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Abstract: Remote sensing and robotics often rely on visual odometry (VO) for localization. Many
standard approaches for VO use feature detection. However, these methods will meet challenges
if the environments are feature-deprived or highly repetitive. Fourier-Mellin Transform (FMT) is
an alternative VO approach that has been shown to show superior performance in these scenarios
and is often used in remote sensing. One limitation of FMT is that it requires an environment that
is equidistant to the camera, i.e., single-depth. To extend the applications of FMT to multi-depth
environments, this paper presents the extended Fourier-Mellin Transform (eFMT), which maintains
the advantages of FMT with respect to feature-deprived scenarios. To show the robustness and
accuracy of eFMT, we implement an eFMT-based visual odometry framework and test it in toy
examples and a large-scale drone dataset. All these experiments are performed on data collected in
challenging scenarios, such as, trees, wooden boards and featureless roofs. The results show that
eFMT performs better than FMT in the multi-depth settings. Moreover, eFMT also outperforms
state-of-the-art VO algorithms, such as ORB-SLAM3, SVO and DSO, in our experiments.

Keywords: drone-based remote sensing; Fourier-Mellin transform; visual odometry; 3D perception;
spectral registration

1. Introduction

Visual odometry (VO) plays an important role in remote sensing and robotics [1–3],
as many applications rely on visual information, especially in GNSS-denied environments.
In general, VO estimates the 6DoF (Degrees of Freedom) motion of the camera in 3D
space. Popular examples of such algorithms are ORB-SLAM [4], SVO [5], LSD-SLAM [6]
and DSO [7]. Certain applications of VO only estimate 4DoF, while avoiding any roll or
pitch of the camera. Examples for those are down-looking cameras on satellites [8], aerial
vehicles [9,10] or underwater vehicles [11].

Usually, Fourier-Mellin transform (FMT) is used to estimate such 4DoF motion for
remote sensing [12–14]. FMT is based on Fourier transform analysis, which is important
for image analysis [15,16]. It was used to estimate the motion between two images with
the phase-only matched filter [17]. Reddy and Chatterji [18] presented the classic Fourier-
Mellin transform to calculate the rotation, zoom and translation between images. Please
note that the zoom is described as scaling in [18], which represents the image change when the
camera moves along the direction perpendicular to the imaging plane, but we use “zoom” in this
paper to distinguish it from “re-scaling” of visual odometry. Monocular cameras cannot recover
absolute scale, thus all translations among frames are re-scaled w.r.t the estimated translation
between the first two frames [1]. In [19,20], FMT was improved to speed up the computation
and boost the robustness. Also, FMT was shown to be more accurate and faster than SIFT
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in certain environments in [19]. In addition, the visual odometry based on FMT performs
more accurate and robust than that based on different features, such as ORB and AKAZE,
especially in feature-deprived environments [21]. Most of current VO methods rely on
features or pixel brightness. For example, ORB-SLAM uses ORB feature detectors to find
correspondences between two images; SVO, LSD-SLAM and DSO estimate the motion
between two frames based on the brightness consistency. There are also some methods
using global appearance descriptors, which are more robust in feature-deprived scenarios.
FMT is one of them. Furthermore, [22,23] compare the performance of different holistic
descriptors for localization and mapping, such as discrete Fourier transform, principal
components analysis and histogram of oriented gradients.

Due to FMT’s robustness and high accuracy, it has been successfully applied in
multiple applications, such as image registration [11,24,25], fingerprint image hashing [26],
visual homing [27], point cloud registration [28], 3D modeling [29], remote sensing [12,30],
and localization and mapping [31,32]. However, it requires that the capture device doesn’t
roll or pitch and that the environment is planar and parallel to the imaging plane. There
are already several efforts on solving the first restriction. For instance, Lucchese calculated
the affine transform via optimization based on the affine FMT analysis [33]. In [34],
the oversampling technology and Dirichlet-based phase filter were used to make FMT
robust to some image skew. Moreover, the sub-image extraction strategy [21,35–37] is
popular in addressing the 3D motion problem. In this paper, we mainly focus on the
second case, i.e., to relax the constraints of equidistance and planar environments. If the
depths of objects are different, the pixels’ motion will be different when the camera’s
motions are the same, which is due to perspective projection. Since FMT can only gives the
image motion of the dominant depth, the camera’s speed cannot be correctly inferred from
the FMT’s results when the dominant plane changes. Thus, an FMT-based visual odometry
cannot work in multi-depth scenarios. For example, Figure 1 shows a multi-depth scenario,
which contains buildings with different heights, lower ground and river. If images are
collected in such scenarios with a down-looking camera mounted on an Unmanned Aerial
Vehicle (UAV), FMT may first track the building roofs and then track the lower ground,
such that it cannot estimate the camera’s motion correctly because the dominant depth in
the camera’s view changes.

Figure 1. A UAV’s flying trajectory over a campus. A down-looking camera is equipped on it.

To overcome the drawback of FMT, this paper presents the extended Fourier-Mellin
Transform: eFMT. It extends FMT’s 3D translation (translation and zoom), while keeping
the original rotation estimation, because multiple depths result in multiple zooms and
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translations, which will be discussed in detail in Section 3. Since FMT has already been
used in all kinds of applications, such as remote sensing, image registration, localization
and mapping, 3D modeling, visual homing, etc. (see above), we see a great potential of
eFMT further enlarging the application scenarios of FMT. In this paper, we proceed to a
highly practically relevant application of our proposed eFMT odometry algorithm, which
is the motion estimation in the scenario of Figure 1 with a down-looking camera.

As we will also shown in this paper, in contrast to FMT, feature based and direct
visual odometry frameworks usually do not perform well in challenging environments,
such as low-texture surfaces (e.g., lawn, asphalt), underwater and fog scenarios [20]. The
main advantage of FMT over other approaches—its robustness—is preserved in eFMT.
To maximize the robustness and accuracy of FMT, we use the implementation of the
improved FMT in [19,20] as comparison and build eFMT upon it in this paper. Our main
contributions are summarized as follows:

• To the best of our knowledge, we are the first to apply the zoom and translation
estimation in FMT to multi-depth environments. Our method is more general than
FMT but maintains its strengths;

• We implement an eFMT-based visual odometry (VO) framework for one potential
use-case of eFMT;

• We provide benchmarks in multi-depth environments between the proposed eFMT,
the improved FMT [19,20], and popular VO approaches. The state-of-the-art VO
methods, ORB-SLAM3 [4], SVO [5] and DSO [7], are chosen as comparison because
they are the representative of feature-based, semi-direct and direct VO methods,
respectively [38].

The rest of this paper is structured as follows: Section 2 recalls the classic FMT algo-
rithm; Section 3 formulates the image registration in the multi-depth environment; Then
we propose the eFMT algorithm for multi-depth visual odometry in Section 4; Experiments
and analysis are present in Section 6; Finally, we conclude our work in Section 8.

