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Abstract: (1) Background: Information rich hyperspectral sensing, together with robust image
analysis, is providing new research pathways in plant phenotyping. This combination facilitates the
acquisition of spectral signatures of individual plant organs as well as providing detailed information
about the physiological status of plants. Despite the advances in hyperspectral technology in field-
based plant phenotyping, little is known about the characteristic spectral signatures of shaded and
sunlit components in wheat canopies. Non-imaging hyperspectral sensors cannot provide spatial
information; thus, they are not able to distinguish the spectral reflectance differences between canopy
components. On the other hand, the rapid development of high-resolution imaging spectroscopy
sensors opens new opportunities to investigate the reflectance spectra of individual plant organs
which lead to the understanding of canopy biophysical and chemical characteristics. (2) Method:
This study reports the development of a computer vision pipeline to analyze ground-acquired
imaging spectrometry with high spatial and spectral resolutions for plant phenotyping. The work
focuses on the critical steps in the image analysis pipeline from pre-processing to the classification
of hyperspectral images. In this paper, two convolutional neural networks (CNN) are employed to
automatically map wheat canopy components in shaded and sunlit regions and to determine their
specific spectral signatures. The first method uses pixel vectors of the full spectral features as inputs
to the CNN model and the second method integrates the dimension reduction technique known as
linear discriminate analysis (LDA) along with the CNN to increase the feature discrimination and
improves computational efficiency. (3) Results: The proposed technique alleviates the limitations
and lack of separability inherent in existing pre-defined hyperspectral classification methods. It
optimizes the use of hyperspectral imaging and ensures that the data provide information about the
spectral characteristics of the targeted plant organs, rather than the background. We demonstrated
that high-resolution hyperspectral imagery along with the proposed CNN model can be powerful
tools for characterizing sunlit and shaded components of wheat canopies in the field. The presented
method will provide significant advances in the determination and relevance of spectral properties
of shaded and sunlit canopy components under natural light conditions.

Keywords: hyperspectral imaging; phenotyping; hyperspectral image classification (HSI); wheat
canopies; segmentation; near infrared

1. Introduction

Hyperspectral imaging (HSI) was a breakthrough for remote sensing applications [1–4].
It combines imaging and spectroscopy to attain simultaneously and non-invasively both
spatial and spectral information and forms a three-dimensional data cube. HSI provides
a vast source of information by sampling the reflective portion of the electromagnetic
spectrum covering a wide range from the visible region to the short-wave infrared region.
These optical datasets, known as hypercubes, comprise two spatial dimensions and one
spectral dimension. Each plane of the hypercube is a grayscale image corresponding to
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a single wavelength with each pixel displaying the radiance intensity reflected by the
observation. Thus, each pixel of the hypercube contains the spectral signature of the
underlying object. Since the spatial information is available, the source of each spectrum
can be located, which makes it possible to investigate the light interactions with the material
surface, vegetation, plant component, etc.

In the past decades, a surge of interest in hyperspectral imaging has been seen in
the life sciences with applications in fields as diverse as food quality and control [5],
pharmaceuticals [6], healthcare [7] and agriculture [1,8,9]. It has been applied in precision
agriculture for weed detection [10], plant disease and stress detection [2], plant water
and nitrogen content [11]. Hyperspectral technologies are becoming one of the most
promising techniques to assess functional plant traits [12] in plant phenotyping [8,9].
Despite the advantages of using HSI in these areas of research, hyperspectral imaging
still faces various tradeoffs and is not exempt from issues and drawbacks. For instance,
spectral reflectance captured by HSI at the canopy scale is more complex and influenced by
multiple variabilities, such as factors associated with plant architecture and geometry, soil
background, and leaf scattering properties [13,14]. The acquisition of HSI in uncontrolled
environments produces additional challenges including rapidly varying light exposure and
the influence of wind turbulence [15], especially for push-broom cameras. Also, the high
dimensionality of spectral bands and the high spatial resolution pose serious challenges for
the quantitative analysis of the data. Although the high-dimensional features may provide
some advantages for more accurate classification, it may cause algorithmic instability,
i.e. the Hughes phenomenon [16] which causes a negative impact on the accuracy and
efficiency of data analysis models.

