
remote sensing  

Technical Note

Extracting the Tailings Ponds from High Spatial Resolution
Remote Sensing Images by Integrating a Deep
Learning-Based Model

Jianjun Lyu 1, Ying Hu 1, Shuliang Ren 1, Yao Yao 1,2,* , Dan Ding 3, Qingfeng Guan 1 and Liufeng Tao 4

����������
�������

Citation: Lyu, J.; Hu, Y.; Ren, S.; Yao,

Y.; Ding, D.; Guan, Q.; Tao, L.

Extracting the Tailings Ponds from

High Spatial Resolution Remote

Sensing Images by Integrating a Deep

Learning-Based Model. Remote Sens.

2021, 13, 743. https://doi.org/

10.3390/rs13040743

Academic Editor: Sawaid Abbas

Received: 4 January 2021

Accepted: 15 February 2021

Published: 17 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geography and Information Engineering, China University of Geoscience, Wuhan 430078, China;
jjlv@cug.edu.cn (J.L.); hhying@cug.edu.cn (Y.H.); renshuliang@cug.edu.cn (S.R.); guanqf@cug.edu.cn (Q.G.)

2 Alibaba Group, Hangzhou 311121, China
3 No.321 Geological Team, Bureau of Geological and Mineral Exploration of Anhui Province,

Tongling 244033, China; dingdan@ahdk321.com
4 National Engineering Research Center for Geographic Information System, China University of Geoscience,

Wuhan 430078, China; taoliufeng@cug.edu.cn
* Correspondence: yaoy@cug.edu.cn; Tel.: +86-185-2023-9106

Abstract: Due to a lack of data and practical models, few studies have extracted tailings pond margins
in large areas. In addition, there is no public dataset of tailings ponds available for relevant research.
This study proposed a new deep learning-based framework for extracting tailings pond margins from
high spatial resolution (HSR) remote sensing images by combining You Only Look Once (YOLO) v4
and the random forest algorithm. At the same time, we created an open source tailings pond dataset
based on HSR remote sensing images. Taking Tongling city as the study area, the proposed model
can detect tailings pond locations with high accuracy and efficiency from a large HSR remote sensing
image (precision = 99.6%, recall = 89.9%, mean average precision = 89.7%). An optimal random
forest model and morphological processing were utilized to further extract accurate tailings pond
margins from the target areas. The final map of the entire study area was obtained with high accuracy.
Compared with the random forest algorithm, the total extraction time was reduced by nearly 99%.
This study can be beneficial to mine monitoring and ecological environmental governance.

Keywords: tailings ponds; remote sensing image; deep learning; random forest; high spatial resolution

1. Introduction

A tailings pond is a mine production facility used to store tailings generated during
processing metal resources [1]. The liquid contained in tailings ponds is poisonous, harmful
or radioactive [2]. The tailings pond usually requires a large area to contain all the produced
tailings [3]. Restricted by mineral resources, terrain and other factors, tailings ponds
are mostly located in remote mountainous areas with relatively weak supervision [4].
According to statistics, the number of known tailings ponds in China in 2019 was 5189.
Most of them were distributed in isolation and nearly 80% of tailing ponds are less than
0.363 km2 in area [5]. Most tailings ponds use the upstream raising method due to the low
operating costs. However, this method lacks stability. If a tailings dam breaks, it can cause
severe casualties, economic losses and irreparable environmental pollution [6]. In recent
years, tailings ponds have frequently caused environmental emergencies, which have had
extremely adverse effects on economic development and social stability [7–9]. Therefore,
the rapid acquisition of comprehensive tailings pond inventories is of great significance to
regional effective resource utilization and mine safety monitoring.

Traditional ground surveys of tailings ponds are costly and inefficient [4,10,11].
Remote sensing technology has the advantages of a wide monitoring range and low
cost [12,13], which provides more opportunities to monitor tailings ponds. However, the
shapes, dimensions, backgrounds and tones of different tailings ponds vary greatly in
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remote images covering huge geospatial areas because of the influence of mine types,
geography and climate conditions on tailings ponds in different regions [14]. These charac-
teristics also make the extraction of tailings pond margins a challenge.