2. Classical FMT

This section recaps the main idea of classic FMT [18]. Given two image signals I1, I2,
the relationship between them is

I2(x, y) = I1(zx cos θ0 − zy sin θ0 + x0,

zx sin θ0 + zy cos θ0 + y0)
(1)

where z and θ0 are constant and represent the zoom and rotation, respectively, and (x0, y0)
is the translation between I1 and I2. The motion parameters (z, θ, x0, y0) can be estimated
by FMT via the following steps:

• Fourier transform on the image signals from both sides of Equation (1):

F2(ξ, η) = e−j2π(ξx0+ηy0)z−2

F1(z−1ξ cos θ0 − z−1η sin θ0,
z−1ξ sin θ0 + z−1η cos θ0)

(2)

• Convert the magnitudeM of Equation (2) in polar coordinates, ignoring the coeffi-
cients:

M2(ρ, θ) =M1(z−1ρ, θ − θ0) . (3)

• Take the logarithm of ρ of Equation (3):

M2(ξ, θ) =M1(ξ − d, θ − θ0) , (4)

where ξ = log ρ, d = log z.
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• Obtain z and θ0 from Equation (4) based on the shift property of the Fourier Transform.
Re-rotate and re-zoom I2 to I′2 so that

I′2(x, y) = I1(x− x0, y− y0) . (5)

Accordingly,
F ′2(ξ, η) = e−j2π(ξx0+ηy0)F1(ξ, η) . (6)

Thus, all the motion parameters (z, θ0, x0, y0) can be calculated by conducting phase
correlation on Equations (4) and (5). Taking Equation (5) as an example, we first calculate
the cross-power spectrum by

Q =
F1(ξ, η) ◦ F ′∗2 (ξ, η)

|F1(ξ, η) ◦ F ′∗2 (ξ, η)| , (7)

where ◦ is the element-wise product and ∗ represents the complex conjugate. By applying
the inverse Fourier transform, we can obtain the normalized cross-correlation

q = F−1{Q} , (8)

which is also called phase shift diagram (PSD) in this paper. Then the translation (x0, y0)
corresponds to the location of the highest peak in q:

(x0, y0) = arg max
(x,y)
{q} . (9)

In the implementation the PSD is discretized into a grid of cells. Note that there
exist partial non-corresponding regions between two frames due to the motion. Instead of
contributing to the highest peak, these regions generate noise in the PSD. Since the energy
of this noise is distributed over the PSD, it will not influence the detection and position of
highest peak when the overlap between the frames is big enough.

Classical FMT describes the transformation between two images, which corresponds to
the 4DoF motion of the camera, including 3DoF translation (zoom is caused by the translation
perpendicular to the imaging plane) and yaw (assume z-axis is perpendicular to the imaging
plane). However, as we mentioned in Section 1, it is limited to single-depth environments
because it assumes zoom z and translation (x0, y0) as consistent and unique, which does not
hold in multi-depth environments. In the next section, we formulate the image transformation
in the multi-depth scenarios, i.e., considering multi-zoom and multi-translation. The solution
provided by eFMT to handle this issue is presented in Section 4.

3. Problem Formulation

This section formulates the general image transformation with the 4DoF camera
motion in multi-depth scenarios.

Given a pixel p = [x, y]> of I1, it is normalized to

p̄ =

 fx 0 cx
0 fy cy
0 0 1

−1 x
y
1

 =


1
fx
(x− cx)

1
fy
(y− cy)

1


with the focal length fx, fy and image center (cx, cy). Assume the pixel p corresponds to
the 3D point P with depth δ, then the coordinate of P in the I1’s frame is

P =


δ
fx
(x− cx)

δ
fy
(y− cy)

δ

 .
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Suppose the transformation between the camera poses of I1 and I2 is a 4DoF motion
with the rotation around the camera principal axis, i.e., yaw θ, the 2D translation in the
imaging plane (∆x, ∆y), and the translation perpendicular to the imaging plane ∆δ, then P
in the I1’s frame is projected to I2 at point p′: fx 0 cx

0 fy cy
0 0 1

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

P +

 ∆ x
∆ y
∆δ

 ,

that is

p′ =


δ

δ+∆δ (x cos θ − y sin θ)

+ 1
δ+∆δ (−δcx cos θ + δcy sin θ + fx∆x) + cx

δ
δ+∆δ (x sin θ + y cos θ)

+ 1
δ+∆δ (−δcx sin θ − δcy cos θ + fy∆y) + cy

 .

Thus we can derive a general equation

I2(x, y) = I1(zδ(x cos θ0 − y sin θ0) + xδ,
zδ(x sin θ0 + y cos θ0) + yδ)

(10)

to describe the pixel transformation between I1 and I2, where θ0 = θ,

zδ =
δ

δ + ∆δ
, (11)

xδ =
1

δ + ∆δ
(−δcx cos θ + δcy sin θ + fx∆x) + cx (12)

and
yδ =

1
δ + ∆δ

(−δcx sin θ − δcy cos θ + fy∆y) + cy . (13)

It can be found that a zoom zδ and a translation (xδ, yδ) of a pixel depend on its depth
δ, while rotation θ0 is independent. Equation (1) is a simplification of Equation (10) under
the condition that the depth δ of each pixel is the same. For I1 and I2 in a multi-depth
scenario, there will be multiple solutions to Equations (10)–(13), depending on the depth of
the individual pixel, so there are multiple zooms and translations. The energy of the cells
in the PSD is positively correlated with the number of pixels with depth δ for which (xδ, yδ)
falls in that cell. Since FMT assumes an equidistant environment, the depth δ is considered
constant for every pixel. i.e., FMT supposes that the translation (xδ, yδ) and zoom zδ is the
same for all pixels p. Thus for FMT all (xδ, yδ) fall in a singe cell, forming a peak.

In this paper, we propose eFMT that relaxes the equidistance constraint by solving (10)
with different depths zδ to estimate camera poses.

4. Methods

In this section, we first solve (10) with the translation-only case and zoom-only case,
respectively. Then we present how to handle the general case with 4DoF motion. Since the
absolute magnitude of the monocular camera’s poses cannot be found, the re-scaling for
translation and zoom is also discussed to estimate the up-to-scale transformation.

Without loss of generality, we use frame indices 1, 2 and 3 for any three consecutive
frames in this paper.
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4.1. Translation-Only Case

FMT decouples the translation estimation from rotation and zoom calculation. Thus
we only consider that the camera moves in the x − y plane in the translation-only case.
Then Equation (10) is simplified to

I2(x, y) = I1(x + xδ, y + yδ) . (14)

As indicated by Equations (12) and (13), translation (xδ, yδ) is not a single energy peak
in the PSD as in Equation (9), due to the multi-depth environment. Figure 2 shows a transla-
tion PSD in the multi-depth environment. It can be seen that there are multiple peaks in the
PSD and the x− y view shows that these high peaks lie on one line. The collinear property
is derived from the definition of xδ and yδ. In the translation-only case, Equations (12)
and (13) are reduced to

xδ =
fx∆x

δ
, yδ =

fy∆y
δ

.