Computer vision is a fundamental yet important step in extracting quantitative and
qualitative information from hyperspectral imaging. The image analysis techniques range
from straightforward extraction of average spectra from entire images (which is equivalent
to the use of non-imaging spectrometers) to segmenting plants of interest. One aim of
segmentation is to eliminate complex and varying backgrounds (e.g., soil, rock, etc.) within
the sensor field of view that do not correspond to the object(s) of interest and retain spatial
information about the patterns of spectral variation. HSI segmentation methods can be
grouped into three main categories: threshold-based methods, model-based methods and
feature-based methods. In threshold-based techniques, a fixed threshold is applied to a
selected vegetation index, such as normalized difference vegetation index (NDVI) [17]
or Photochemical Reflectance Index (PRI) [18], to segment residual background or target
plants. These methods are very sensitive to the choice of threshold, which tends to be a
subjective choice or requires a trial-and-error approach. Model-based methods, on the
other hand, use prior information such as geometric features of objects and digital surface
model data to reconstruct 3D models. Due to the complexity associated with 3D models,
model-based methods are computationally slow and are difficult to implement in practical
applications [18,19]. Moreover, 3D models are often not very accurate due to misalignment
between 3D data and hyperspectral images as they are obtained from different resources
and geo-referenced independently. The feature-based methods mainly consist of spectral
classification and spatial classification. Spectral classification methods rely on the spectral
signature of each pixel in hyperspectral images, whereas spatial classification techniques
only employ the spatial information and are limited to one spectral band without fully
exploiting the spectral information in HSI. The difficulty associated with these models
involves algorithmic instability [20] due to the high dimensionality of using an entire
spectral signature.

In the case of vegetation mapping, the identification of shaded and sunlit (non-
shadowed) regions has also become an important part of remote sensing. Vegetation
canopies represent complex dynamic spaces in which light is absorbed or transmitted by
leaves; thus, shadows might have a considerable impact on the prediction of biochemical
or physiological status [21,22]. Under natural conditions, shadows may occur due to
the canopy structure known as self-shadows, or when a fraction of direct light from solar
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illumination is blocked by objects presented in the scene (e.g., the observing platform in
our case) known as cast-shadows. Nonetheless, shadows may cause a reduction or total
loss of information in a hyperspectral image, which leads to the corruption of biophysical
parameters derived from pixel values, such as vegetation indexes [23,24].

Several studies investigated the impact of shadow on plant predictors and only
focused on forestry applications with a predominance on the effect of the shaded section
(self-shadows) on the PRI for biomass, light use efficiency and photosynthesis [25,26] and
orchard to only works on pure vegetation pixels [27–29]. Camino et al. [30] investigated
the effect using pure vegetation pixels or mixed pixels from tree crowns using HSI and
thermal imaging to estimate water stress indicators. Maimaitiyiming et al. [31] developed
a weighted index to consider the respective weights of sunlit and shaded pixels on the
calculation of the sun-induced fluorescence index and the crop water stress index. However,
to date, little is done to cereal crops to study the impact of shadow on vegetation indices
and their importance as predictors of leaf area index, vegetative biomass, chlorophyll
and nitrogen content and grain yield. Most of the studies are based on non-imaging
spectrometers which cannot provide spatial information and do not allow investigation
of the effect of shade on the aforementioned yield components. However, the rapid
development of high-resolution imaging spectroscopy sensors mounted on close-range
platforms opens new opportunities to investigate the effect of shade on individual plant
organs, such as leaves and reproductive organs. Yang et al. [32] investigated the effect of
shaded areas on PRI to evaluate water stress status in winter wheat. In rice, Zhou et al. [33]
investigated the effect of shade on chlorophyll content prediction. A threshold-based
method was proposed to segment panicles from vegetation in both sunlit and shaded areas.

Spectral-based classification techniques utilize spectral features to identify objects
in HSI. These techniques can be grouped into spectral matching and statistical charac-
teristics categories. In spectral matching methods, the discrimination of targets such as
plant variety is based on the comparison of the similarity of the given spectrum with the
reference spectrum. Based on the fine spectral information of HSI, methods such as spectral
information divergence (SID) [34] and spectral angle mapper (SAM) [35] do not require
complex analysis and dimension reduction; however, they highly rely on reference spectral
data. On the other hand, the classification methods based on statistical characteristics, such
as support vector machines (SVM), and logistic regression classifiers offer state-of-the-art
performances in hyperspectral image classification [36,37] by finding the optimal decision
boundaries among different classes. However, the effectiveness of such classifiers depends
on the selection of some critical hyperparameters to control the learning process, which
defines the classification model. There is a growing interest in applying convolutional
neural networks (CNNs) as promising tools for computer vision analysis. CNNs endorse
the powerful visual analysis capabilities that outperformed traditional computer vision
techniques [38,39]; however, the complexity of HSI data structure and lack of available
training samples pose a challenge in employing CNNs models for HSI. Recently, CNNs
techniques have made breakthroughs in processing hyperspectral images [40–42]. Some
models used the spectral domain directly, whereas other methods took the spatial features
of hyperspectral images into account [43]. Nonetheless, both techniques, have shown
promising performance in classifying hyperspectral imagery.