Due to the abundant spectral and texture features of tailings ponds in remote sensing
images, these features are typically utilized to design remote sensing indices to extract
tailings [15–17]. Ma et al. (2018) developed an ultra-low-grade iron-related objects index
from Landsat 8 OLI (Operational Land Imager) images and then extracted the tailings
ponds based on the entropy difference between tailings ponds and stopes [16]. Using
Landsat 8 data, Hao et al. (2019) developed an all-band tailing index, a modified normal-
ized difference tailing index and a normalized difference tailings index to build a tailing
extraction model for extracting the tailings [17]. However, the smaller tailings ponds were
difficult to extract because of the low spatial resolution of remote sensing images.

High spatial-resolution (HSR) remote sensing images can reflect the land surface
comprehensively [18]. Some scholars used visual interpretation to extract tailings ponds by
HSR remote sensing images [19–21]. However, visual interpretation is time-consuming and
laborious when extracting tailings ponds in large areas. Using Landsat 7and SPOT (Système
Probatoire d'Observation de la Terre) 5 fusion images, Mezned et al. (2016) mapped
mine tailings by a linear spectral unmixing method. Based on the spatial combination of
objects [22], Liu et al. (2019) extracted four main tailings pond structures, including starter
dams, embankments, deposited beaches and water bodies using GaoFen-2 images [14].
However, the studies mentioned above were limited to the mine area or a few tailings
ponds within the mine area. Due to excessive variation in tone, shape and dimension
between tailings ponds, the methods are difficult to apply on a large area. In addition,
tailings ponds are more sparsely distributed than other objects [23], making extraction
of tailings ponds in a large area more difficult and time-consuming. Therefore, the quick
and accurate extraction of tailings pond margins still faces challenges when using remote
sensing images at large spatial areas.

Deep learning can obtain higher dimensional and abstract features of the images than
traditional methods [24] and it has been proven to be a powerful technology for remote
sensing image processing [24–26]. In recent years, deep learning has been widely used in
land cover classification [25], scene classification [27] and ground target extraction [28,29].
The current target detection methods based on deep learning can be divided into two
categories: region-based methods and regression-based methods. Region-based meth-
ods, such as Faster R-CNN (region-based convolutional neural networks) [30], achieve
high precision for target detection. Nevertheless, the detection speed is slow, while the
regression-based methods (e.g., SSD (Single Shot MultiBox Detector) [31] and YOLO (You
Only Look Once) [32]) achieve a relatively fast detection speed. The deep learning tech-
niques provide a new idea for extracting tailings pond margins from HSR remote sensing
images in large spatial areas, which is one of the main issues in this study. In addition, the
lack of public tailings pond datasets and lack of clear explanation of the abstract features
extracted limit the development of tailings pond extraction by using deep learning.

To address the aforementioned limitations on extracting tailings pond margins, we
produced a tailings pond dataset containing multiple tailings ponds and proposed a deep
learning-based framework to quickly and accurately extract tailings pond margins from
HSR remote sensing images in large spatial areas. First, the tailings ponds were located
by YOLOv4 model. Then, a random forest model was applied to the detected regions to
extract tailings pond margins. Finally, a morphological processing method was used to
obtain the final tailings pond margins. Taking Tongling city as the study area, we extracted
tailings pond margins from the HSR remote sensing image based on the proposed method.

2. Methodology

The flowchart of the proposed methodology in this study is illustrated in Figure 1. The
methodology attempts to extract tailings pond margins using the proposed framework. The
framework can be summarized by the following steps: (1) creating a tailings pond dataset
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based on the characteristics of the tailings ponds in HSR remote sensing images; (2) training
the YOLOv4 model by the tailings pond dataset to obtain the tailings pond target areas;
(3) building a random forest model combining the spectral and texture features to extract
the initial tailings ponds based on the acquired target areas; and (4) using a morphological
processing method to extract the final tailings ponds.
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2.1. Detection of Tailings Pond Regions

To quickly extract the tailings pond margins in a large area, this study first detected
the tailings pond regions. We have applied the YOLOv4 to detect tailings pond regions in
the proposed framework. YOLOv4 achieves the best balance of accuracy and speed [33].
The characteristic empowers YOLOv4 to detect tailings ponds quickly in a large area.