It can be found that the direction of each translation (xδ, yδ) is the same, i.e.,:

(
fx∆x√

( fx∆x)2 + ( fy∆y)2
,

fy∆y√
( fx∆x)2 + ( fy∆y)2

) ,

which is independent on the pixel depth δ. Also, the translation (xδ, yδ) lies in the line:

fy∆y · x− fx∆x · y = 0 .

Thus, the peaks with high values lie in a line across the center of the PSD. Additionally,
pixels cannot move in the opposite direction. So the peaks lie in a line that starts from
the center. The extreme case is a slanted plane in the camera’s view. Then there are
not distinguishable peaks, but a continuous line segment in the PSD. To keep it general
and don’t rely on peak detection, this paper proposes the following way to estimate
the translation.

x-y view

x-z view

Figure 2. An example of a translation phase shift diagram in a multi-depth (more than two
depths) environment.

Independent of their depth, with a given camera translation, all pixels will move with
collinear translation vectors - the magnitude of this translation depends on their depth and
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the magnitude of the camera translation. Thus we can treat the translation estimation in a
novel way different from finding only the highest peak. Concretely, starting from the center
of the PSD, which represents the no-translation case, we perform a polar search for the
sector rmax that sums up the most energy. This sector now represents the direction of the
translation vector, abbreviated as t. We have no concrete estimate for the magnitude of the
motion, which would be anyways up to the unknown scale factor, therefore the estimated
translation vector t is a unit vector, which is called unit translation vector in this paper.

As introduced in Section 1, one weakness of FMT is that it does not consider the
scale consistency for visual odometry, where the estimated translation between images
I1 and I2 has to be re-scaled to be in the same unit as the one between I2 and I3. To
overcome this drawback, eFMT calculates the re-scaling factor on the rmax sector. For that,
we sample a translation energy vector Vt from the rmax sector of the PSD. With a given
camera translation, regions with different depths correspond to different indices in the
translation energy vector. The more pixels correspond to a region, the higher the energy.
Assume the translation energy vector between I1 and I2 is 2

1Vt and that between I2 and I3 is
3
2Vt. The second image I2 is shared between both translations, thus the depths of the regions
are the same for both translations. Any difference between the translation energy vectors
2
1Vt and 3

2Vt must thus come from different magnitudes of translation, independently from
the direction of that translation. In fact, the vectors are simply scaled by the ratio of the
translation magnitudes, which then also maintains the correspondence of the regions and
their size/ energy values in the vectors. Thus, the re-scaling factor 2→1

3→2st can be calculated
via pattern matching on 2

1Vt and 3
2Vt by

2→1
3→2st = arg min

s
||21Vt − f (3

2Vt, s)||22 , (15)

where f (·) uses s to scale the vector 3
2Vt in length and value. Details are presented in

Section 5.
Differences in the regions from changing occlusions and field of views add noise to

the PSD but can be ignored in most cases, analogous to the image overlap requirement in
the classical FMT [39].

4.2. Zoom-Only Case

As implied in Equation (4), rotation and zoom share the same PSD (see Figure 3). Also,
the rotation is depth-independent and the same for all pixels, as shown in Equation (10).
Thus, eFMT calculates rotation in the same way as FMT does. In this section, we just
consider the zoom-only case, i.e., the camera moves perpendicular to the imaging plane.
In this case, the Equation (10) is simplified to

I2(x, y) = I1(zδx, zδy)) . (16)

Meanwhile, Equation (4) becomes

M2(ξ, θ) = M1(ξ − dδ, θ) , (17)

where dδ = log zδ. Therefore, the multiple peaks of zoom lie in one column in the rotation
and zoom PSD, because all the zoom peaks correspond to one rotation, i.e., the same
column index. Note that these zoom peaks are sometime continuous in real applications
due to the continuous depth change, then these zoom peaks become high values in the
PSD. For that, we no longer search for multiple peaks. Instead, a set of multi-zoom values
Z = {zδ} is uniformly sampled between the maximum zoom zmax and minimum zoom
zmin estimated from the column C∗z with maximum sum energy. C∗z can be found by

C∗z = arg max
Cz
{Cz ∈ qz} , (18)
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where qz is the rotation and zoom PSD. Then we find the highest peak value Emax of the
column C∗z . Only the values whose energy is larger than half Emax are called high values
in C∗z . The maximum zoom zmax and minimum zoom zmin are searched from these high
values by calculating zooms from the index of the high values. In addition, as derived in
Section 3, the zoom zδ is described by Equation (11), which is inversely proportional to
the depth δ. Thus, the minimum and maximum zooms, estimated from the PSD, indicate
the maximum and minimum pixel depths, respectively. Since the energy in the translation
PSD also relates to the pixel depths, we can build correspondences between zoom energy
and translation energy, which will be discussed in the next section.

Figure 3. An example of rotation and zoom phase shift diagram.

Additionally, re-scaling for zoom is also essential in the zoom-only case for visual
odometry. For that, a zoom energy vector Vz is extracted from C∗z . Vz is the half of C∗z with
higher energy. This is based on the prior knowledge that all regions should consistently
either zoom in or out. Suppose the zoom energy vector between I1 and I2 is 2

1Vz and that
between I2 and I3 is 3

2Vz. The re-scaling factor 2→1
3→2sz between 2

1Vz and 3
2Vz is found by

2→1
3→2sz = arg min

s
||21Vz − g(3

2Vz, s)||22 , (19)

where g(·) is the function of shifting the vector 3
2Vz. It is a variant of the pattern matching

used in translation re-scaling. The only difference is that, while the translation energy
vectors above are matched via scaling, the zoom energy vectors must be matched via
shifting. Both algorithms will be shown in Section 5.

4.3. General 4DoF Motion

When the 4DoF motion of the camera happens, the transformation between two poses
is estimated following the scheme of the FMT. Our eFMT pipeline is shown in Figure 4.
Since monocular visual odometry algorithms are up-to-scale [1], we use three frames to
calculate the up-to-scale transformation.
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Figure 4. Pipeline of eFMT. Please note that the output is the 4DoF transformation between frame
I2 and I3, but using 3 frames to estimate the re-scaling factor. The gray boxes indicate that the
computation results of the previous iteration are reused.