In this study, we introduce an image analysis pipeline along with a 1D-CNN model to
automatically characterize the spectral variation of wheat leaves and spikes in shadowed
and non-shadowed regions. To fulfil these objectives, two CNN models are presented for
feature extraction and spectral-based HSI classification of shaded and sunlit components at
canopy level. In the first method, we incorporate pixel vectors of the full spectral features
as inputs to the CNN model. The second model integrates the dimension reduction
technique known as linear discriminate analysis (LDA) along with CNN to increase the
feature discrimination and improves computational efficiency. Finally, the performance of
the CNN-based techniques is evaluated from different perspectives such as classification
accuracy and computational time.
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2. Materials and Methods

In this study, several image analysis steps are developed to extract relevant information
from the HSI data. The spectral properties are extracted at different growth stages to
evaluate spectral variations of shaded and sunlit canopy components. The entire pre-
processing and image analysis steps are coded in python environment using PyTorch [44]
and OpenCV [45] libraries. Thus, it creates an end-to-end open-source pipeline for analysis
of HSI data of multiple crop cultivars at the plot level.

2.1. Imaging Setup and Data Acquisition

The hyperspectral images at canopy level were collected using a Hyperspec® Inspec-
tor™ VNIR camera (Headwall Photonic). The VNIR camera is a push-broom imaging
system that collects reflected light through an imaging slit. One row of spatial pixels is
collected per frame as motion occurs, with each pixel containing the spectral data [46]. The
target is scanned line by line, and spatial images are formed by recording simultaneously
the spectral information of pixels distributed in a scan line (across-track direction), while the
mirrors move horizontally. The sensor collects data within the 400 to 1000 nm region of the
electromagnetic spectrum with a 0.7 nm step and an FWHM (full width at half maximum)
image slit of 2.5 nm. It results in a hyperspectral data cube (hypercube) of 925 spectral
bands with a dynamic range of 16 bits. The hyperspectral images were collected under
natural light conditions using the fully automated Lemnatec Field Scanalyzer platform
(Table 1). The data were collected at different growth stages according to the scale used by
the AHDB wheat growth guide (AHDB Wheat Growth Guide, 2018 [47]): flag leaves fully
emerged (GS39), advance heading time (GS57/59), 7 days after anthesis, and 22 days after
anthesis (which is corresponding to early/mid stage of the senescence period). The VNIR
camera (Figure 1A) was set up with two spatial configurations. The first configuration
acquired images at a resolution of 533 × 667 pixels with 925 bands, and a second configu-
ration collected images from the VNIR sensor at a resolution of 1600 × 1846 pixels with
925 bands. In both settings, the exposure time was fixed manually to adapt to brightness
variations between scans.

The experiment was conducted in 2018–2019 at the Field Scanalyzer platform [48]
located at Rothamsted Research, UK (51◦48′34.56′ ′N, 0◦21′22.68′ ′W). On the 25 October
2018, four wheat commercial cultivars (Triticum aestivum L. cv. Crusoe, Hereward, Istabraq
and Maris Widgeon) were sown in three blocks according to a split plot design for a
total of 72 plots of 3 m × 1 m with a planting density of 350 seeds/m2. Nitrogen (N)
treatments were applied as ammonium nitrate in two splits during the spring for a total
rate of 50 kgN.ha−1 (N1), 100 kgN.ha−1 (N2), 150 kgN.ha−1 (N3), 200 kgN.ha−1 (N4),
275 kgN.ha−1 (N5) and 350 kgN.ha−1 (N6). A first application split of 50 kg/ha was done
on the 8 March 2019 and the remaining nitrogen was applied on the 10 April 2019. The
experiment was managed according to local agronomic practices.

Table 1. Summary of image acquisition conditions for the data collected in this study.

