
remote sensing  

Article

Potential Driving Factors on Surface Solar Radiation Trends
over China in Recent Years

Qiuyan Wang 1,2,3 , Hua Zhang 1,2,*, Su Yang 4, Qi Chen 2, Xixun Zhou 2, Guangyu Shi 1,5, Yueming Cheng 6 and
Martin Wild 3

����������
�������

Citation: Wang, Q.; Zhang, H.; Yang,

S.; Chen, Q.; Zhou, X.; Shi, G.; Cheng,

Y.; Wild, M. Potential Driving Factors

on Surface Solar Radiation Trends

over China in Recent Years. Remote

Sens. 2021, 13, 704. https://doi.org/

10.3390/rs13040704

Academic Editor: Dongdong Wang

Received: 2 January 2021

Accepted: 9 February 2021

Published: 14 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
Nanjing University of Information Science and Technology, Nanjing 210044, China;
wqy_ncc@163.com (Q.W.); shigy@mail.iap.ac.cn (G.S.)

2 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
chenqi@cma.gov.cn (Q.C.); abzhouxixun@163.com (X.Z.)

3 Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland;
martin.wild@env.ethz.ch

4 National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China;
yangsu@cma.gov.cn

5 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100101, China

6 Key Laboratory of Meteorological Disaster of Ministry of Education,
Nanjing University of Information Science and Technology, Nanjing 210044, China;
chengyueming@mail.iap.ac.cn

* Correspondence: huazhang@cma.gov.cn

Abstract: The annual mean surface solar radiation (SSR) trends under all-sky, clear-sky, all-sky-no-
aerosol, and clear-sky-no-aerosol conditions as well as their possible causes are analyzed during
2005–2018 across China based on different satellite-retrieved datasets to determine the major drivers
of the trends. The results confirm clouds and aerosols as the major contributors to such all-sky
SSR trends over China but play differing roles over sub-regions. Aerosol variations during this
period result in a widespread brightening, while cloud effects show opposite trends from south
to north. Moreover, aerosols contribute more to the increasing all-sky SSR trends over northern
China, while clouds dominate the SSR decline over southern China. A radiative transfer model is
used to explore the relative contributions of cloud cover from different cloud types to the all-types-
of-cloud-cover-induced (ACC-induced) SSR trends during this period in four typical sub-regions
over China. The simulations point out that the decreases in low-cloud-cover (LCC) over the North
China Plain are the largest positive contributor of all cloud types to the marked annual and seasonal
ACC-induced SSR increases, and the positive contributions from both high-cloud-cover (HCC) and
LCC declines in summer and winter greatly contribute to the ACC-induced SSR increases over East
China. The contributions from medium-low-cloud-cover (mid-LCC) and LCC variations dominate
the ACC-caused SSR trends over southwestern and South China all year round, except for the larger
HCC contribution in summer.

Keywords: SSR trends under different conditions; cloud and aerosols; radiative transfer model;
relative contributions; different types of cloud cover

1. Introduction

As an important component of the climate system, solar radiation incident at the
Earth’s surface is the primary energy source for life on the planet. It can influence surface
temperature, the hydrological cycle, plant photosynthesis and carbon uptake, thereby
largely determining our climatic conditions and ecological environment [1–3]. However,
this quantity is not constant at decadal time scales, instead, it has undergone significant
decadal variations since the 1950s in many regions of the world, declining until the late
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1980s and recovering thereafter, popularly known as “global dimming” and “brighten-
ing” [2–5].

Many efforts have been made to explore the reasons for such changes in surface
solar radiation (SSR) over the past decades. Studies show that little changes occur in
solar radiation arriving at the top of the atmosphere [6], whereas SSR has experienced
dimming and brightening over time [2]. Changes in the transparency of the atmosphere
are therefore the major contributors to the SSR variations over decades, including changes
in cloud characteristics (e.g., cloud cover and cloud optical properties), mass concentration
and optical properties of aerosols, and radiatively active gases in the atmosphere [3].
However, the relative importance of the above-mentioned factors mainly depends on the
meteorological conditions or the degree of air pollutions [3,5].

East Asia, especially China, is not only a high-emission region of greenhouse gases
and air pollutants but also deeply affected by the monsoon climate. The measured SSR
trends over China have been examined by many previous studies, characterized by sig-
nificant dimming between the 1950s and late 1980s with subsequent brightening [7–10].
However, many recent studies reported that the ground-based SSR observations in China
have suffered from substantial inhomogeneity issues mainly induced by instrument re-
placement and instrument sensitivity drift especially during 1990–1993, and many efforts
have been made to diminish the inhomogeneities [11–17]. As a result, all these recent
studies suggested that SSR in China decreased markedly over 1961–1990, and remained
stable afterward or continued to decrease until the 2000s with a brightening in recent years.