Similar to the FMT pipeline [18], we firstly calculate the rotation and zoom between
two frames. Instead of searching for the highest peak value on the rotation and zoom PSD,
we exploit all the information of half a column of the PSD in eFMT, yielding multi-zoom
values Z = {zδ} and the zoom energy vector Vz, as introduced in Section 4.2. In addition,
the multi-zoom values Z = {zδ} are uniformly sampled between the minimum and
maximum high zoom values of the PSD, which takes the energy instead of peaks into
consideration. Thus it is robust to the continuous energy in the PSD. Afterwards, we
obtain translation PSDs for the rotation θ0 and each zoom value zδ, by first re-rotating and
re-zooming the second image:

I′2 = I2(zδx cos θ0 − zδy sin θ0, zδx sin θ0 + zδy cos θ0) ,

and then performing phase correlation on image I1 and I′2 with Equation (7). With the
method introduced in Section 4.1, the translation energy vector Vt,zδ

is extracted from the
translation PSD. Then these multiple translation energy vectors are combined according to
the weight of the zoom energy:

2
1Vt = ∑

zδ∈Z

Vz[zδ]

U
∗ 2

1Vt,zδ
, (20)

where Vz[·] is the function to find the energy corresponding to the zoom zδ and U = ∑zδ∈ZVz[zδ].
Since the higher the zoom value is, the more pixels correspond to the zoom, the corre-
sponding translation energy vector should get the higher weight accordingly. Thus the
Equation (20) holds.

4.4. Tidbit on General 4DoF Motion

Classical FMT decouples rotation and zoom from the translation. For eFMT this is
not as simple: as the camera moves along the z-axis (perpendicular to the image plane),
objects of different depth are zoomed (scaled) by different amounts. In a combined zoom
and translation case, the apparent motion of a pixel depends on its depth, the zoom
and translation. However, for the pattern matching of the translation energy vectors
(Equation (15)) to be based just on a simple scaling, the energy in the pixel motions has to
be based just on the pixel depth and translation speed, so they must be independent of the
zoom. As described above, eFMT will calculate translation energy vectors Vt,zδ

for different
zoom values. This means that in multi-depth images there will be parts of the image that
are zoomed with the incorrect zoom value but are then used as input in Equation (7) and
ultimately combined into the translation energy vector from Equation (20).

One could assume that those incorrectly zoomed image parts lead to wrong pixel
translation estimations, thus leading to a compromised translation energy vector. However,
this is not the case: The phase correlation (Equation (7)) is sensitive to the zoom! It will
only notice signals that are in the same zoom (scale)—other parts will just be noise. This
is because with a wrong zoom Equation (14) does not hold. Figure 5 shows how a wrong
zoom will influence the translation PSD. It can be found that wrong zoom decreases the
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energy of the correct translation and distributes the energy over the PSD. Also, a slight
difference does not change the translation PSD too much, whereas a big difference will
result in a PSD with mostly uniformly distributed noise. To give a better explanation, we
also demonstrate the signal-to-noise ratio (SNR) of the translation PSD with different fixed
zoom values in Figure 6. The SNR value is calculated by the ratio between the mean of
the high values from the translation energy vector and the mean of the remaining values
in the PSD. Figures 5 and 6 show that a deviation of zoom of only 0.08 will lead to a SNR
below 2.6, which is very noisy already. Thus when eFMT is iterating through the different
multi-zoom values in Z, the translation energy vectors Vt,zδ will just notice the pixels that
are correctly zoomed, because the wrongly zoomed values will be very small compared to
the actual high values with the right zoom. Thus the combined translation energy vector
Vt is independent of the zoom. Therefore, also the pattern matching of the translation
energy vectors for re-scaling is zoom independent.

(a) Input Image 1

(b) Input Image 2

(c) zoom z = 1.00, SNR: 12.5

(d) zoom z = 0.95, SNR: 2.9

(e) zoom z = 0.98, SNR: 8.0

(f) zoom z = 0.92, SNR: 2.5

Figure 5. Translation PSDs with different zoom values. The groundtruth zoom between the two
input images is 1. To test the influence of zoom on the translation phase shift diagram, we set zoom
value from 1.00 to 0.92 manually to re-zoom the second image and then perform phase correlation.

Figure 6. Signal-to-Noise ratio with different zoom. (Correct zoom is 1).
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4.5. Practical Consideration—Visual Odometry

We demonstrate the advantage of eFMT over FMT on camera pose estimation, i.e., vi-
sual odomtery. The main considerations in visual odometry are how to put translation and
zoom in the same metric, i.e., translation and zoom consistency.

For that, we analyze the relationship between image transformation and camera
motion again. As shown in Figure 7, assume the objects with size li and depth δi are in the
FOV of the camera C in Pose 1. The camera moves to Pose 2 with the motion (∆x, ∆y) in
the x− y plane and ∆δ along the z direction.

𝑙"

𝑙#

Pose 1

Pose 2

∆𝛿

(∆𝑥,∆𝑦)

Figure 7. Objects of different depths in the FoV of the camera. When the camera moves from Pose 1
to Pose 2, the pixel motions of l1 and l2 are inversely proportional to the depth.

According to the basic properties of pinhole cameras, the zoom between the two
frames captured in Pose 1 and 2 is zδi =

δi
δi+∆δ . Similarly, we can derive the translation

between two frames of different depths δj. We are using j here, because in the algorithm,
zoom and translation are calculated independently. The pixel translation between Pose 1

and 2 are (
f ∆uj

δj
,

f ∆vj
δj

), where f is the focal length of the camera. Then the ratio between the
translation perpendicular to the imaging plane and that in the x− y plane can calculated by

( 1
zδi
− 1) f

‖(∆uj, ∆vj)‖
, (21)

if and only if i = j, meaning that the same object distance δ = δi = δj is used.

We can use pattern matching between the zoom energy vector and the translation
energy vector to find the corresponding i and j. For simplicity, in this paper we use
maximum energy finding to determine the zoom zpeak with the highest peak in the zoom
energy vector Vz (this corresponds to li with depth δi). In the translation energy vector for
zpeak we then find the peak translation vector (∆u′, ∆v′) (lj, which actually is li). This holds
for all pixels with the same depth without the limitation of lying in one continuous plane.

Then we can get the 3D translation t between the camera poses:

t =

 ∆x
∆y
∆δ

 =


∆u
∆v

( 1
zpeak

−1) f

‖(∆u′ ,∆v′)‖

 , (22)

where (∆u, ∆v) is the unit translation vector.

4.6. Summary of Key Ideas

The key ideas of eFMT are outlined as follows:

• Observation that multiple depths will lead to multiple strong energies in the PSDs for
zoom and translation, and that these signals are collinear.

• Instead of finding one maximum peak, as the classical FMT is doing, we represent the
translation in a one-dimensional translation energy vector that encodes the number of
pixels with certain amounts of motion, which correspond to certain depths. We treat



Remote Sens. 2021, 13, 1000 12 of 27

the orientation and the magnitude independently. The orientation from the center
of the PSD, from which the translation energy vector was sampled, is the direction
of the motion, represented as a unit translation vector. The zoom is represented
analogous. Thus, eFMT keeps the accuracy and robustness of FMT w.r.t features and
direct methods, and improves the scale consistency of FMT.

