016. Overall, the lower superclass accuracies
for alfalfa relative to other crops reinforce precautions of past analyses, such as the exclusion
by Morefield et al. (2016) of all non-crop to alfalfa conversions from their change analysis
and the exclusion by Lark et al. (2015) of grassland-to-alfalfa conversion. The relative
within-domain error rates (Table 4) further highlight the challenge of including alfalfa in
the cropland domain, since the crop is more frequently confused with non-cropland covers
than with other crop classes. However, the latest improvements in alfalfa accuracy suggest
that analyses of more recent CDL data may want to consider including the forage crop in
their analyses.

Visual mapping of specific and aggregate accuracies can help users identify hotspots
and problem areas within the country and understand how they vary across space and time.
Coupling accuracy data with its spatial location on the landscape thus offers opportunities
unafforded by the nonspatial structure of the NASS metadata tables and confusion matrices
for each state and year. For example, rather than excluding entire land cover classes from
analyses, such as the exclusions of alfalfa by Morefield et al. (2016) and Lark et al. (2015), the
spatial mapping of the accuracy of individual classes would allow the empirical removal
of just those pixels with low mapped accuracy in certain state–year combinations, while
retaining those with a higher likelihood of being correct. The value of this spatial approach
is greatest in analyses that consider multiple years of CDL data, where the number of
state, class, and year combinations is multiplicative. For example, for an assessment of
change between two years, there are typically over a million unique combinations of state
and class pairs, each with its own likelihood of being correct (e.g., 50 classes times 40
states for year one multiplied by 50 classes times 40 states for the second year yields four
million combinations). The manual selection of which specific LULC class combinations
to include or exclude based on accuracy thus becomes intractable, whereas the spatial
accuracy maps can be used to easily select only those combinations that meet a quantitative
accuracy threshold.

The integration of confidence layer data with assessed accuracy data may also im-
prove spatial insights. For example, in many CDL-based change detection analyses, post-
classification processes such as spatial filters and minimum mapping units have been used
to indiscriminately remove areas of apparent change that are likely falsely mapped due to
mixed pixels or misclassifications. Alternatively, accuracy and confidence data could be
used to set a threshold of certitude below which any identified potential change is flagged
for removal. Probability information from the remote sensing process has previously been
used to improve vector-based detection of land cover change using unclassified Landsat
data [48]. Here, we suggest that confidence information from the remote sensing process
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could similarly help improve the post-classification detection of LULC change using land
cover products. While we have not quantified the impact of such an approach, it has since
been used in other studies to set a higher threshold of certainty for change detection [56].

Confidence layer data could also be used in concert with accuracy information to
spatially allocate error adjustments. For example, here we modified area estimates for each
crop using an accuracy-derived indicator of bias (Table 6). However, such area adjustments
typically do not spatially correct pixels on the map, unless this issue of reconciliation
is specifically addressed [57]. To help achieve this reconciliation in post-classification
environments, confidence data could similarly be used to select the pixels with the lowest
confidence as candidates for reclassification. For example, if the CDL overestimated corn
area by 500 pixels in a given state, the 500 pixels of corn with the lowest confidence could
be removed to make a spatially explicit, bias-adjusted map of corn that was consistent with
the reference data estimates of area.

4.4. Limitations, Representativeness, and Uncertainty of Results

The class consolidation techniques described here do not modify the underlying per-
formance of the remote sensing product, but rather improve the representativeness of the
accuracy at which the product maps aggregate domains. Of note, aggregating classes
improves accuracy by lowering the product’s thematic resolution or specificity—thus im-
provements are made by accommodating errors rather than by correcting them. The greatest
benefits are therefore achieved when the thematic resolution of the product matches the
desired application. When using aggregated remote sensing products in applications, it is
important to quantify these associated changes in accuracy so that the reported metrics and
critiques reflect the actual data used.

There may also be variation in the representativeness of the CDL’s reported accuracy
statistics. The FSA reference data used to assess the CDL are not based on a probabilistic
sample, but rather on an availability approach, with the majority coming from 10 key
USDA program crops. As a result, the reported consolidated class accuracies are most
representative for those crops, and less characteristic for specialty crops and non-crop
covers. Similarly, the distribution of crop sample data across geographic regions are
in some places disproportionate to the amount of crop produced there. Therefore, the
accuracies of certain regions are more reliable than others due to differing levels of reference
data available for assessment.