The YOLOv4 algorithm was proposed by Bochkovskiy in 2020 [33]. The architecture
of YOLOv4 consists of CSPDarknet53, spatial pyramid pooling (SPP), path aggregation
network (PANet) and YOLOv3 head [33]. The CSPDarknet53 is used as the backbone
network to extract the features of the images. The SPP block is used to increase the
receptive field [34] and the PANet is adopted to merge the extracted features [35]. When
scaling the input image to a size of 416×416, the three scales of feature maps are obtained
after sampling five times by CSPDarkNet53. The last feature map is disposed with 5×5,
9×9 and 13×13 maximum pooling operations and then the results are merged to obtain a
13×13 feature map. When processing the acquired 13×13 feature map and the first two
26×26 and 52×52 feature maps by the modified PANet structure, three scale predictive
feature maps are obtained. Finally, by performing regression and classification operations
on the predicted feature maps, the boundary coordinates and confidence of tailings pond
are obtained. The main network structure is shown in Figure 2.
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Figure 2. The main structure diagram of YOLOv4 [36].

2.2. Extraction of Tailings Ponds

After tailings ponds detection, the correctly detected regions were further processed
to extract the precise margins of tailings ponds using random forest in our framework.

2.2.1. Feature Extraction of Tailings Ponds

The commonly used methods for feature extraction are divided into two categories:
traditional feature extraction and deep learning extraction [25,36]. Although deep learning
can provide a large number of robust features, it has the disadvantage of being difficult to
interpret the extracted features [37]. To extract tailings pond features and further obtain
the importance of different features, traditional feature extraction method was performed
in this study. The spectral and texture features of HSR remote sensing images are able
to reflect the inner components and tonal variation of ground components [38]. When
two different objects have the same spectral features, they could be distinguished by their
texture features [39]. Therefore, the spectral and texture features were utilized to construct
a feature set for tailings pond extraction in our framework.

The RGB bands of HSR remote sensing images were selected as the spectral feature
variables. Principal component analysis (PCA) was performed on the images before
extracting texture features. Based on the first principal component images, the commonly
used gray-level cooccurrence matrix (GLCM) and Gabor filter were utilized to obtain
the texture features. We used the GLCM to extract the statistical features of the images
and the Gabor filter to extract the structural features. GLCM is one of the best known
texture feature extraction methods providing a good description of the image texture [40].
However, GLCM features are less accurate in the region of class boundaries [41]. Gabor
filters have been proved to be successful in the field of remote sensing images [42,43].
The features extracted by Gabor filters are more accurate in the boundary regions [41]. It
has been demonstrated that the combination of these two texture features can improve
the accuracy of image classification [39,41,44]. The GLCM was used to calculate texture
measurements in four directions (0◦, 45◦, 90◦, 135◦) and the average of the corresponding
measurement values in all directions was used as the final texture feature. Eight gray
texture features (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second
moment and correlation) were calculated with a 7 × 7 window size. Additionally, the
Gabor filter was used to extract Gabor texture features in four directions (0◦, 45◦, 90◦, 135◦)
and the wavelength was set to 2. The selected feature types and variables are shown in
Table 1.
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Table 1. Feature variables used to extract the margins of tailings ponds.

Feature Type Feature Variable

Spectral band R, G, B

Texture feature
GLCM: mean, variance, homogeneity, contrast, dissimilarity,

entropy, second moment, correlation
Gabor: Gabor0◦, Gabor45◦, Gabor90◦, Gabor135◦

2.2.2. Random Forest Classification

In addition to the multiple features, a robust classification algorithm is also important
for extracting the tailings pond margins. Our framework utilized the random forest
algorithm, which has achieved good results in the field of automatic extraction of remote
sensing information [45], to further extract the tailings pond margins.