Many studies arrived at the consistent conclusion that an increase in aerosol loading
in the atmosphere is a major driving factor for the dimming period in China [7,8,10,18,19].
However, China has implemented many measures to control aerosol emissions in recent
years. Some studies illustrated the importance of clouds on the brightening phase in
China [9,20–23]. Norris and Wild [20] inferred that half of the brightening trends for
1990–2002 over China could be attributed to a reduction in cloud cover. Xia [21] examined
the long-term changes in cloud amount and sunshine duration (SSD) over China, indicating
that low cloud cover appeared to be one of the major causes of SSD trends in southern
China. Wang et al. [22] suggested that SSR in most regions of China began to increase
after 1990, and reductions in cirrus and cirrostratus had distinct contributions to the trends
over 1990–2000. Yang et al. [9] concluded that clouds play a more important role in the
brightening phase over 1990–2009 in China. Zhang et al. [23] found that clouds contributed
more to the long-term SSR changes from different satellite-derived products than aerosols.
Nevertheless, by analyzing the SSR trends, as well as aerosol optical depth (AOD) and
cloud amount in East China over the most recent decade from 2005 to 2015, Li et al. [19]
found that a reduction in AOD was the major contributor to the brightening.

More common studies tend to suggest that the brightening trends in SSR over China
are mainly due to the combined effects of clouds and aerosols. Wang et al. [24] pointed
out that the brightening since the 1990s was associated with cloud suppression and reduc-
tion in anthropogenic emissions. Tang et al. [25] found that changes in cloud properties
and interactions between clouds and aerosols rather than aerosols or water vapor were
likely to be the primary causes of the SSR variations over the period 1980–2010 in China.
Yang et al. [17] indicated that the clouds counteracted aerosol effects since 2000, based on
homogenized daily SSR data under clear- and all-sky conditions. Therefore, the relative
importance of aerosols and clouds on the brightening period over China still needs further
investigation, primarily depending on different data sources or data quality assurances.

The SSR trend analyses above are mainly based on surface observations from the
China Meteorological Administration (CMA). The temporal and spatial coverage of SSR
has greatly improved thanks to the advent of the satellite era since the early 1980s. Clouds
and Earth’s Radiant Energy System (CERES) products are considered to show the best
agreement with observed and SSD-derived SSR among the model-based/satellite-derived
SSR estimates due to their better performance in cloud parameters [13,23], followed by the
reanalyses, particularly Modern-Era Retrospective analysis for Research and Applications,
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Version 2 (MERRA2) [26], and the Coupled Model Intercomparison Project Phase 5 (CMIP5)
multi-model estimates [13]. Furthermore, Yang et al. [16] reported that the transition year
from dimming to brightening over China occurred in 2005 by using monthly homogenized
SSR data, which provides the exact starting year of the brightening period in China for this
study. Besides, a transition to decrease in the PM2.5 concentrations has been reported in
China after 2005 [27]. Previous studies never quantitatively provided the contributions
of different driving factors to the SSR variations in different regions of China. Therefore,
different satellite-derived products are used to identify the possible causes (e.g., cloud
cover, AOD, water vapor, and ozone(O3)) of the brightening period from 2005 to 2018
over China. Then, the annual and seasonal means of these factors for each year during
this period are used as inputs into a radiative transfer model to calculate their respective
effects on SSR—especially since only a few studies ever explored the effects of cloud cover
from different cloud types on SSR variations quantitively [21,22]. This study thereby
examines the relative contributions of cloud cover from different cloud types to the sum
of absolute trends induced by each cloud cover type (thereafter using “all-types-of-cloud-
cover-induced (ACC-induced) SSR trends” instead) during the period 2005–2018 over
China, in particular over four sub-regions, based on model calculations.

The paper is organized as follows: the model description, data, and methodology are
given in Section 2. The validation of CERES-derived all-sky SSR with the ground-based
measurement from the CMA, the determination of the major driving factors based on the
CERES-derived SSR trends under different conditions and satellite-derived changes in the
factors affecting them, a brief comparison of the model-based and satellite-derived relative
SSR trend percentages due to different factors, and the simulated relative contributions of
cloud cover from different cloud types to the ACC-induced SSR trends are presented in
Section 3. Finally, conclusions are shown in Section 4.