To maintain the highest level of representativeness while calculating national average
crop accuracies, we weighted the accuracy of each crop in each state by the total acreage of
that crop in that state. For example, Iowa produced 14% of all corn in the nation in 2012;
thus, its accuracy was weighted to contribute 14% of the national accuracy for corn. An
alternative method for calculating nationwide accuracies is to sum all national reference
observations without regard to spatial distributions of the data, and such an approach has
recently been implemented by NASS to report nationwide accuracies for select years in the
online CDL metadata [26]. Here, we choose to area-weight by class prevalence, such that
the nationwide estimates reflect that of a pixel selected at random and are unskewed by
nonrepresentatively sampled reference data.

Uncertainty can also stem from errors in the reference data or a mismatch between
reference and evaluated data. For example, the FSA CLU classifications of grasslands are
often inconsistent across states and time, and occasionally they do not align with CDL
land cover designations. Thus, analysts at NASS make a judgement for each state and year
on how to best utilize the FSA data for training and assessing accuracy. Discrepancies in
how the FSA data are reported and incorporated can thus occasionally lead to apparent
differences in error rates across states and years, when in reality the inconsistencies between
the CDL and the landscape are much smaller. Similarly, errors exist in the NLCD data used
for training and assessing non-crop areas of the CDLs, which in turn affect their production
and assessment. It is possible that some CDL non-crop classes are more correct than the
associated NLCD classes on which they are based and evaluated, given that the CDL is
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updated and improved annually, it includes exclusive confidential FSA training data, and it
generates higher accuracies for cultivated areas. Thus, the reported non-crop accuracies of
the CDL (based on comparison with the NLCD) may underestimate the true performance
of those CDL classes.

5. Conclusions

The CDL is a powerful and unrivaled tool for the exploration of agricultural land-
scapes and is poised to remain the premier remotely sensed agricultural LULC map in the
U.S. due to its annual availability, crop-specific detail, and exclusive access to expansive and
robust ground-based reference datasets from the USDA. We show that the CDL identifies
major crops and certain land covers with high accuracy across the U.S., and that this ability
holds true for all years of nationwide data coverage. Our findings also confirm that the
CDL exhibits extremely high acuity at discerning the aggregated classes of cropland and
non-cropland across spatial and thematic scales. Explicitly considering the bias within
specific classes and incorporating confidence layer data provide two additional opportu-
nities to further improve CDL performance and its use in LULC change assessments and
other applications.

While the original CDL dataset can indeed provide challenges for applications that
are beyond its original intent of mapping annual crop locations, it is the responsibility of its
users to apply the data in ways that do not compromise results. The CDL’s consistent and
reliable performance in mapping crops and cropland nationwide and across time clearly
demonstrates that many of the critiques and concerns regarding the underlying accuracy
of the product are unfounded or dissipate when thoroughly assessed at appropriate scales.
Furthermore, the substantial uncertainty and resource costs of alternative methods for
monitoring crops and croplands, such as through ground surveys or air photo interpre-
tations, underscores the need for approaches that can systematically identify continental
scale LULC change in an automated, reproducible, and verifiable manner. While many
products based on remote sensing seek to fill this gap, the CDL is a dataset proven to be
well suited for the task. When used appropriately, the CDL is a valid and indispensable tool
for studying LULC and a crucial asset for monitoring contemporary cropland dynamics
across the United States.
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Appendix A

Table A1. List of CDL codes and class names and whether they were included in the cropland or non-cropland domain in
the analyses of superclass and consolidated class accuracies. Domain delineations follow that of Lark et al. (2015) based on
original NASS distinctions [16,22].