Random forest is a fusion algorithm based on decision tree classifiers with fast com-
putational efficiency, high classification accuracy and can deal with high-dimensional
features [46]. The random forest algorithm establishes corresponding decision tree models
for training sets extracted from the original training dataset through the bootstrap method.
The pixels are classified by taking the most popular voted class from all the forest decision
trees [47]. Two-thirds of the sampled training data are used to build the classifier. The other
third of the sampled training data is used to calculate the out-of-bag (OOB) error, which
can evaluate the performance of random forests [48,49].

This study created a classification dataset containing tailings ponds and other objects
to yield an optimal random forest model by choosing the features. Based on the importance
ranking of 15 features, the features were grouped into 1 to 15 feature sets to train the
random forest model. We select the feature set that has the highest OOB accuracy as the
optimal feature. Finally, the chosen optimal features were used to train the random forest
model for extracting tailings ponds.

2.3. Morphological Processing

The initial extracted image may exist some extra holes and small areas and they should
be excluded before we obtain the final results. We performed morphological processing to
obtain the final images.

First, we performed the hole filling operation on the initial extracted tailings pond
images. A pixel point was found in the extracted tailings pond image to expand with
structural elements and then constrained it with the complement of the tailings pond
image. We kept repeating the expansion and constraint operation until the graph did not
change and then intersected the original image to get the tailings pond image [50]. Next,
we removed tiny interference. The connected regions are first extracted from the image
processed in the previous step. We counted the number of pixels in each connected region.
If the number was less than a given constant, the region was removed [51]. Finally, the
final extracted image of the tailings pond was obtained.

2.4. Accuracy Evaluation

To evaluate the performance of our framework, we evaluated the detection task and
final mapped results of the framework, respectively.

2.4.1. Tailings Ponds Detection Accuracy Evaluation

Precision, recall and mean average precision (mAP) were used in our framework to
evaluate the performance of the YOLOv4 model. The formulas are as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
, (2)
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where TP represents the number of tailings ponds that were correctly identified, FP repre-
sents the number of tailings ponds that were mistakenly identified and FN represents the
number of tailings ponds that were not identified. The mAP value is the mean area under
the precision-recall curve for all categories [52].

2.4.2. Final Results Accuracy Evaluation

After random forest classification and morphological processing, the obtained map
of the entire study area was evaluated using the stratified sampling strategy proposed
by Olofsson et al. [53,54]. We stratified by two classes: tailings ponds and other objects.
The calculations of the total number of sample units and stratified sample sizes were
performed [53]. The stratified random sampling was conducted by calculated sample sizes.
We used the higher resolution google image and field information to determine the final
reference labels. Finally, the omission and commission errors of the tailings ponds and the
overall accuracy of the map were calculated based on the error matrix.

3. Results
3.1. Study Area and Data

Tongling is located in south-central Anhui Province, China. It consists of three munic-
ipal districts and one county, covering approximately 3008 square kilometers (Figure 3).
Located in the copper-iron metallogenic belt of the Yangtze River, Tongling is rich in
mineral resources. There are more than 30 kinds of rare metal minerals in the territory.
Copper, gold, pyrite and limestone for cement are four dominant minerals [55]. However,
many tailings generated after mining and smelting are stored in tailings ponds, which
have become the primary source of heavy metal pollution in the environmental system of
Tongling [56].

Figure 3. Study area: Tongling city, Anhui Province.