2. Materials and Methods
2.1. Description of Radiative Transfer Model

The radiative transfer model used in this study is BCC_RAD (Beijing Climate Center
radiative transfer model) [28–30]. It divides the 10–50,000 cm−1 wavelength range into 17
wavebands, of which bands 1–8 are longwave and the others are shortwave bands. Five
major greenhouse gases, i.e., water vapor, carbon dioxide (CO2), O3, nitrous oxide (N2O),
and methane (CH4), and four chlorofluorocarbon (CFCs) gases as well as carbon monoxide
(CO) and oxygen (O2) are included in the model by considering their line absorption
and continuum absorption. Furthermore, the gas absorption and overlap schemes were
calculated using a correlated K-distribution method [28,31]. The optical properties of water
and ice clouds were given by Lu et al. [32] and Zhang et al. [33]. The aerosol radiative
scheme was adopted from Wei and Zhang [34], Zhang et al. [35], and Zhou et al. [36]. The
cloud vertical overlap was dealt with a semi-random method from Nakajima et al. [37].
The radiative transfer algorithm for this study was also from Nakajima et al. [37]. For the
detail of the model introduction, please see Zhang [38].

The BCC_RAD was used to investigate radiative forcings due to aerosols [39–45], the
radiative effects due to changes in water and ice cloud optical thickness in East Asia [46],
and the short-term cloud feedback in East Asia by using cloud radiative kernels [47]. This
indicates that BCC_RAD has the ability to adequately simulate aerosol and cloud radiative
effects in this study.

2.2. Datasets
2.2.1. Reference SSR Datasets

The monthly ground-based SSR data for 99 sites across China was available from
the CMA with rigid data quality control, including the spike value test, the stuck value
test, and the spatial consistency test, as well as homogenization using quantile-matching
adjustment (details in [16,17]).
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The monthly satellite-derived SSR for all-sky, clear-sky, all-sky-no-aerosol, and pris-
tine (clear-sky-no-aerosol) conditions during 2005–2018 in China was obtained from the
CERES Edition4.1 SYN1deg monthly product at 1◦ × 1◦ resolution. It is noted that these
surface radiative fluxes are retrieved from the NASA Langley Fu-Liou radiative transfer
model based on inputs from Moderate Resolution Imaging Spectroradiometer (MODIS)
and Goddard Earth Observing System (GEOS) cloud properties, GEOS atmosphere and
skin temperature, Model of Atmospheric Transport and Chemistry (MATCH) aerosol con-
stituents, and MODIS spectral aerosol optical depths. In addition, the bias of the computed
monthly mean downward fluxes from SYN1deg is 3.0 W m−2 (5.7%) for shortwave and
−4.0 W m−2 (2.9%) for longwave compared to surface observations [48].

2.2.2. Input Datasets to the Radiative Transfer Model

The inputs of atmospheric profiles for the BCC_RAD radiative transfer model mainly
include the number of vertical layers, solar zenith angle, as well as height, pressure,
temperature, particle parameters (concentrations or effective radius for different particles),
cloud cover, and gas concentrations for each layer, and additional surface level for surface
pressure, surface temperature, skin temperature, and surface albedo. Other parameters, like
calculation parameters, band divisions, spectral weight, gas absorption, and aerosol optical
properties, are contained in a prescribed input parameter file for fast model calculations.
Therefore, variations in the input parameters of the atmospheric profiles will satisfy the
purpose of this study.

To obtain more realistic atmospheric profiles for radiative transfer calculations, as can
be seen from Table 1, the input parameters in this study during the period 2005–2018 over
China are taken from various datasets which dealt with the same resolution of 1◦ × 1◦,
including space-based observations and reanalyses. For instance, the total (TCC), high
(HCC) (at levels of 50–300 mb), medium-high (mid-HCC) (300–500 mb), medium-low
(mid-LCC) (500–700 mb), and low cloud cover (LCC) (700-surface mb) are from the CERES
SYN1deg monthly product. The AOD is from MODIS/Aqua MYD08_M3 data. The water
vapor, O3, and temperature (T) data are taken from the Atmospheric Infrared Sounder
(AIRS) version 6 level 3 standard product and the MERRA-2 instM_3d_ana_Np monthly
mean reanalysis, while CH4 and CO are only from the AIRS products. Especially, when
using the AIRS data as inputs to the model, the upper atmosphere above 100 (1) mb
for water vapor (O3 and T) is filled with MERRA-2 data due to the lack of retrievals at
these pressure levels [49]. The surface albedo, surface pressure, 2-m temperature, and skin
temperature are from the European Centre for Medium-Range Weather Forecasts (ECMWF)
Interim Re-Analysis (ERA-Interim). The solar zenith angle and liquid water/ice cloud
effective radius, as well as cloud liquid/ice water content, are obtained from MODIS/Aqua
and CloudSat 2B-CWC-RO data, respectively. Moreover, concentrations of other gases,
namely CO2, N2O, and O2 are set to 391, 0.324, and 0.209 × 106 ppmv, respectively, mainly
according to the Intergovernmental Panel on Climate Change Fifth Assessment Report
(IPCC AR5) [50].