Date Growing Stage Time (GMT + 1) Range of PAR Values
(µmol/m^2s)

Spatial and Spectral
Resolution

21 May 2019 GS39: Flag leaf fully emerged 9:30–12:30 1204–1856 533 × 667 × 925

6 June 2019 GS57: GS59-advanced heading time 16:18–17:33 975–1429 1600 × 1846 × 925

19 June 2019 7 days after anthesis 17:44–19:28 230–472 1600 × 1846 × 925

4 July 2019 22 days after anthesis 9:36–11:36 1267–1645 533 × 667 × 925
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2.2. Pre-Processing of Raw Hyperspectral Images

Prior to any analysis, pre-processing the raw hypercube is mandatory to reduce arte-
facts generated during measurement and to normalized spectra from ambient illumination.
In this study, the pre-processing steps involve (i) removing the effect of the illumina-
tion system, (ii) down-sampling by integrating/averaging hypercube images with similar
wavelength, (iii) reducing noise:

Reflectance factors: Imaging under natural light conditions results in an additional
challenge of rapidly varying light exposure. Thus, data radiometric correction is required
to eliminate the spectral non-uniformity of the illumination and the influence of the dark
current. In our experiment, the calibration was performed based on the flat field cal-
ibration method using a white reference panel (Zenith Lite™ Ultralight Targets 95%R,
Sphereoptics®) mounted on a tripod (Figure 1B). The reference panel was scanned after
every seven plots (~15 mins interval). Dark reference images were collected during the
night without any light source. Then, for each, the reflectance (R) of each wavelength
(w) was calculated using the closest reference scan in terms of time and/or light inten-
sity (Photosynthetic Active Radiation collected simultaneously to the scan) following the
Equation (1) [49,50].

Rw =
DNw

raw_sample −DNw
DR

DNw
WR −DNw

DR
× Target coe f f icient (1)

where DNraw_sample is the digital number of a pixel sample; DNDR and DNWR are the
average values of the dark and white reference image at the same wavelength (w) as the
sample image.

The target coefficients are correction factors associated to each wavelength. The values
are obtained after calibration using an integrative sphere by the manufacturer.
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Down-sampling: in order to match the spectral resolution of the reference target, spectra
were down-sampled with an averaging window with a spectral width of 1 nm. As a result,
the spectral resolution was reduced to 600 bands. This also reduces the computational
complexity and the instrumentation noise from the spectrometer.

Smoothing of spectral data: To correct baseline drifts in NIR spectra and aid denoising, a
method such as low-pass filter is frequently employed in HSI. Denoising aims to eliminate
spikes and to smooth the spectral curves of each pixel while retaining the variations across
different wavelengths. In the low-pass filter, noisy spectral values are replaced by taking
the local average of neighboring data points. Since nearby spectral values measure very
nearly the same underlying value, averaging can reduce the level of noise with minimum
bias. The simplest low-pass filter computes a moving average of a fixed number of spectral
data. However, the moving average filter is particularly aggressive and damaging when
the filter passes through peaks that are narrower than the filter width. In this work, we
used the Savitzky–Golay filter [51], an exceptionally effective and computationally fast
smoothing filter. The Savitzky–Golay filter performs a least square fit of a small set of
consecutive spectral data to a polynomial and takes the calculated central point of the fitted
polynomial curve as the new smoothed spectral data point. It should be noted that too
small a window will lead to the introduction of large artifacts in the corrected spectra and
to a reduced signal-to-noise ratio. On the other hand, the larger the size of the window, the
smaller the distinction between full and moving window pre-processing [52]. In our case,
the filter width w = 11 and polynomial degree d = 2 were the optimal values for this study.

2.3. Training Dataset and Dimensionality Reduction

Upon completion of the pre-processing step, a supervised model is developed to
classify crop canopy components into five classes of shaded leaves (SHL), shaded ears
(SHE), sunlit leaves (SL), sunlit ears (SE), and background (BG). To build a supervised
classification model, we first obtained a manually annotated dataset from shaded and
sunlit wheat canopy components. Due to the sufficiently high spatial resolution of the
hyperspectral images of the VNIR camera, we were able to build the spectral libraries
of leaves and ears in both shaded, and sunlit areas derived from the user-defined region
of interests (ROIs). ROIs were defined manually as rectangular areas based on visual
identification in the HSI “pseudo” RGB data composed of the three bands 620 nm (Red),
535 nm (Green), and 445 nm (Blue). The annotated data was collected from 23 hyperspectral
images of wheat cultivars at different crop growth stages. The total number of annotated
data for 5 classes of SL, SE, SHL, SHE, and BG were 119,447, 164,223, 11,644, 4361, and
227,232 pixels, respectively. Each annotated patch is represented by w× h× λ; where
w × h is the width and height of the rectangle and λ is the number of wavelengths (λ = 600).
It should be noted that cast shadows did not occur during the data collection on 6th and
19th June; thus, the shadow samples (SHL and SHE) derived only from the collected data
on 21st May and 4th July.