To detect tailings ponds based on deep learning, a HSR remote sensing image dataset
of tailings ponds was produced. The data used in the tailings pond dataset were 2.05 m
resolution Google images of Tongling and other cities (e.g., Ma’anshan, Chizhou, Lu’an,
Huangshi), which contain tailings ponds. Considering the spatial heterogeneity of tailings
ponds, samples were made by selecting various types of tailings ponds as far as possible to
avoid serious omission in tailings pond results. As a preparation, we combined the color
and morphological characteristics of the tailings ponds in HSR remote sensing images for
visual interpretation. The remote sensing images were sliced into 500×500 pixels and then
we annotated the tailings ponds in the images with the location information of the target
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category. Due to the complexity of HSR remote sensing image scenes, negative samples
(e.g., reservoirs, mining areas) were added to reduce interference.

The initial dataset contained 352 positive samples and 430 negative samples. A total
of 516 annotations were included in the initial dataset. However, deep learning requires a
large number of samples to prevent overfitting during training and data augmentation is
usually adopted [57]. The widely used data augmentation methods, including rotation,
Gaussian noise, flipping and brightness variation, were adopted to increase the diversity of
the samples. For image rotation and flipping, we have performed 90, 180 and 270 degrees
rotations and horizontal and vertical flip operations on the images. For brightness variation,
the parameters for adjusting the brightness were set to 0.5 and 1.2 and the bias was set to
10. The noise was added to the original images as well. we added Gaussian noise with a
variance of 0.1 to the original images.

A positive sample was generated to 9 new images while we removed a small number
of poor quality samples. To keep the number of positive and negative samples similar,
we rotated, flipped and added noise to generate 7 new images for each negative sample.
Via the above operations, the final tailings pond dataset contains 6150 images, including
3140 positive samples and 3010 negative samples. A total of 4610 annotations were included
in the final dataset. Figure 4 shows samples in the tailings pond dataset.

Figure 4. The samples in the tailings pond dataset. (a) and (b) are examples of tailings ponds with different shapes and
colors. (c) and (d) are examples of negative samples.

3.2. Detection of Tailings Ponds Based on YOLOv4

The tailings pond dataset was randomly divided into a training set and testing set
at a ratio of 8:2. The YOLOv4 algorithm was trained for 300 iterations and the batch size
was set to 4. The default hyperparameters which could obtain the great performance in
YOLO [58], were applied with a learning rate of 0.01, the momentum of 0.937 and weight
decay of 0.0005.

A multiscale training strategy was adopted to enhance the robustness of images of
different sizes. During the training process, the image size was randomly transformed into
multiples of 32 and the image transformation range was set as 320 × 320~608 × 608 [59].
After approximately 250 iterations of the model, the training loss tended to be stable. For
the confidence threshold of 0.5, the model performed the best mAP in the testing set when
the image size was 448×448 and it was selected as the final tailings ponds detector. As
shown in Table 2, the precision is 99.6%, the recall rate is 89.9% and the mAP is 89.7%.
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The results showed that the YOLOv4 algorithm can detect tailings ponds accurately and
provide a reasonable basis for further extraction of tailings ponds.

Table 2. Detection accuracy evaluation results of tailings ponds based on YOLOv4.

Confidence Precision Recall mAP

0.5 99.6% 89.9% 89.7%

Taking the Tongling as a study area, the final tailings ponds detector was used to detect
the tailings ponds from HSR remote sensing image. The images of Tongling were sliced
into 500 × 500 pixel size and a total of 2745 images were obtained. We obtained 26 tailings
ponds as the truth value by visual interpretation. For the confidence threshold of 0.5,
31 features were detected as suspected tailings ponds. The tailings ponds obtained by visual
interpretation were all included in the detected regions. The distribution of targets obtained
by geospatial mapping was illustrated in Figure 5. The detected targets were verified by
visual interpretation and the information provided by the tailings pond managers. Five
false positive targets were detected by YOLOv4, mainly including reservoirs, waste rock
piles and bare ground. Examples of incorrectly identified targets were shown in (d) and
(e). (d) was a bare ground with similar shape to the tailings pond. (e) was a reservoir
with a similar structure to the tailings pond, including water bodies and beaches. The
color of the water body was similar to the color of the tailing pond wastewater, showing
a similar brightness to that of the tailing pond. Inactive tailings ponds contained very
little water. The bare grounds and the exposed land in small reservoirs were similar in
shape, texture to the tailings in inactive tailings ponds. These similar properties made the
YOLOv4 model prone to errors in prediction. Objects that were incorrectly detected as
tailings ponds were excluded from the final results. A total of 26 tailings ponds were finally
recognized in Tongling. The correctly detected tailings ponds were served as the basis for
further extracting tailing ponds.