These parameters above are interpolated to 66 fixed pressure levels in the vertical
direction with vertical resolutions of 0.25 km at the heights below 2 km and of 1 km at the
heights between 2 and 60 km. A surface level is also added to the atmospheric profiles.

Additionally, all the datasets presented in this paper have widely been assessed in
previous studies. For example, Sayer et al. [51] found the MODIS AOD bias was less than
0.01 in East Asia compared to the AERONET observation network. Zhao and Zhou [52]
indicated that MERRA2 performs well in reproducing the annual climatology of the total
column water vapor (TCWV) (R = 0.99). Wargan et al. [53] pointed out that the O3 reanalysis
from MERRA2 shows agreement within 10% with independent satellite data in most of the
stratosphere. Other data sources, including the ERA-Interim, Cloudsat, and AIRS L3, also
have been evaluated in different ways [54,55]. Thus, the annual or seasonal variations of
these datasets remain reliable although some certain deviations exist in them.
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Table 1. Summary of input parameters for atmospheric profiles used in the BCC_RAD (Beijing Climate Center radiative
transfer model).

Variables Data Sources Spatial-Temporal Resolution Dimensions Level Ranges

Water vapor,
O3 T

CO, CH4
AIRS L3 1◦ × 1◦/monthly lev, lat, lon

1000–100 hPa
1000–1 hPa

1000–0.1 hPa

Water vapor
O3, T MERRA2 1◦ × 1◦/monthly lev, lat, lon 100–0.1 hPa

1–0.1 hPa

Surface albedo
Surface pressure
2-m temperature
Skin-temperature

ERA-Interim 1◦ × 1◦/monthly lat, lon None

Solar Zenith angle
Liquid water/Ice cloud effective radius

Aerosol optical depth at 550 nm
MODIS/Aqua 1◦ × 1◦/monthly lat, lon None

Liquid water/Ice content CloudSat 2.8◦ × 2.8◦/daily lat, lon None

Total/High/Mid-High/Mid-Low/
Low cloud cover

CERES
SYN1deg 1◦ × 1◦/monthly lat, lon None

2.2.3. Methodology

When calculating the cloud cover effects on changes in SSR from 2005 to 2018 in China
using BCC_RAD, we only change the parameters of annual and seasonal mean cloud cover
from different cloud types for each year with all other parameters in atmospheric profiles
fixed at their multi-year/seasonal means in the model (without inputs of aerosol-related
parameters here), respectively. Similarly, when studying AOD, water vapor, and O3 impacts
on SSR changes, only the annual means of these parameters vary yearly (without inputs
of cloud-related parameters). Besides, the vertical heights of HCC, mid-HCC, mid-LCC,
and LCC are set at 8–11 km, 6–7 km, 4–5 km, and 1–3 km in the model based on [56],
respectively, while it is mainly in the troposphere for that of aerosols, especially with a
vertical resolution of 0.25 km at the heights below 2 km. However, the MODIS AOD
data cannot be used directly as an input to the model since it is an integrated variable
over the vertical atmospheric column. Due to the lack of observations on the vertical
structure, the AOD vertical-weighted profiles for various aerosol species are referred
to the AOD vertical distributions simulated for the year 2006 from the Non-hydrostatic
Icosahedral Atmospheric Model (NICAM) coupled with the Spectral Radiation Transport
Model for Aerosol Species (SPRINTARS) [57]. Thus, it should be noted here that the AOD
vertical-weighted profiles of various aerosol species in this study are not changed annually.

To calculate the effects of long-term changes in different potential driving factors (e.g.,
cloud cover, AOD, water vapor, and O3) on SSR trends quantitatively during 2005–2018 in
China, the yearly annual or seasonal means of these factors, along with their counterparts
of multi-year/seasonal averages of background atmospheric profiles, were used as inputs
into the BCC_RAD radiative transfer model, respectively. In this study, the concept of
relative trend percentage (as defined in Formula (1)) was utilized to avoid the differences
in absolute values obtained from various model assumptions.