Cropland Non-Cropland
ID Class Name ID Class Name ID Class Name ID Class Name

1 Corn 48 Watermelons 216 Peppers 37
Other Hay/Non
Alfalfa

2 Cotton 49 Onions 217 Pomegranates
3 Rice 50 Cucumbers 218 Nectarines 63 Forest
4 Sorghum 51 Chickpeas 219 Greens 64 Shrubland
5 Soybeans 52 Lentils 220 Plums 65 Barren
6 Sunflower 53 Peas 221 Strawberries 81 Clouds/No Data
10 Peanuts 54 Tomatoes 222 Squash 82 Developed
11 Tobacco 55 Caneberries 223 Apricots 83 Water
12 Sweet Corn 56 Hops 224 Vetch 87 Wetlands

13 Pop or Orn Corn 57 Herbs 225
Dbl Crop
WinWht/Corn 88 Nonag/Undefined

14 Mint 58 Clover/Wildflowers 226
Dbl Crop
Oats/Corn 92 Aquaculture

21 Barley 59 Sod/Grass Seed 227 Lettuce 111 Open Water

22 Durum Wheat 60 Switchgrass 229 Pumpkins 112
Perennial
Ice/Snow

23 Spring Wheat 61 Fallow/Idle 230

Dbl Crop
Lettuce/Durum
Wht 121

Developed/Open
Space

24 Winter Wheat 66 Cherries 231
Dbl Crop Let-
tuce/Cantaloupe 122

Developed/Low
Intensity

25 Other Small Grains 67 Peaches 232
Dbl Crop
Lettuce/Cotton 123

Developed/Med
Intensity

26 Dbl WinWht/Soy 68 Apples 233
Dbl Crop
Lettuce/Barley 124

Developed/High
Intensity

27 Rye 69 Grapes 234
Dbl Crop Durum
Wht/Sorghum 131 Barren

28 Oats 70 Christmas Trees 235
Dbl Crop
Barley/Sorghum 141 Deciduous Forest

29 Millet 71 Other Tree Crops 236
Dbl Crop
WinWht/Sorghum 142 Evergreen Forest

30 Speltz 72 Citrus 237
Dbl Crop
Barley/Corn 143 Mixed Forest

31 Canola 74 Pecans 238
Dbl Crop
WinWht/Cotton 152 Shrubland

32 Flaxseed 75 Almonds 239
Dbl Crop
Soybeans/Cotton

33 Safflower 76 Walnuts 240
Dbl Crop
Soybeans/Oats 176 Grassland/Pasture

34 Rape Seed 77 Pears 241
Dbl Crop
Corn/Soybeans

35 Mustard 204 Pistachios 242 Blueberries 190 Woody Wetlands

36 Alfalfa 205 Triticale 243 Cabbage 195
Herbaceous
Wetlands

38 Camelina 206 Carrots 244 Cauliflower
39 Buckwheat 207 Asparagus 245 Celery
41 Sugarbeets 208 Garlic 246 Radishes
42 Dry Beans 209 Cantaloupes 247 Turnips
43 Potatoes 210 Prunes 248 Eggplants
44 Other Crops 211 Olives 249 Gourds
45 Sugarcane 212 Oranges 250 Cranberries

46 Sweet Potatoes 213 Honeydew Melons 254
Dbl Crop
Barley/Soybeans

47
Misc Vegs and
Fruits 214 Broccoli
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Table A2. Nationwide area, producer’s accuracy, and user’s accuracy for each crop type in the 2012 CDL. Sorted in order of
descending producer’s accuracy.

CDL ID Crop Name CDL Acreage Producer’s Accuracy User’s Accuracy
45 Sugarcane 1,026,752 96.52% 94.44%