• We put the zoom and translation in the same reference frame by finding the corre-
spondence between zoom and translation based on pattern matching.

• Finally, we assign a magnitude to the second of the two found unit translation vectors
of three consecutive frames by estimating a re-scaling factor between the translation
energy vectors via pattern matching. The re-scaling for zoom is estimated analogously.

5. Implementation

This section introduces the implementation of a visual odometry framework based
on eFMT. We first present this framework and then discuss in detail how to implement
re-scaling for translation and zoom.

Algorithm 1 demonstrates the implementation of the eFMT-based visual odometry.
FMT is directly applied for the first two frames to estimate rotation θ0, zoom z and unit
translation vector t. Additionally, zoom and translation energy vectors Vz and Vt, used
for pattern matching in the next iteration, are generated from the corresponding PSDs,
respectively. For the following frames, eFMT is performed to calculate re-scaled zoom
and translation, so that the 4DoF motion between frames can be estimated. Moreover,
the trajectory of the camera is generated via the chain rule.

Algorithm 1 eFMT-based Visual Odometry

1: Input: I = {Ii|i ∈ N∧ 0 ≤ i < # frames}
2: for i in [1..len(I)] do
3: if i = 1 then . Similar to FMT
4: Estimate rotation 1

0θ0, zoom 1
0z and translation 1

0t
5: Generate 1

0Vz from the rotation and zoom PSD
6: Generate 1

0Vt from the translation PSD
7: else . Multi-zoom and Multi-translation
8: Calculate the rotation and zoom PSD between

Ii−1 and Ii
9: Estimate the rotation i

i−1θ0 and zoom values
vector i

i−1Z from the PSD
10: Generate i

i−1Vz from the PSD
11: for j in [0..len( i

i−1Z)] do
12: Get translation energy vector i

i−1Vt,j and
unit translation vector i

i−1tj
13: end for
14: Combine translation energy vector to i

i−1Vt
via (20)

15: Estimate 3D translation introduced in Section 4.5
16: Estimate re-scaling factor between i−1

i−2Vz and
i

i−1Vz via pattern matching
17: Estimate re-scaling factor between i−1

i−2Vt and
i

i−1Vt via pattern matching
18: Update zoom and translation
19: Perform chain rule on the 4 DoF transformation
20: end if
21: end for
22: Output: camera poses corresponding to I
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As described above, for translation calculation, we find the sector with maximum
sum energy rmax instead of the highest peak. Concretely, the PSD is divided into n sectors
from the center b. Then we sum up the energy of the cells in each sector within a certain
opening angle o, e.g., 2◦, to find the rmax. Afterwards, the direction from the center b to
the highest value of the sector rmax is considered to be the translation direction, i.e., unit
translation vector 2

1ti. Furthermore, we represent the values of the maximum sector 2
1rmax

as the 1D energy vector 2
1Vt,zδ

. We sample the energy in the maximum sector rmax at
uniform distances to fill 2

1Vt,zδ
. Then the translation energy vectors are combined to 2

1Vt
with Equation (20).

Moreover, the pattern matching algorithms used in the re-scaling for translation and
zoom (Equations (15) and (19)) are shown in Algorithms 2 and 3, respectively. Equations (15)
and (19) are in the form of least-squares problems, which are often solved by gradient
decent methods. However, since the explicit expression of function f (·) in Equation (15) is
pointwise on the variable s, it is difficult to construct the Jacobian when using the gradient
decent methods to solve Equation (15). Additionally, the gradient decent method is prone
to local minima, especially without a good initial guess. In fact, our method does not
provide any initial guess. Solving Equation (19) is analogous. Therefore, the pattern
matching Algorithms 2 and 3 are exploited to find re-scaling factors in this work. There
are several methods to handle pattern matching, for example phase correlation, search
algorithms and dynamic programming. Considering the robustness on outliers of the PSD
signals, we use a search method in this paper.

Algorithm 2 Re-scaling for Translation

1: Input: 2
1Vt and 3

2Vt
2: Initialize distance d with infinity
3: for s = 0.1 : 0.002 : 10.0 do
4: Scale 3

2Vt to 3
2V′t with s

5: Calculate Euclidean distance ds between 2
1Vt and

3
2V′t

6: if ds < d then
7: d← ds
8: 2→1

3→2st ← s
9: end if

10: end for
11: Output: rescaling factor 2→1

3→2st

Algorithm 3 Re-scaling for Zoom

1: Input: 2
1Vz and 3

2Vz
2: Initialize distance d with infinity
3: for ∆ = −r : 1 : r do . r is the length of 2

1Vz
4: Shift 3

2Vz to 3
2V′z with ∆

5: Calculate Euclidean distance ds between 2
1Vz and

3
2V′z

6: if ds < d then
7: d← ds
8: 2→1

3→2sz ← shift_to_scale{∆}
9: end if

10: end for
11: Output: rescaling factor 2→1

3→2sz

6. Results

In this section, we evaluate the proposed eFMT algorithm in both simulated and
real-world multi-depth environments. Note again that there are multiple variants of FMT,
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we use the improved one from [19,20] for better robustness and accuracy. Since all the
FMT implementations only search for one peak in the PSDs, they will meet difficulties in
multi-depth environments, no matter which implementation is used.

We first present basic experiments about the zoom and translation re-scaling in the sim-
ulation test. The scenario only includes two planes with different depths to show the basic
effectiveness of eFMT. Then eFMT is compared with FMT and the state-of-the-art VO meth-
ods, ORB-SLAM3 [4], SVO [5] and DSO [7], in the real-world environments. The three state-
of-the-art VO methods that do not rely on FMT are the most popular and representative
monocular ones, as pointed out in [38]. The tests in the real-world environments include
two parts: one toy example with two wooden boards and a large-scale UAV dataset (https:
//robotics.shanghaitech.edu.cn/static/datasets/eFMT/ShanghaiTech_Campus.zip, ac-
cessed on 5 March 2021). The toy example is similar to the simulation environment. Since
the features are very similar on the wooden board, the scenario is more difficult than
general indoor environments, even though there are only two planes. To evaluate the eFMT
algorithm in a more general case and provide a potential use-case of eFMT, we proceed
the second test with a down-looking camera mounted on a UAV. The scenario includes
many different elements, such as building roofs, grass and rivers. Since there are many
different depths in the view, especially that the building will be a slanted plane due to the
perspective projection, it is thus challenging for FMT. In addition, the feature-deprived
road surface and grass would be a big challenge for classic VO methods. We will show that
eFMT can handle both difficulties.

All experiments are conducted with an Intel Core i7-4790 CPU@3.6 GHz and 16 GB
Memory without GPU. The algorithm is implemented in C++ using a single thread.