Relative Trend percentagek =
Trendk

∑ abs(Trendi)
× 100% (1)

where the subscript i (k) denotes one of the SSR trends mentioned below, and the denomina-
tor represents the summation of absolute values of either the simulated SSR trends caused
by the changes in TCC, AOD, water vapor, and O3, or the CERES-derived SSR trends under
all-sky-no-aerosol, clear-sky, and clear-sky-no-aerosol conditions or the SSR trends induced
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by the HCC, mid-HCC, mid-LCC, and LCC changes for simulating contributions of cloud
cover from different cloud types, respectively.

All trends in this study are linearly fitted by the least square method according to the
function y(x) = a + b·x, and b is the trend term:

b =
∑n

i = 1(xi − x)(yi − y)

∑n
i = 1(xi − x)2 (2)

where n denotes the duration of the sequence, xi (yi) and x (y) refer to the ith and average
of variable x (y), respectively. The positive/negative value of b indicates an increas-
ing/decreasing trend, and the absolute value of b represents the magnitude of the trend.
Moreover, a t-test of the regression coefficients at the 5% or 10% significance level is used
in this study.

The simulations by radiative transfer model are thereby mainly focused on the relative
SSR trend contributions of cloud cover from different cloud types to the ACC-induced SSR
variations owing to the lack of yearly varying AOD vertical-weighted profiles of various
aerosol species. Furthermore, four typical sub-regions were selected for the sake of more
detailed analyses.

China in this work is defined as the region 17◦N–55◦N, 72◦E–136◦E. Spring, sum-
mer, autumn, and winter in this study represent March-May (MAM), June-August (JJA),
September-November (SON), and December-February (DJF), respectively.

Please note the naming rules of different regions over China in this paper, in particular,
the regions with longitudes greater than around 97◦E are regarded as the eastern half
of China, while the rest are the western half of China. Other regions, such as eastern,
northeastern, southern, southwestern China, etc., are conventional and known to all.

3. Results
3.1. Validation of the CERES Dataset Using CMA Observations

A homogenized ground-based monthly SSR dataset covering 99 stations across China
from the CMA during the period 2005–2018 is utilized to evaluate the performance of
the CERES-derived all-sky SSR. Figure 1 shows the spatial distributions of the annual
mean all-sky SSR and its corresponding trends during this period over China from the
CMA (black circles) and CERES SYN1deg (contour plots) datasets, respectively. Moreover,
the corresponding histograms along with the time series of area-weighted average SSR
anomalies are further provided in Figure 2.
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tions are mainly within ±0.5 W m−2 yr−1 with a rightward shift, while a similar shift appears 

Figure 1. Annual mean (a) surface solar radiation (SSR) (unit: W m−2) and (b) its corresponding trends (unit: W m−2 yr−1)
under all-sky conditions for the period 2005–2018 over China. The black circles and contour plots represent the China
Meteorological Administration (CMA) ground-based observations and the Clouds and Earth’s Radiant Energy System
(CERES) satellite-derived product, respectively.
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Figure 2. Annual mean histograms of (a) average SSR (unit: W m−2) and (b) its corresponding trends (unit: W m−2 yr−1)
(counts on the vertical axis represent numbers of surface sites (a total of 99 sites)) as well as (c) time series of area-weighted
average SSR anomalies (unit: W m−2) under all-sky conditions during the period 2005–2018 over China from the CMA
(blue color) and CERES SYN1deg product (yellow color), respectively.

As shown in Figures 1a and 2a, the spatial and frequency distributions of annual
mean all-sky SSR from the CERES product shift toward higher values compared to that of
the CMA stations, which agrees well with the higher annual area-weighted average SSR
(175 VS 170 W m−2) (Table 2). This rightward shift can also be found in the histograms of
spring, autumn, and winter mean all-sky SSR but with a similar frequency distribution in
summer (Figure S3), thus contributing to much closer area-weighted all-sky SSR values
in the summer and autumn seasons (Table 2). In addition, the CERES-estimated SSR
variations are mainly within ±0.5 W m−2 yr−1 with a rightward shift, while a similar shift
appears with a border distribution in the CMA trends (Figure 2b), resulting in a smaller
area-weighted trend in Table 2 (0.27 VS 0.18 W m−2 yr−1). Similar explanations also apply
to the seasonal patterns of the histogram (Figure S3 and Table 2).



Remote Sens. 2021, 13, 704 8 of 20

Table 2. The area-weighted average SSR (including the standard deviation, Units: W m−2) and its corresponding trends
(Units: W m−2 yr−1) under all-sky conditions over China during the period 2005–2018 at annual and seasonal time scales
from the CMA and CERES SYN1deg data, respectively. The CMA station data is first interpolated onto a 1◦ × 1◦ grid, and
then the area-weighted averages are calculated based on the interpolation data.