3 Rice 2,671,894 95.54% 97.01%

1 Corn 94,983,301 95.23% 94.82%

5 Soybeans 69,810,086 93.82% 93.85%

41 Sugarbeets 1,238,159 93.67% 94.18%

31 Canola 1,700,926 93.51% 95.64%

24 Winter Wheat 34,784,199 92.18% 92.38%

2 Cotton 13,114,321 91.06% 89.39%

75 Almonds 1,155,344 91.04% 91.56%

250 Cranberries 36,040 91.02% 95.23%

23 Spring Wheat 12,303,171 89.47% 86.89%

212 Oranges 1,019,334 89.24% 91.45%

54 Tomatoes 353,534 89.24% 89.60%

51 Chickpeas 1838 89.19% 84.44%

43 Potatoes 1,083,450 88.98% 92.66%

69 Grapes 1,136,718 87.39% 89.89%

26 Dbl Crop WinWht/Soybeans 5,311,121 86.70% 84.30%

230 Dbl Crop Lettuce/Durum Wht 39,776 86.08% 80.01%

68 Apples 444,242 85.67% 88.41%

56 Hops 24,903 84.53% 96.44%

6 Sunflower 1,595,069 84.09% 92.20%

10 Peanuts 1,657,438 81.17% 82.33%

42 Dry Beans 1,743,309 79.97% 85.66%

204 Pistachios 201,944 78.50% 85.69%

46 Sweet Potatoes 84,332 77.54% 87.22%

4 Sorghum 6,262,444 77.43% 82.91%

77 Pears 28,048 77.36% 80.67%

36 Alfalfa 16,167,152 75.40% 79.81%

245 Celery 2460 74.95% 93.43%

76 Walnuts 341,480 74.80% 79.49%

52 Lentils 388,352 74.57% 82.45%

22 Durum Wheat 1,860,552 73.30% 81.26%

49 Onions 139,769 72.90% 78.67%

66 Cherries 199,450 72.70% 78.60%

211 Olives 45,218 72.58% 90.34%

21 Barley 2,852,300 72.41% 83.14%

247 Turnips 1990 72.37% 79.65%

53 Peas 774,135 72.14% 83.45%

208 Garlic 17,233 71.20% 84.66%
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Table A2. Cont.

CDL ID Crop Name CDL Acreage Producer’s Accuracy User’s Accuracy
61 Fallow/Idle Cropland 24,395,076 69.29% 78.96%

32 Flaxseed 284,228 68.10% 81.77%

59 Sod/Grass Seed 797,216 68.00% 82.93%

57 Herbs 104,376 67.07% 86.46%

14 Mint 8429 67.00% 77.65%

50 Cucumbers 32,698 65.44% 78.26%

12 Sweet Corn 301,474 65.35% 80.95%

244 Cauliflower 1956 64.25% 79.31%

226 Dbl Crop Oats/Corn 109,775 63.82% 62.71%

234 Dbl Crop Durum
Wht/Sorghum 4095 63.24% 66.43%

47 Misc Vegs and Fruits 47,159 62.89% 78.30%

225 Dbl Crop WinWht/Corn 402,067 61.81% 69.33%

71 Other Tree Crops 68,927 61.69% 75.22%

27 Rye 453,504 61.47% 72.91%

254 Dbl Crop Barley/Soybeans 113,764 61.24% 78.16%

72 Citrus 139,758 60.68% 81.33%

33 Safflower 148,336 59.74% 80.07%

11 Tobacco 112,733 59.62% 79.97%

232 Dbl Crop Lettuce/Cotton 7770 58.53% 69.78%

213 Honeydew Melons 6430 58.09% 75.87%

231 Dbl Crop Lettuce/Cantaloupe 3833 57.97% 85.54%

242 Blueberries 90,911 57.70% 74.20%

248 Eggplants 357 57.69% 68.18%

227 Lettuce 28,621 57.45% 66.98%

58 Clover/Wildflowers 146,851 57.21% 70.80%

209 Cantaloupes 18,325 57.00% 72.44%

217 Pomegranates 20,652 56.79% 76.84%

216 Peppers 19,796 55.46% 67.81%

207 Asparagus 19,258 54.93% 78.11%

74 Pecans 398,572 53.68% 83.55%

29 Millet 457,674 53.43% 64.84%

221 Strawberries 43,438 52.63% 80.70%

39 Buckwheat 22,586 52.11% 78.32%

246 Radishes 10,175 50.75% 70.24%

235 Dbl Crop Barley/Sorghum 12,071 49.65% 50.19%

67 Peaches 53,255 49.19% 68.69%

35 Mustard 32,734 48.15% 78.68%

241 Dbl Crop Corn/Soybeans 16,998 48.07% 75.59%

60 Switchgrass 10,684 47.62% 56.33%

220 Plums 53,436 46.92% 65.53%
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Table A2. Cont.

CDL ID Crop Name CDL Acreage Producer’s Accuracy User’s Accuracy
55 Caneberries 11,633 46.19% 85.35%