6.1. Experiments on the Simulated Datasets

In this test, images are collected in the Gazebo simulation for accurate ground truth.
As shown in Figure 8, the camera is equipped on the end-effector of a robot arm such that
we can control the robot arm to move the camera.

𝑥

𝑦

z

Figure 8. Simulated environment (y points down).The camera is equipped on the end-effector of a
robot arm such that we can control the robot arm to move the camera.

6.1.1. Zoom Re-Scaling

In this case, we move the robot arm along the z-axis to generate three simulated
images with two planes in different depths. As shown in Figure 9b–d, they are zoomed in
from left to right. In each image, the left half is further whereas the right half is closer. Then
the rotation and zoom PSDs are shown in the second row of Figure 9. It can be seen that
each diagram has two peaks, which indicates two different depths in the view. Moreover,
the higher peak is not always in the left, which implies the majority depth in the view
changes, which destroys the scale consistency of the FMT. Traditional FMT only uses the

https://robotics.shanghaitech.edu.cn/static/datasets/eFMT/ShanghaiTech_Campus.zip
https://robotics.shanghaitech.edu.cn/static/datasets/eFMT/ShanghaiTech_Campus.zip
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highest peak. Instead, the proposed eFMT takes the zoom energy vector into consideration
and puts all zoom values into the same scale through re-scaling—up to one unknown scale
factor.

Here we show that the eFMT outperforms FMT by using the three images as a small
loop closure. The zoom 2

0z between image 0 and 2 should equal to the product of the zoom 1
0z

between image 0 and 1 and 2
1z between image 1 and 2. The result in Table 1 shows that eFMT

estimates the zoom correctly, so that the zoom loop holds, i.e., ||10z ∗ 2
1z/2

0z|| ≈ 1. However,
FMT only tracks the highest peak. The plane that the highest peak in Figure 9g corresponds
to is different from that in Figure 9e,f, so 2

0z and 2
1z are calculated based on different planes

with different depths. Thus ||10z ∗ 2
1z/2

0z|| is further away from 1.

(a) Visual Aid Input
Image 0

(b) Input Image 0 (c) Input Image 1 (d) Input Image 2

(e) PSD between Image 0 and 1 (f) PSD between Image 1 and 2 (g) PSD between Image 0 and 2

Figure 9. Three rotation and zoom phase shift diagrams (PSD) with multiple zooms. In the first row,
the left parts of the input images are further than the right parts w.r.t the camera. Thus there are two
peaks in the rotation and zoom PSD.

Table 1. Loop Closure for Zoom Estimation.

1
0z 2

1z 2
0z ||10z ∗ 2

1z/2
0z||

eFMT 0.889 0.889 0.768 1.029

FMT [19,20] 0.889 0.881 0.902 0.868

6.1.2. Visual Odometry in Simulated Scenario

In this case, the simulated robot arm moves in the x− z plane to generate images with
combined translation and zoom. Here, we compare the visual odometry based on eFMT
and FMT on this dataset. Figure 10 shows that eFMT tracks the correct re-scaling factor to
the end while the FMT fails at about z = −0.5 m, which indicates that eFMT also works
better than FMT with zoom and translation. This benefits from the re-scaling based on
pattern matching, as introduced in Section 4.
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Figure 10. Visual odometry comparison in a simulated scenario. The data is collected with the setting
in Figure 8.

6.2. Experiments on Real Datasets

After the preliminary tests in the simulated environment, we evaluate the performance
of eFMT by comparing with FMT and other state-of-the-art VO methods in real-world
scenarios. The first example is similar to the simulation setting with two wooden boards
in the camera’s view, as shown in Figure 11a. The ground truth is provided by a tracking
system. In the second example, we collect a dataset with an unmanned aerial vehicle flying
over our campus. More details are introduced in the following.

6.2.1. A Toy Example

In this case, we evaluate the visual odometry with only translation along the x−axis
(see in Figure 11a) with two different depths. Similar to the simulation, the wooden board
with smaller depth first goes into the camera’s view, then both boards are in the view,
finally only the wooden board with larger depth is observed.

Figure 11b compares the localization results with different methods, including FMT
(green triangle), eFMT (blue star), SVO (blue triangle) and ORB-SLAM3 (brown star).
The results of DSO are omitted here because it fails tracking in this scenario. To compensate
the unknown scale factor, the estimated results are aligned to the ground-truth (via a
tracking system) by manual re-scaling. Since the camera only moves in the x direction, we
only show the positions in x axis versus frames. The absolute error (Table 2) will include
errors in both x and y direction.

Table 2. Absolute trajectory error comparison.

Methods Mean (mm) Max (mm) Median (mm)

FMT [19,20] 17.1 54.7 10.1

eFMT 2.1 6.0 1.8

SVO [5] 17.0 38.0 17.5

ORB-SLAM3 [4] 13.0 21.6 13.6

DSO [7] / / /
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(a) Real environment (y points down)
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(b) Visual Odometry Comparison

Figure 11. A visual odometry example in a real-world environment. DSO fails in this test, thus it is
ignored in this figure.

We can see that FMT begins to suffer from scale drift approximately from the 20th
frame, where FMT changes the tracked panel, because the new panel now is bigger in
the view and thus has a higher peak. That new panel is further away, thus the pixels
move slower, thus FMT underestimates the motion compared to previous frames. In
contrast, the proposed eFMT maintains the correct scale till the last frame, because our
pattern matching re-scales all unit translation vectors correctly. Compared with SVO and
ORB-SLAM3, eFMT tracks each frame more accurately. The absolute trajectory errors in
Table 2, including mean, max and median of errors, also shows that eFMT achieves the
smallest error, followed by SVO and ORB-SLAM3. Concretely, the mean error of eFMT is
approximately 1/6 of that of ORB-SLAM3, and about 1/8 against FMT or SVO. This test
shows that eFMT outperforms the popular visual odometry algorithms in this challenging
environment, thanks to the robustness of the spectral-based registration.

6.2.2. The UAV Dataset

In addition to the above toy examples, we compare the proposed eFMT with FMT,
ORB-SLAM3, SVO and DSO on a bigger UAV dataset. Note that even though there
are several public UAV datasets [40–44], we could not use them in this paper because
we require datasets without roll/ pitch due to the properties of our algorithm. Ref. [41]
provides such a dataset, NPU dataset, with no roll/pitch, but the flying height of the
UAV is too high, so that the scenario can be considered single-depth. We tested on one
sequence of the NPU dataset, which the UAV collected over farmland. Since the features in
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this scenario are ambiguous, ORB-SLAM3, SVO and DSO failed to estimate the camera
trajectory on this dataset. Both FMT and eFMT succeed to track the trajectory with some
accumulated error, and their performance are similar due to single depth. The algorithm
presented in [41] works well on this data, but it is using GPS in the algorithm, it assumes
a planar environment and is a fully fledged SLAM system, matching against map points,
while eFMT is just registering two consecutive image frames.