Figure 5. The spatial distribution results of tailings ponds in Tongling based on the trained YOLOv4. The blue points are
the correctly identified results and the red points are the misidentified results. (a), (b) and (c) are examples of correctly
identified tailings ponds; (d) and (e) are examples of misidentified tailings ponds.
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3.3. The Extraction of Tailings Ponds in Tongling

Considering that the characteristics of tailings ponds vary greatly in different regions,
we performed the selection of tailings classification samples in the correctly detected
regions. This study created a training dataset containing 28,704 pixels for two classes. The
number of decision trees was set to 500, which is a frequently used value when using the
random forest classifier on remote sensing data [60].

3.3.1. Selection of Optimal Features Based on Random Forest

The importance ranking of the 15 features is shown in Figure 6. The variation in
OOB accuracy (%) concerning the number of features used during random forest based
extraction of tailings ponds is demonstrated in Figure 7. The OOB accuracy started to
increase with the increase in the input features until reaching an optimum, after which it
began to decrease. The OOB accuracy achieved 91.38% by using all the features. In contrast,
the OOB accuracy achieved 92.03% by using 12 features. Therefore, the top 12 features
were selected as the feature variables to obtain an optimal random forest model.

Figure 6. The importance of feature variables obtained through the random forest model.

Figure 7. The relationship between the number of feature variables and out-of-bag (OOB) accuracy.

3.3.2. Extraction Results of Tailings Ponds

This study selected the optimal random forest model to extract tailings ponds. Due to
the existence of internal holes and broken areas in the extracted tailings ponds (Figure 8b),
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we used hole filling and small area removal methods in morphological processing to extract
final tailings ponds. Examples of tailings pond extraction results are shown in Figure 8.

Figure 8. Examples of tailings pond extraction results based on the proposed method. (a) are the target areas of the
tailings ponds identified by YOLOv4, (b) are the extraction results by random forest model and (c) are the results of b after
morphological processing.

3.3.3. Final Map Accuracy Assessment

The obtained map of the entire study area was evaluated using the stratified sampling
strategy. A total of 90,000 sample units (pixels) was finally obtained. The two strata of the
tailings ponds and other objects were allocated 3200 and 86,800, respectively. The error
matrix based on the estimated proportions of areas was shown in Table 3. The overall
accuracy was 99.98% and the omission and commission errors of the tailings ponds were
18.75% and 7.15%, respectively. The results indicated that the map of the entire study area
was obtained with great performance.

Table 3. The error matrix based on the estimated proportions of areas Wi is the proportion of area
mapped as class i.

Class Tailings Ponds Other Objects Map Area
(Pixel) Total (Wi)

Tailings ponds 0.00052 0.00004 337,070 0.00056
Other objects 0.00012 0.99932 604,802,377 0.99944

Total 0.00064 0.99936 605,139,447 1

3.4. Model Comparison Results

To prove the proposed method's efficiency in extracting tailings ponds in a large area,
a conventional random forest pixel classification method for tailings ponds extraction was
also used in the experiments for comparison. In the whole study area, substantial disk
resources are required for storage and calculation after fusing multiple texture features.
Therefore, we chose Tongshan town in the study area (approximately 0.017 times the size
of Tongling) to compare the extraction time of different methods.