During the Period
2005–2018 over China

CMA CERES SYN1deg

Average SSR
(W m−2)

SSR Trends
(W m−2 yr−1)

Average SSR
(W m−2)

SSR Trends
(W m−2 yr−1)

ANN 170 ± 2.31 0.27 175 ± 1.80 0.17
MAM 202 ± 4.01 0.35 209 ± 3.15 0.33

JJA 222 ± 3.82 0.34 223 ± 3.63 0.33
SON 147 ± 2.06 −0.06 151 ± 1.93 −0.2
DJF 108 ± 2.96 0.45 116 ± 2.96 0.2

According to the spatial distributions of the annual mean all-sky SSR trends in
Figure 1b, the CERES-derived dataset generally shows a good performance over the eastern
half of China (the definition of this region can be seen in the last paragraph of Section 2)
compared to the ground-based observations from the CMA, except for some western
regions of China as well as individual regions over central and eastern China. The per-
formances of the spring and summer mean CERES-derived SSR trends under all-sky
conditions are better than those in autumn and winter seasons, which is possibly induced
by the opposite trends over western and northeastern China (Figure S2). The biases over
northeastern China might be related to the fewer sampling and higher retrieval uncertainty
of surface albedo induced by longtime coverage of snow in the cold seasons [19]. The
reasons for discrepancies over northwestern and southwestern China are likely due to diffi-
culty in evaluating AOD on the variable and high-albedo surface as well as the incapable
consideration of elevation impacts on the satellite algorithms and degraded data quality
under snow-cover surfaces [58]. For eastern China, the difference may result from an
improper representation of AOD induced by rapid economic growth in this region [58,59].
Furthermore, the time series of anomaly area-weighted average SSR for the studying period
is further investigated to explore the exact variation for each year. Figure 2c and Figure
S4 indicate that the annual and seasonal mean area-weighted average SSR from both the
CMA and satellite datasets over China varies simultaneously with different magnitudes,
apart from one or two certain years. However, this only represents the national average
condition, it would be another case for some specific regions.

In short, the performance of average SSR under all-sky conditions is better than that
of its collocated trends during the period 2005–2018 over China. However, they correspond
reasonably well to the ground-based observations both at the annual and seasonal time
scales over the eastern half of China, although some discrepancies exist in some individual
regions. Therefore, the following analyses of CERES product would focus on the eastern
half of China for better accuracies.

3.2. Analysis of Satellite-Derived SSR Trends under Different Conditions and Their
Potential Causes

To analyze the potential causes of such SSR variations over these regions in recent
years, the spatial patterns of annual SSR trends under different conditions derived from
CERES-derived product (Figure 3) and corresponding changes in TCC, AOD, water vapor,
and O3 from different satellite-derived products (Figure 4) are investigated. These condi-
tions mainly represent the effects of all factors as well as the individual factors of aerosols,
clouds, and gases on SSR trends. As can be seen from Figure 3a, the annual mean all-sky
SSR increases during 2005–2018 over most regions in China, which is generally consistent
with the surface brightening documented by previous studies based on surface radiation
observations [16,17,19]. The largest significant increases occur in latitudes of approximately
40◦N–43◦N and 33◦N–38◦N over the eastern half of China with average increases around
0.6 W m−2 yr−1 (not shown), which is close to the national average of 0.613 W m−2 yr−1
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in China during 2005–2016 reported by Yang et al. [16] based on station observations
from the CMA. However, slight declines appear over the western Sichuan, Guangdong,
Guangxi, Guizhou, and Zhejiang provinces, with the maximum decreases being up to
−0.89 W m−2 yr−1 (not shown) over the western Sichuan province (see supplementary
Figure S5 for the map of Chinese provinces).
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Figure 3. Annual mean SSR trends under (a) all-sky, (b) clear-sky, (c) all-sky-no-aerosol,
and (d) clear-sky-no-aerosol conditions from 2005 to 2018 over China based on CERES
SYN1deg product (unit: W m−2 yr−1). The dots represent that the trend is above 90%
significance level from the t-test.

Significant widespread increases in clear-sky SSR appear over the vast majority of
China with an average rate of about 0.55 W m−2 yr−1(not shown), especially over central
China (Figure 4b), whereas it is about half of the national average of 1.06 W m−2 yr−1

for 2008–2016 given by Yang et al. [17]. The difference in the magnitudes is probably
caused by the biases existing in ground-based and satellite-derived datasets as well as
the different methods to calculate the SSR trends. This brightening is primarily due to
significant declines in AOD during this period resulting from the implementation of a
series of air pollution mitigation measures in China in recent years (Figure 4b) [60,61].
Correspondingly, the satellite-derived AOD reductions are mainly distributed in eastern
Sichuan and central China with decreases generally greater than 0.024 yr−1 (not shown),
which agrees well with the above clear-sky SSR increases (Figure 3b).