The high resolution of hyperspectral imagery employed in this study poses a signifi-
cant challenge to the quantitative analysis of the hypercube. It can significantly increase
the computational burden and storage space, leading to an increase in the data processing.
As shown in similar studies [53], it is desirable to apply a spectral redundancy to select
the most characterizing compact feature set. First, the hypercube (x× y× λ) is rearranged
into a 2-D spectral matrix of dimension N × λ, where N = x × y is the total number of
pixels; thus, each row represents the reflectance values from all bands at one pixel. Such
a vectorization process will allow us to employ the second-order analysis procedures for
reducing the data complexity. We applied a linear discriminant analysis (LDA) to find a
linear combination of features that characterizes our pre-selected classes (SHE, SHL, SL,
SE, BG). As opposed to principal component analysis (PCA), which takes into account only
the spectral data and its variance regardless of their grouping, LDA explicitly attempts to
make use of the labels to maximize the distance between five classes (SHL, SHE, SL, SE,
BG). Figure 2, illustrates scatter plots of PCA and LDA to demonstrate the grouping, simi-
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larities and differences among classes. Figure 2A,B visualizes the data in two discriminant
coordinates found by LDA and PCA. As shown in both figures, LDA performed better in
separating the classes; on the other hand, the classes are not as clearly separated using the
first two principal components found by PCA, even though together the first two principal
components contain over 90% of the information.
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2.4. The CNNs Framework for Spectral Classification

HSI classification is a fundamental yet important step to provide primary information
for the subsequent tasks. The hierarchical architecture of CNNs can be an effective way to
learn spectral signatures for HSI classification. In this study, we employed 1D-CNN tech-
nique to model the interclass appearance and shape variations of spectral channels obtained
by the VNIR camera to improve the power of accurately differentiating wheat canopy
components. The proposed CNN technique extracts effective features from the spectrum
with the help of class-specific information, which is provided by the training samples.

The CNN framework was constructed by stacking several convolutional layers and
max pooling layers to form a deep architecture (Figure 3). Two CNN models were tested for
characterizing spectral signatures. In the first method (hereafter referred to as CNN-RAW),
the full spectral bands (λ = 600) were selected as the input to the network, whereas the
second method (hereafter referred to as CNN-LDA) integrated the linear discriminate
analysis (LDA) along with the 1D-CNN to increase the feature discrimination and improve
computational efficiency. Both networks contain two convolutional layers, two pooling
layers, fully connected layer and the output layer which is the label of the pixel vector
assigned to each canopy component (SHL, SHE, SL, SE, and BG). Also, to address the prob-
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lem of overfitting, regularization strategy was added to the network, including Rectified
Linear Units (ReLU) and dropouts to achieve better model generalization.

xl
i = bl

i +
Nl−1

∑
k=1

conv1D
(

wl−1
ki , sl−1

k

)
(2)

where xl
i represents the input, bl

i denotes the bias of the ith neuron at layer l, sl−1
k is the

output of the kth neuron at layer l − 1, wl−1
ki represents the kernel from the kth neuron

at layer l − 1 to the ith neuron at layer l. conv1D(., .) is used to perform 1D convolution
without zero-padding.
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gression classifier uses softmax as its output-layer activation to ensure that the activation 
of each output unit sums to 1 so that the output can be deemed as a set of conditional 
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color map where each pixel vector of the spectral cube is assigned to a unique label. In 
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Figure 3. Schematic representation of the proposed 1D-CNN framework with the full spectrum bands as inputs.

Figure 3 illustrates the proposed 1D-CNN framework. ReLU is selected as the acti-
vation layer to increase the non-linear representations in the network. After three con-
volutional layers, ReLU layers and dropouts, the input pixel vector is converted into a
feature vector. Then, the fully connected layer merges features obtained in the previous
layer. Finally, logistic regression classifier is used to fulfil the classification step. The logistic
regression classifier uses softmax as its output-layer activation to ensure that the activation
of each output unit sums to 1 so that the output can be deemed as a set of conditional prob-
abilities. The logistic loss function is selected to calculate the error between the predicted
label and the ground-truth. The goal is to minimize the logistic loss function. We kept track
of our losses after each epoch (set to 15), which represents the number of training iterations.