As shown in Table 4, the extraction time of the proposed method in Tongshan town
was 17.8 s and the extraction time in the whole study area was 378.5 s. However, the
extraction time of random forest classification in Tongshan town was 844.7 s. Combined
with the morphology of tailing ponds in HSR remote sensing images, the margins of tailing
ponds detected by YOLOv4 were outlined to verify the extraction results. Although the
tailings ponds were well extracted by plain random forest (Figure 9a), the misclassification
of other regions was obvious. In the results of (b) and (c), the misclassified regions were
greatly reduced and better extraction results were obtained. Overall, compared with only
using random forest classification, the proposed method was more efficient and effective
in extracting tailings ponds.
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Table 4. Comparison of extraction time of tailings ponds based on different methods.

Comparative Experiment Extraction Time in Tongshan Town Extraction Time in the Study Area

YOLOv4 + random forest 17.8 seconds 378.5 seconds
Only random forest 844.7 seconds Approximately 13 hours

Figure 9. The extraction results of tailings ponds in Tongshan town based on different methods. (a) was the extraction result
by plain random forest, (b) was the extraction result by YOLOv4+random forest model and (c) was the result of the whole
framework (YOLOv4 + ranodm forest+ morphological processing).

4. Discussion

In previous studies, few researchers used HSR remote sensing images to extract
tailings pond margins in large spatial areas. This study proposed a framework that
combined YOLOv4 and the random forest algorithm to extract tailings pond margins.
First, the YOLOv4 model was trained with a tailings pond dataset to obtain the tailings
pond locations. On this basis, the optimal random forest model combined with spectral
and texture features was utilized to extract initial tailings ponds on the correctly detected
regions. Finally, hole filling and small area removal methods were performed on the initial
results to obtain the final extraction results of tailings ponds.

This study first combined deep learning with random forest to extract tailings pond
margins. Our proposed framework can be applied to the areas where satellite images are
available. The proposed framework can quickly locate tailings ponds and extract them
with great extraction performance, significantly reducing the time for visual interpretation
of remote sensing images. A map that contains the tailings ponds and the areas classified
as another type could also be further obtained. Besides, we have produced a tailings pond
dataset using visual interpretation, which contains various types of tailings ponds and
has proved to be valid. The dataset could provide data support for relevant research on
tailings ponds.

Tailings ponds are only a small part of the total area. Considering the actual demand
of mineral resources inventory, the image area we need to extract is usually large (e.g.,
city, province, etc.). When the margins of tailings ponds need to obtain in a large area, the
performance of extraction and the saving of computing resources have to be taken into
account. Therefore, the YOLOv4 model was used to detect the tailings ponds, which is
the key step of the proposed framework. The YOLOv4 model would address the issue
of the time-consuming of tailings pond extraction in HSR remote sensing images and
accurately locate to tailings pond regions. Based on the tailings pond dataset, with a
confidence threshold of 0.5, we obtained high accuracy (precision = 99.6%, recall = 89.9%,
mAP = 89.7%). Experiment results showed that the YOLOv4 model in our framework
could effectively detect tailings pond locations from a large spatial HSR remote sensing
image and provide a reasonable basis for the further extraction of tailings ponds.
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Compared with the current study, the area of Tongling (approximately 3008 km2)
is relatively large. Applying the proposed method to extract tailings ponds in Tongling,
we obtained 26 correctly detected regions and 5 wrongly detected regions. In the actual
application, there are inevitably some objects, such as reservoirs and bare ground that
have similar characteristics to tailing ponds, causing YOLOv4 detection errors. This is the
reason for the discrepancy between model accuracy and the results in the actual application.
Based on correctly detected regions, the optimal random forest model and morphological
processing were used to further extract tailings ponds. Finally, we obtained a map of
the entire study area containing tailings ponds and other objects. The obtained map was
evaluated based on a stratified sampling strategy. The omission and commission errors of
the tailings ponds were 18.75% and 7.15%, respectively, with an overall accuracy of 99.98%.
The results showed that our framework could obtain great performance in extracting the
tailings ponds. Since the YOLOv4 model excluded a large number of other objects, the areas
outside the target regions and the apparently misidentified target regions were classified as
other objects when we mapped the entire study area results. The target regions were small
relative to the whole area and other objects misclassified as tailings ponds only existed in
the target regions, resulting in a small probability of misclassification of other objects and
high overall accuracy.