206 Carrots 42,670 45.93% 70.76%

229 Pumpkins 23,094 43.87% 72.29%

70 Christmas Trees 65,800 43.65% 75.04%

243 Cabbage 18,368 43.03% 59.38%

38 Camelina 4977 42.94% 69.91%

214 Broccoli 11,202 41.89% 63.04%

28 Oats 1,285,192 41.18% 62.21%

238 Dbl Crop WinWht/Cotton 324,242 41.14% 70.23%

48 Watermelons 37,670 40.78% 62.93%

219 Greens 15,028 40.62% 54.26%

13 Pop or Orn Corn 120,463 40.33% 91.15%

223 Apricots 3760 39.37% 71.61%

222 Squash 20,832 37.05% 61.87%

237 Dbl Crop Barley/Corn 37,530 36.55% 70.59%

236 Dbl Crop WinWht/Sorghum 386,258 34.26% 60.55%

224 Vetch 4595 33.12% 69.06%

44 Other Crops 171,449 32.93% 63.82%

205 Triticale 156,684 32.74% 67.26%

218 Nectarines 2589 32.16% 70.51%

25 Other Small Grains 5008 28.18% 73.07%

34 Rape Seed 3211 23.92% 58.74%

239 Dbl Crop Soybeans/Cotton 7388 20.90% 66.57%

240 Dbl Crop Soybeans/Oats 17,928 19.50% 62.42%

30 Speltz 2811 16.32% 60.80%

249 Gourds 150 10.00% 100.00%

Table A3. Accuracy of CDL-derived consolidated cropland and non-cropland classifications for each U.S. state or multistate
region for 2012. Results calculated according to Equation (4) and consolidated according to Appendix A Table A1.

Cropland Non-Cropland

State Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

AL 84% 93% 98% 94%
AR 97% 100% 99% 89%
AZ 91% 97% 99% 95%
CA 96% 98% 99% 93%
CO 93% 98% 98% 90%

CT_MA_ME_NH_RI_VT 87% 93% 100% 99%
DE_MD_NJ 93% 94% 98% 96%

FL 89% 95% 98% 92%
GA 86% 91% 98% 93%
IA 97% 99% 95% 77%
ID 93% 96% 99% 95%
IL 98% 97% 92% 95%
IN 98% 97% 94% 96%
KS 97% 99% 99% 95%
KY 92% 99% 97% 84%
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Table A3. Cont.

Cropland Non-Cropland

State Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

LA 95% 98% 98% 90%
MI 96% 95% 95% 90%
MN 98% 98% 97% 93%
MO 98% 96% 97% 98%
MS 94% 98% 98% 92%
MT 91% 95% 99% 98%
NC 91% 95% 97% 93%
ND 95% 98% 97% 90%
NE 97% 100% 95% 67%
NM 88% 98% 99% 87%
NV 88% 96% 100% 99%
NY 86% 88% 98% 95%
OH 96% 97% 96% 95%
OK 97% 100% 96% 62%
OR 93% 97% 98% 93%
PA 83% 82% 98% 96%
SC 86% 92% 98% 94%
SD 95% 97% 98% 97%
TN 95% 99% 98% 90%
TX 92% 100% 96% 56%
UT 90% 98% 99% 94%

VA_WV 92% 94% 99% 98%
WA 97% 98% 100% 97%
WI 95% 97% 93% 84%
WY 88% 98% 99% 93%

Figure A1. Map of 2012 state level user’s accuracies for specific crop classes of the CDL for the conterminous U.S. Data
from USDA NASS (2016) based on the comparison of CDL with FSA reference data for crop classes. An arbitrary grading
scale of “A”–“F” was assigned to accuracy intervals to help users easily identify where the CDL crop map excels versus
where additional caution may be warranted.



Remote Sens. 2021, 13, 968 27 of 29

Figure A2. Confidence of pixels mapped as corn in the 2012 CDL. Within a specific state, there can
be large spatial variation in the degree of certainty with which specific crops are mapped. In South
Dakota and North Dakota, corn is mapped more confidently in the eastern parts of the states (dark
blue), where the crop is more prevalent, and is mapped less confidently (green to yellow) as one
moves westward and the crop becomes less prominent.
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