Figures 4 and 5 present the corresponding classification maps to label canopy compo-
nents using the proposed method (CNN-RAW). The classification result leads to a pseudo
color map where each pixel vector of the spectral cube is assigned to a unique label. In
Figure 4, shadowed vegetation (SH-All), sunlit vegetation (S-All), and background (BG)
pixels were segmented and assigned to a unique label, whereas in Figure 5, the classification
map is shown for three classes of sunlit wheat ears (SE), sunlit leaves (SL) and background
(BG). Both figures illustrate the feasibility of classifying the HSI in field environments at
the canopy scale with high accuracy. In the end, to capture the spectral properties of each
canopy component, each assigned label is used as a binary mask over the hypercube to get
an average reflectance value for each canopy component at all wavelengths (400–1000 nm).
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hyperspectral imaging; (A2,B2,C2) the classification map obtained by the proposed algorithm which
separates sunlit-ear (SE) and sunlit-leaf (SL) pixels from the background (BG).
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3. Results
3.1. Classification Accuracy Assessment

To objectively assess the performance of HSI classification, we selected three widely used
classification measurements: average accuracy (AA), F-score and recall-score (Equation (3)).
Accordingly, the classification accuracy of the proposed methods was compared with
conventional classification methods, such as stochastic gradient descent (SGD), and support
vector machine (SVM) classifiers. It should be noted that the baseline parameters in scikit-
learn API are used for both models.

To validate the effectiveness of the presented classifiers, we conducted stratified k-fold
cross-validation method with 10 folds and three repeats. Table 2 summarizes the AA,
F-score, and recall-score for each model, whereas Figure 6 depicts a box and whisker plot to
summarize the distribution of accuracy scores. As shown in both Table 2 and Figure 6, the
CNN model outperformed the SVM and SGD classifiers while using RAW spectral features
with an average accuracy of 98.6%. On the other hand, SVM outperformed the other two
methods using LDA with an average accuracy of 97.4%. The CNN and SGD classifiers
came second and third with an average accuracy of 97.3% and 96.4%, respectively. Overall,
the classifiers with the full spectral (RAW) achieved higher HSI classification accuracy than
the dimensionality reduction LDA.

Accuracy =
TP + TN

TP + TN + FP + FN
; Precision =

TP
TP + FP

;

Recall =
TP

TP + FN
; Fscore = 2

P× R
P + R

(3)

where TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Table 2. Classification accuracy assessment.

RAW LDA

Acc. Fscore Recall Acc. Fscore Recall

CNN 0.986 0.979 0.983 0.973 0.953 0.945

SVM 0.980 0.972 0.972 0.974 0.957 0.956

SGD 0.981 0.974 0.973 0.964 0.950 0.950
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3.2. Computational Cost

In this section, the computational cost of the proposed methods is presented. As
discussed in Section 3.1, the CNN-RAW method achieved a higher HSI classification accu-
racy; however, it is computationally expensive since it uses the full spectral features. The
computational complexity of the CNN-RAW classification is O(λN), where λ is the number
of wavelengths and N is the total number of pixels. On the other hand, the computational
cost of the CNN-LDA method is O(mN), where m is the number of LDA (m = 2) which
is considerably lower than computing the full wavelength range of 400–1000 nm. The
CNN-LDA method is also computationally faster than the CNN-RAW model. For this
test, the average computational time was calculated over processing several HSI images
with spatial resolutions of 553 × 667 with 600 bands. All the tests were performed on a
PC with 3.2 GHz Quad-Core Intel Core i5, 16 GB memory, using Macintosh OS 11. As
expected, the introduction of LDA dimensionality reduction method greatly improves the
computational time. The CNN-LDA method is nearly two times faster on average (5.9 s)
than the CNN-RAW algorithm with 11.12 s.

3.3. Comparison of the Reflectance Amplitude and Absorption Feature between Shaded and Sunlit
Canopy Components

In this section, we present the spectral signature of five classes extracted from the
CNN-RAW method. The classes include sunlit leaf and ears (SL and SE), shaded leaves
and ears (SHL and SHE), and background (BG, Figure 7A). As the reflectance spectra from
the shaded organs display low amplitudes, a normalization method known as continuum
removal is applied to compare the shape of absorption features (Figure 7B). This approach
allows comparison of individual absorption features from a common baseline by enhanc-
ing differences in absorption strength while normalizing for absolute differences of the
reflectance peaks in SHL, SHE, SL, SE, and BG.
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Figure 7. (A) Reflectance spectral profiles of the averaged sunlit and shaded canopy components from manually annotated
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0–1 (B) continuum-removed reflectance spectra of difference canopy components in wheat. Spectral values are shown as
mean ± standard deviation (SD). SE: sunlit-ear; SL: sunlit-leaf; SHE: shaded-ear; SHL: shaded-leaf; BG: background.