In addition, the total extraction time of the proposed framework was 378.5 s. The
computational time of the proposed framework was mainly affected by the number of
image pixels and the longest time-consuming step was the detection calculation of the
YOLOv4 model. The extraction efficiency and effectiveness of the proposed method were
much better than only using random forest classification. The reason for the results is that
we first used the YOLOv4 model to accurately locate the tailings ponds, which significantly
reduced the time to classify irrelevant features by the random forest model and improved
the extraction effect of tailings ponds from another aspect. In addition, in the previous
studies, the Mask R-CNN model has been used in the task of boundary extraction [61].
However, the Mask R-CNN mainly focuses on the accuracy of the model and considers
the speed less [62]. In practice, large scale and high-frequency monitoring are needed.
The algorithm would be very time consuming when applied to large HSR remote sensing
images (e.g., city, province, etc.) [63]. In contrast, our framework combining the advantages
of YOLOv4’s speed to make it more suitable for practical applications. The combination
of the YOLOv4 and the random forest enabled our entire framework to take speed into
account while considering accuracy.

Furthermore, by conducting random forest feature optimization, we found that the
mean texture feature and R-band feature were dominant in the extraction. The optimal
features that were selected included spectral bands, GLCM texture and Gabor texture. The
results mean that the appropriate combination of spectral and texture features played an
important role in improving tailings pond extraction accuracy. In addition, the highest OOB
accuracy of 92.03% was obtained when the top 12 feature variables were selected. Then,
the OOB accuracy tended to decline (Figure 7). The reason resulting this phenomenon may
be that there is a specific correlation among multiple features adopted in this study. The
participation of all features in classification would lead to information redundancy, thus
reducing classification accuracy [64].

Although our framework obtained great performance, some details of our framework
may be enhanced in the future. First, Tongling is a relatively large region and the applica-
bility of our framework would be verified in city clusters in our future studies. Second,
due to the complexity and diversity of tailings ponds, which are influenced by the natural
conditions and policies of the regions in which they are located, the original tailings pond
dataset in the study was small and we used a data augmentation approach to expand the
dataset. The detection effect of the model may be affected when the study area changes. In
the future, it is necessary to improve the completeness of the dataset by collecting more
samples from other cities and to explore the impact of different data enhancement methods
to further enhance the robustness of the detection model. Additionally, despite the high
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overall accuracy of the obtained map in our study, there are still omission and commission
errors of tailings ponds. The pixel classification we used inevitably reduced the extraction
effect of the tailings ponds. The object-oriented classification method could be considered
in the future. Finally, tailings ponds have strong spatial heterogeneity and the characteris-
tics of tailings ponds in different regions vary greatly. Therefore, the extraction model of
random forest needs to be adjusted to further enhance the robustness by combining the
characteristics of local tailings ponds. Moreover, in addition to extracting tailings ponds,
future studies may consider adding hyperspectral remote sensing data and DEM data to
study the scope of infiltration pollution of tailings ponds and conduct an environmental
risk assessment.

5. Conclusions

This study proposed a framework that combines YOLOv4 with the random forest
algorithm to extract tailings pond margins from large spatial HSR remote sensing images
and created an opened source tailings pond dataset. Taking Tongling as the study area and
based on our dataset, our proposed framework achieved high accuracy in extracting tailings
pond locations (precision = 99.6%, recall = 89.9%, mAP = 89.7%). Based on an optimal
random forest model and morphological processing, tailings pond margins were further
extracted and the map of the entire study area was obtained with an overall accuracy of
99.98%. Our framework is more efficient in contrast to the random forest algorithm. The
proposed framework could extract various tailings pond locations and margins with high
accuracy and speed from a large spatial HSR remote sensing image. In addition, we found
that the appropriate combination of spectral and texture features played an essential role in
improving tailings pond extraction accuracy. This study can provide an effective inventory
method for tailings ponds in government departments and a useful reference for mine
safety and environmental monitoring.
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