To show the performance of eFMT in a multi-depth setting, we collect a dataset (https:
//robotics.shanghaitech.edu.cn/static/datasets/eFMT/ShanghaiTech_Campus.zip, ac-
cessed on 5 March 2021), which is released together with this paper. Our dataset is collected
by a down-looking camera equipped on a DJI Matrice-300 RTK. The flying speed is set to
2 m/s and the image capture frequency is 0.5 Hz. The path of the drone over our campus
is shown in Figure 1. The DJI aerial vehicle collected 350 frames on a trajectory of about
1400 m. The height above ground is about 80 m, which is approximate 20 m higher than
the highest building. As we mentioned in the beginning of the experiment, this dataset
contains the all kinds of different elements. These include roofs, road surfaces, a river and
grass, where some of them are challenging for the classic VO methods that are not based
on FMT. Furthermore, the multiple depths increase the difficulty for FMT. In this case,
we will show that the eFMT not only keeps the robustness of FMT but also overcomes its
single-depth limitation.

The overall trajectories of different approaches are shown in Figure 12. The trajectories
are aligned with a scale a rotation calculated from the poses of the 0th frame and the
80th frame. We refer readers to the attached Supplementary Video for the frame-by-frame
results. Since SVO and DSO fail to estimate the camera poses, the trajectories of them
are not included in this figure. Also, it can be found that the ORB-SLAM3 fails to track
several times, as indicated by the red stars. After each failure, the trajectory of ORB-SLAM3
is realigned. Both FMT and eFMT succeed to estimate the camera poses till the end of
the dataset, though the translation has some drift. To evaluate the performance of FMT,
eFMT and ORB-SLAM3, we compare these methods only up to the frame that ORB-SLAM3
fails. The performances of different approaches are shown in Figure 13. From the right
local enlarged figure, we can find that the estimated speeds of eFMT and ORB-SLAM3 are
almost constant, as indicated by the equal distances between the frames. This is consistent
with the centimeter-grade RTK GPS ground truth. However, the estimated speed of FMT
changes according to the view. For instance, the speed is faster from frame 125 to 132
than that from frame 132 to 138, because the dominate plane is ground in the former case
whereas the dominant plane changes to the roof in the latter case. In addition, Figure 14
displays the absolute translation error versus distances with the evaluation tool from [45].
If only comparing the performance when all three approaches are tracking successfully,
the performance of eFMT is on a par with ORB-SLAM3 and both of them are better than
FMT, because FMT suffers from different depths.

Please note that there are continuous line segments in the translation PSD when there
are slanted planes in the view. As shown in Figure 15, the buildings in Image 1 and 2
become inclined due to the perspective projection, which yields the line segments (left
to the red center) in the translation PSD below. In the UAV dataset, such inclined planes
are common, thus pattern matching is necessary for re-scaling. Moreover, the estimated
trajectory shown in Figure 12 shows that eFMT can handle such slanted planes issues.

Thus, this experiment shows that eFMT has two advantages: (1) it successfully extends
FMT to multi-depth environments, that is, no matter the multiple depths are continuous
(e.g., slanted plane) or discrete (e.g., roofs and ground), eFMT can track the camera motion;
(2) it keeps the robustness of FMT that it can still track the camera motion in the feature-
deprived scenarios, such as building roofs, whereas the classic VO methods may fail
tracking. The experiment mentioned in the beginning of Section 6.2.2 also supports the
second point.

https://robotics.shanghaitech.edu.cn/static/datasets/eFMT/ShanghaiTech_Campus.zip
https://robotics.shanghaitech.edu.cn/static/datasets/eFMT/ShanghaiTech_Campus.zip
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GT
FMT
eFMT
ORB-SLAM

Start

Figure 12. Overall trajectories of different methods on the UAV dataset. ORB-SLAM3 fails several
times, as indicated by the red stars. These sub trajectories of ORB-SLAM3 are aligned manually for
visualization. SVO and DSO fail to track the images.
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Figure 13. Estimated trajectories on the UAV dataset. SVO and DSO fail to track the images.
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Figure 14. Absolute translation error on the UAV dataset. SVO and DSO fail to track the images.

(a) Frame 143 (b) Frame 144

(c) Translation PSD

Figure 15. Example line segment in the translation phase shift diagram (PSD).

6.3. Robustness on Continuous Depth

As observed in our UAV dataset, the buildings in the camera’s view may become a
slanted plane due to perspective projection. In this case, there will be a continuous line
segment in the translation PSD corresponding to the slanted plane (see Figure 15). In this
section, we explore the influence of continuous depths on the PSDs, which is important
for the performance of eFMT. For that, we simulate a plane and a robot arm in Gazebo,
like Figure 8, and then make the robot arm deviate from perpendicular with the plane
such that the plane becomes a slanted plane in the camera’s view (see Figure 16p). In other
words, the depth in the view is now continuous instead of discrete planes, which can be
considered to be a limit condition of multi-depth. We collect images by mainly moving the
camera along the y-axis in the camera’s frame (see Figure 8), since it is more complex than
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moving along the x-axis. When the camera moves along the x−axis, the relative depth in
the camera view is the same.

Figure 16 shows the translation PSDs with different magnitude of the camera’s motion.
When tilt is 0◦, there is only single depth in the view. It can be found that the darker the
blue is, the clearer the high values are. From the second row of Figure 16, we can see that
the highest peak distributes to a wide line and the highest energy becomes smaller when
the tilt of the camera gets bigger. Since eFMT finds the sector with maximum energy, it can
still find the unit translation vector in this condition and implement re-scaling with all the
energy in the maximum sector. In contrast, FMT may fail in this case because it only tracks
the highest energy. In detail the highest energy peak is prone to change, i.e., prone to be
associated with different depths, due to noise and scenario similarity.

From each column of Figure 16, it can be seen that the energy distributes more along
the rmax sector when the camera moves more. This means that it is more obvious that
different depths contribute to different pixels. When the motion is small, different depths
may contribute to the same pixel due to the image resolution. Please note that there are
multiple peaks with high energy, also in the opposite direction, in Figure 16d,e, which is
due to the periodic structures in the simulated images. eFMT still has a good chance to
work in this case, because the maximum energy sector rmax can still reliably be found. Also,
the pattern matching will still determine the re-scaling based on the best matching scaling,
which should be the correct one, since its energy is highest and fits best.

Looking at the different tilt values of Figure 16, we can see that a higher tilt results in
a longer line of high energy values and more noise in the PSD. In particular, the PSDs will
be too noisy to provide distinguished high values if there is big motion combined with big
tilts. For instance, eFMT fails when the tilt is 30◦ or more and the camera motion is bigger
than 0.8 m.

The rotation and zoom PSDs are shown in Figure 17. Similar to the translation
PSDs, more noise will be introduced to the rotation and zoom PSDs with bigger tilt and
bigger motion.