The reflectance signature of the sunlit fractions, SL and SE, shows higher reflectance
values across the 400–1000 nm range compared to their shaded counterparts (SHE and
SHL), which can be attributed to the lower irradiance of shadowed classes and thus a lower
reflected signal (Figure 7A). While the amplitude and the reflectance values of the shaded
organs are lower than the sunlit counterparts, all classes display a similar spectral signature
pattern with lower reflectance in the visible domain (with a small peak in the green region),
due to the light absorbed by chlorophyll, and higher reflectance in the NIR domain. This
is confirmed in Figure 7B by illustrating the continuum removal reflectance values (CRR)
which shows a drop in intensity at ~490 nm in all four classes, a peak around ~540 nm,
followed by a continuous drop at 680 nm, before increasing sharply in the red-edge to reach
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its maximum in the NIR region. Interestingly, the reflectance of sunlit ears and leaf displays
the highest intensities in the 510 to 570 nm range, but this is not the case for the sunlit leaves
with the CRR. Indeed, ears obtained the highest intensities in the 510–570 nm range in both
sunlit and shaded conditions. This may be attributed to the CRR as it is maximising the
contrasting features of the reflectance spectra by normalising them to a common baseline.
In our case, it would mean the relative difference between the peak in the green region
compared to the baseline is higher for shaded ears than for the sunlit leaves.

3.4. Effects of Shadows in Vegetation Indices

The output of the CNN-RAW has been used to compute a set of vegetation indices for
each of five classes: background, sunlit leaves and ears, shaded leaves and ears (Table 3,
Figure 8). The aim here was to investigate the sensitivity of different VI in the canopy
components and how they are affected by the shadows. The selection of VIs was inspired
by the works in [33,54]. Figure 8A shows the pixel distribution of the sunlit and shaded
fraction regardless of the organ component. It clearly shows that indices like DVI, EVI,
MSAVI, MTVI, OSAVI, SARVI and TVI are able to discriminate background from vegetation
as well as the sunlit fraction from the shaded fraction. All these indices are displaying
a similar pattern in pixel distribution with low values for the background, intermediate
values for the shaded fraction and the highest values for the sunlit fraction. Conversely,
NDVI, G, MSR, PRI and VS display higher values for shaded areas compared to the sunlit
areas, with no clear distinction of the pixel distribution able to discriminate both.

Figure 8B,C show the pixel distribution of the VIs for the organs, leaves and ears,
for shaded and sunlit conditions, respectively. Only four indices are able to discriminate
between ears and leaves within the shaded area: MSR, NDVI, PRI and VS (Figure 8B).
For the sunlit area, MSAVI, MSR, NDVI, OSAVI, PRI, SARVI and VS show a potential to
discriminate the ears from the leaves. However, most of them show an overlap between
the pixel distribution of the two areas. Only the PRI seems to clearly distinguish the ears
from the leaves in sunlit conditions.

Table 3. List of vegetation indices used in this study.

Vegetation Index Calculation Formula

Difference Vegetation Index (DVI) [55] R800 − R670

Enhanced Vegetation Index (EVI) [56] 2.5× [(R800 − R680)/(R800 + 6× R680 − 7.5× R450 + 1)]

Greenness Index (G) [57] R554/R677

Improved SAVI with self-adjustment factor L (MSAVI) [58] 0.5×
{

2× R800 + 1−
√
(2× R800 + 1)2 − 8× (R800 − R670)

}
Modified Simple Ratio (MSR) [59] (R800/R670)− 1/

√
R800/R670 + 1

Modified Triangular Vegetation Index (MTVI) [60] 1.2× [1.2× (R800 − R550)− 2.5× (R670 − R550)]

Normalized Difference Vegetation Index (NDVI) [61] (R800 − R680)/(R800 + R680)

Optimized Soil Adjusted Vegetation Index (OSAVI) [62] (1 + 0.16)(R800 + R670)/(R800 + R670 + 0.61)

Photochemical Reflectance Index (PRI) [63] (R531 − R570)/(R531 + R570)

Soil-adjusted Atmospherically Resistant Vegetation Index
(SARVI) [64]