The regional distributions of the satellite-derived cloud effects on SSR trends seem
to be more uneven compared to the aerosol effects (Figure 3b,c). The annual mean SSR
due to cloud impacts is decreased by an average rate around 0.4 W m−2 yr−1 (not shown)
over most regions of southern China, northern Shaanxi, and Shanxi provinces, whereas it is
increased with a rate slightly larger than 0.2 W m−2 yr−1(not shown) in most regions over
southwestern China, latitudes of about 32◦N–37◦N, and northeastern China (Figure 3c). Ac-
cordingly, the spatial pattern of TCC trends from the CERES SYN1deg product (Figure 3a)
varies from south to north, characterized by marked increases over southern China, in par-
ticular over the Guangdong and Guangxi provinces with the maximum reaching 0.008 yr−1

(not shown), as well as decreases over most regions of northern and northeastern China
with a decline generally around −0.004 yr−1(not shown), which is largely in line with SSR
changes caused by clouds (Figure 3c) due to both their absorbing and reflecting properties.
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Thus, the SSR variations induced by clouds (Figure 3c) can be generally explained by the
changes in TCC over these regions during this period in China (Figure 4a).
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Figure 4. Annual mean trends of (a) total cloud cover (TCC) (unit: yr−1) from CERES, (b) aerosol optical depth (AOD)
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Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) products for 2005–2018 over China.
The dots represent that the trend is above 95% significance level from the t-test.

The magnitudes of SSR changes induced by radiatively active gases are very small,
with an average declining rate of −0.03 W m−2 yr−1 over China (Table 3), compared
to the SSR trends caused by aerosols and clouds (Figure 3d,b,c). The changes by water
vapor and O3 are the major gases that could make a small contribution to the satellite-
derived SSR variations according to previous sensitivity studies with radiative transfer
models [3,17,62,63]. Water vapor and O3 play important roles in the process of shortwave
radiation transmission due to the absorptive effects of water vapor in the near-infrared
and O3 in the visible and ultraviolet wavelength ranges. As shown in Figure 4c, the zonal
mean water vapor increases substantially in the atmospheric levels lower than 700 hPa
and decreases with altitudes during this period, with the largest increases exceeding
90 ppmv yr−1 (not shown). The changes in the vertical distribution of O3 vary among
pressure levels, featured by increases in the troposphere and lower stratosphere as well as
declines in the higher stratosphere, with the maximum and minimum rates up to 0.001 and
−0.018 ppmv yr−1, respectively (Figure 4d). Therefore, the changes in water vapor and O3
will lead to a small reduction and increase in SSR during this period over most regions in
China, respectively. Combined with the satellite-derived declining SSR trends due to the
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gases (Figure 3d), we can infer that the increase in water vapor contributes more to such
SSR trends induced by gases than that of O3.

Table 3. The annual mean median and average SSR trends (Units: W m−2 yr−1) over China under different conditions
during the period 2005–2018 from CERES SYN1deg product.

Annual SSR Trends over China for 2005–2018 (W m−2 yr−1) Median Trends Average Trends

under All-sky condition 0.13 0.18
under Clear-sky condition 0.19 0.23

under All-sky-no-aerosol condition −0.02 −0.02
under Clear-sky-no-aerosol condition −0.04 −0.03

As can be seen from Table 3, both the annual mean median and average SSR trends
over China for the period 2005–2018 under all-sky condition are approximately the sum of
those under clear-sky, all-sky-no-aerosol, and clear-sky-no-aerosol conditions (0.13, 0.19,
−0.02, and −0.04 W m−2 yr−1 as well with 0.18, 0.23, −0.02, and −0.03 W m−2 yr−1,
respectively), indicating that the annual mean nationwide brightening in China during this
period is mainly due to reductions in aerosols, while clouds also contribute substantially to
the brightening over most regions of eastern and northeastern China but with opposite
contributions over southern China. This is also the reason why the magnitude of the
national mean contributions from clouds is very small and close to that of radiatively
active gases.