Overall, multiple depths in the scenario will introduce more noise to the PSDs. When
the motion between two frames is not too big, eFMT can still handle the case. However,
if the motion is too large, no distinguished energies can be found and eFMT will fail to find
the correct sector with maximum energy and thus cannot estimate the motion correctly.
Luckily, in the visual odometry task, the motion between two frames is usually not too big.
However, it will introduce challenges when we want to do loop closure on the frames with
big motion in our future work.
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(a) Tilt 0◦ Input

(b) Motion 0.2 m, Overlap 90%

(c) Motion 0.7 m, Overlap 80%

(d) Motion 0.9 m, Overlap 60%†

(e) Motion 1.0 m, Overlap 60%

(f) Tilt 15◦ Input

(g) Motion 0.2 m, Overlap 90%

(h) Motion 0.7 m, Overlap 70%

(i) Motion 0.9 m, Overlap 65%

(j) Motion 1.0 m, Overlap 60%

(k) Tilt 30◦ Input

(l) Motion 0.2 m, Overlap 90%

(m) Motion 0.7 m, Overlap 70%

(n) Motion 0.8 m, Overlap 65%

(o) Motion 1.0 m, Overlap
60%, eFMT failed

(p) Tilt 45◦ Input

(q) Motion 0.2 m, Overlap 85%

(r) Motion 0.6 m, Overlap 70%

(s) Motion 0.8 m, Overlap 65%

(t) Motion 1.0 m, Overlap
60%, eFMT failed

Figure 16. Translation PSDs with different tilt angles and camera motions. The angle between the plane and the imaging
plane changes from 0◦ to 45◦. Each column corresponds to one angle. When the angle is not 0◦, it is a slanted plane in the
view, leading to continuous depths. The distance between the camera and the slanted plane is about 3 m. † The overlap is
smaller than others in this row due to the bigger motion in u-direction of the image.
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(i) Motion 0.9 m, Overlap 65%

(j) Motion 1.0 m, Overlap 60%

(k) Tilt 30◦ Input

(l) Motion 0.2 m, Overlap 90%

(m) Motion 0.7 m, Overlap 70%

(n) Motion 0.8 m, Overlap 65%

(o) Motion 1.0 m, Overlap 60%

(p) Tilt 45◦ Input

(q) Motion 0.2 m, Overlap 85%

(r) Motion 0.6 m, Overlap 70%

(s) Motion 0.8 m, Overlap 65%

(t) Motion 1.0 m, Overlap 60%

Figure 17. Rotation and zoom PSDs with different tilt angles and camera motions. The angle between the plane and the
imaging plane changes from 0◦ to 45◦. Each column corresponds to one angle. When the angle is not 0◦, it is a slanted plane
in the view, leading to continuous depths. The distance between the camera and the slanted plane is about 3 m. † The
overlap is smaller than others in this row due to the bigger motion in u-direction of the image.
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6.4. Computation Analysis

Ref. [39] pointed out that image resolution has a big impact on the FMT algorithm
and image down-sampling does not hurt FMT performance. In our preliminary test, we
find that this still holds for eFMT. The run-time of eFMT is about 0.7 seconds per frame
with image resolution 512× 512 and about 0.2 s per frame with a resolution of 256× 256
based on the single-threaded C++ implementation, which is about two times slower than
that of FMT. In addition, the multi-translation calculations with multi-zoom values are
independent from each other, thus we can compute these in parallel to speed up the
algorithm. Thus, eFMT could run as fast as FMT.

7. Discussion

In the above experiments, we show that there will be no single energy peak of the PSDs
when the scenario changes from single depth to multi-depth. Based on this, eFMT extracts
the line with maximum sum energy instead of a single peak, such that it achieves better
performance, especially scale consistency, than FMT in multi-depth environments. Our
experiments, including one example application on a UAV dataset, show that both FMT
and eFMT are more robust than the state-of-the-art VO methods, thanks to the robustness of
spectral description against feature-deprived images, while eFMT is successfully removing
the constraint for a single-depth scenario that FMT exhibits.

One main limitation of eFMT- and FMT- is that they do not work when there is a roll
or pitch in the camera, which is narrowing their scope of application. Smaller deviations
from this constraint may be compensated by getting the gravity vector from an IMU and
rectifying the images accordingly, but this does not mean that eFMT could be extended to
be a general 3D VO algorithm this way.

A major influence on the success of an eFMT image registration is the overlap in
the images, which depends on translation amount vs. distance of objects. In the general
case, when most of the environment is not tilted more than 45 degree in the frames, our
experiments in Section 6.3 indicate that an overlap of 65% or more seems to be sufficient
for successful registrations with eFMT. To improve on this, we consider the oversampling
strategy in frequency domain proposed in [34], which could make the high energies of PSD
more distinguished even with smaller overlap.

In addition, the experiments reveal further problems of eFMT. One is that the accu-
mulated error of eFMT may get bigger when the camera moves for a long time, as shown
in Section 6.2.2. This is of course true for all incremental pose estimators. To overcome
this, in our future work we will introduce loop closing and pose optimization in the same
fashion as current popular VO methods.

Like any monocular VO algorithm, eFMT is up to an unknown scale factor and it will
fail if the environment is highly repetitive or does not exhibit enough texture, even though
it is better than most other approaches regarding that last constraint.

8. Conclusions

This paper extends the classical FMT algorithm to be able to handle zoom and trans-
lation in multi-depth scenes. We present a detailed problem formulation and algorithm.
Experiments show the clear benefit of our proper re-scaling for Visual Odometry in scenes
with more than one depth and compare it to FMT, which indicates that eFMT inherits
the advantages of FMT and extends its application scenarios. Moreover, eFMT performs
better than the popular VO methods ORB-SLAM3, DSO and SVO in all our experiments,
performed on our datasets collected in challenging scenarios.

In our future work, we will continue to make the proposed eFMT more robust and
accurate with the following two points. One is to use pose optimization to decrease the
accumulated error. Another is exploiting the oversampling strategy to make the PSDs less
noisy and the high energies more distinguished.

As we introduced in Section 1, FMT has already been used in all kinds of applications.
We can consider the application of eFMT in similar applications if the scenario is multi-
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depth, such as underwater robot localization. Underwater turbidity usually prevents
feature-based methods to work properly, while spectral methods still have an acceptable
performance. Since the bottom of the underwater scenario may be not flat, eFMT is more
suitable than FMT.

9. Patents
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The following abbreviations are used in this manuscript:

VO Visual odometry
ORB-SLAM ORB based simultaneous localization and mapping
DSO Direct sparse odometry
SVO Semi-direct visual odometry
FMT Fourier-Mellin transform
eFMT Extended Fourier-Mellin transform
PSD Phase shift diagram
RTK Real-time kinematic
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