R800−(R670− 1 × (R445 − R670))
[R800+(R670−1×(R445−R670))+0.5]×(1+0.5)

Triangular Veg Index (TVI) [65] 0.5× [120× (R750 − R550)− 200× (R670 − R550)]

Vegetation Stress Ratio (VS) [66] R725/R702
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4. Discussion

This study aimed to produce an accurate classification of wheat canopy components
in shadowed and non-shadowed areas using high-resolution hyperspectral images. This
was achieved by developing CNN-based models to automatically learn and evaluate the
spectral characteristics of shaded and sunlit wheat canopy components. The analysis
was carried out on high-resolution hyperspectral images acquired from the ground-based
phenotyping platform, known as the Field Scanalyzer [48].

Two CNN based techniques were presented. In the first technique (CNN-RAW), pixels
from the full spectral bands are used as the input layer. In the second method (CNN-LDA),
the dimensionality of the spectral data was first reduced using the LDA technique and
then the CNN model was deployed. The performance of the CNN techniques has been
validated from the aspect of classification metrics and computational time. The accuracy
of the proposed models was also compared against conventional classification methods
(Section 3.1). As shown in Table 2, the proposed methods achieved over 98% (CNN-RAW)
and 97% accuracy (CNN-LDA). Although less classification accuracy was achieved in
CNN-LDA, it enhances the interpretability of the spectra information by replacing the
original variables with a group of new variables while preserving original information.
CNN-LDA also reduced the computational complexity and reduced the processing time by
half compared to the CNN-RAW method, as described in detail in Section 3.2.

Previous studies on HSI classification often focused on the non-shadow portions of
the canopy and neglected the importance of shaded regions [15,67,68]. This is partially
due to the insufficient spatial resolution of HSI or poor signal to noise ratio in the shaded
pixels. In this study, we demonstrated that high-resolution hyperspectral imagery can
be used to characterize shaded and sunlit components in wheat canopies. The presented
method can be used as a powerful tool to the reflectance signal across the spectrum
from individual wheat canopy components. The results showed that shaded and sunlit
components display separate spectral signatures and can be used to understand canopy
biophysical and chemical characteristics. As shown in Figure 7A, the sunlit components (SE
and SL) exhibited higher reflectance values than their shaded counterparts (SHL and SHE).
In particular, the NIR reflectance of non-shadowed spikes and leaves was nearly three
times bigger than the shaded counterparts. The absorption features were also investigated
via continuum-removed reflectance.

Finally, it was shown that shade had significant effects on the estimation of vegetation
parameters at the canopy scale. Some vegetation indices exhibited more distinctive distri-
bution between shaded and sunlit components (Figure 8). For instance, DVI, EVI, MSAVI,
MTVI, and TVI in SH-All vs S-All (Figure 8A), MSR and VS in SHL vs SHE (Figure 8B),
and finally PRI and VS in SL vs SE (Figure 8C) showed separate distribution intervals
between canopy components. This illustrates that the aforementioned VIs can play roles
in discerning shaded and sunlit components as well. The results also show that VIs can
be utilized to find key features that uniquely characterize shaded and sunlit spectroscopy
pixels within canopies.

5. Conclusions

In this study, a one-dimensional convolutional neural network method was proposed
to map shadowed and non-shadowed wheat canopy components from high-resolution
hyperspectral imaging. The presented method has a unique capability to learn directly
from the raw spectral signatures and voids the need for designing handcrafted feature
extraction and it can surpass traditional classification approaches. Moreover, the 1D-
CNN has a relatively shallow architecture with a smaller number of hidden layers and
neurons compared to the state-of-the-art 2D-CNNs techniques. Thus, it is much easier
to train and can offer the minimal computational complexity which is suitable for hand-
held hyperspectral devices with limited computational power. However, the spectral-
based 1D-CNN method does not take full advantage of the three-dimensional data cube
characteristics. In future work, we aim to incorporate spatial information into the spectral-
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based feature extraction model to improve the classification performance of HSI in more
complex scenes.

Furthermore, in terms of canopy component characterization, canopy physiological
response to changing light conditions can cause additional complications to the assessment
of component mapping. For instance, as discussed in another study [33], the spectral
differences between shaded lower layer canopy components and sunlit upper layer coun-
terparts likely depend not only on the illumination variations, but also on the non-uniform
distribution of chlorophyll and nitrogen. Therefore, multi-angle viewing hyperspectral
imaging is likely to be more effective than only vertically downward-facing sensors.
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