In general, aerosols and clouds may be of different importance for SSR variations
in different regions of China. According to the trend analysis above, changes in clouds
and aerosols are responsible for the marked increases in all-sky SSR over most regions
of northern and northeastern China, and aerosols seem to play a more important role
in such SSR trends on average. However, cloud variations play an opposite role in SSR
trends over southern China, northern Shanxi, and Shanxi provinces. Moreover, this study
indicates that clouds and aerosols are the major contributors to the SSR trends, whereas
water vapor and O3 play an insignificant role. The same conclusions were also drawn
by Yang et al. [17], namely that water vapor cannot be the major cause of the long-term
dimming and brightening in China.

3.3. Comparisons of the Model-Estimated and Satellite-Derived Relative SSR Trend Percentages
Due to Different Factors

In order to examine the performance of the BCC_RAD radiative transfer model in
its abilities to simulate SSR trends due to different driving factors, the model outputs
are compared with reference values from CERES products in terms of relative SSR trend
percentages to prevent discrepancies in absolute values induced by different assumptions.
Besides, the simulations at high-altitude regions in China are not as accurate as expected
due to the shortage of the vertical inputs to the model, in particular inputs of LCC data
over the Tibetan Plateau (TP). Thus, the TP area is masked in the following figures and the
focus of the analysis is mainly over the eastern half of China.

Figure 5 displays the annual mean SSR trend percentages caused by TCC, AOD, water
vapor, and O3 relative to the sum of absolute trends due to each factor above (thereafter
using “total SSR trends” instead) over the period 2005–2018 in China as simulated by the
BCC_RAD radiative transfer model, as well as the approximately corresponding relative
SSR trend percentages due to clouds and aerosols derived from the CERES SYN1deg
product. As can be concluded from Figure 5a–d, the simulated spatial patterns of annual
mean relative SSR trend percentages due to these factors are opposite to their respective
trends as shown in Figure 4. However, some differences exist in individual regions,
especially over southeastern China, when comparing simulated SSR trend percentages due
to TCC with TCC trends (Figures 4a and 5a). This is because the simulated TCC effects on
SSR is calculated from inputs of cloud covers from all cloud types rather than only inputs
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of TCC. Both the simulated relative SSR trend contributions from TCC and AOD account
for large proportions of the total SSR trends over this period in the eastern half of China,
while the effects of water vapor and O3 make up much smaller contributions (Figure 5a–d).
This also coincides with the results derived from satellite products in the above section and
previous sensitivity modeling studies.
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Figure 5. Annual mean simulated SSR trend percentages (unit: %) due to (a) TCC, (b) AOD,
(c) water vapor, and (d) O3 relative to the sum of absolute trends due to each of these
factors (total SSR trends) from a single column radiative transfer model, as well as SSR
trend percentages (unit: %) from (e) clouds and (f) aerosols relative to the sum of absolute
trends due to clouds, aerosols, and gases derived from CERES SYN1deg product during
2005–2018 over China. The blue labeled sub-regions represent the (1) northeastern China,
(2) central China, (3) East China, and (4) South China, which occupy latitudinal ranges of
41–45◦N, 32–35◦N, 27.5–32.5◦N, and 22.5–25.5◦N, and longitudinal ranges of 115–123◦E,
105–115◦E, 116–121◦E, and 107–115◦E, respectively.

In addition, the simulated relative SSR trend contributions from TCC and AOD to
the total SSR trends (Figure 5a,b) are compared with their approximately corresponding
contributions of clouds and aerosols derived from CERES (Figure 5e,f). One more thing
that should be noted here is that the effects of clouds and aerosols on SSR trends are
simplified by those of TCC and AOD in these simulations. The spatial patterns of the
aerosol contributions simulated by the radiative transfer model match much better with
the CERES fields than those of cloud contributions, although some discrepancies exist in
their magnitudes (Figure 5a,b,e,f). Reasons for these differences include different AOD
input datasets (CERES-derived SSR is retrieved from MATCH AOD at 550 nm and 840 nm,
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but the model-estimated SSR is calculated from MODIS AOD only at 550 nm), distinct
model assumptions (e.g., the inability to allow the AOD vertical-weighted profiles to vary
annually), and the model’s inabilities in considering the interactions between clouds and
aerosols, etc. However, the simulated TCC contributions to SSR trends is well performed
both in their distributions and magnitudes in most regions of northern and northeastern
China, but with large discrepancies over southern China when compared to those of CERES
(Figure 5a,e). This is likely because cloud cover is not the only variable to induce cloud
effects on SSR trends, other cloud properties, like liquid/ice effective radius, cloud optical
depths, liquid/ice water content, etc., also contribute to it, as well as the poor performance
in the practical vertical overlaps of clouds, and the inability to consider the interactions of
clouds and aerosols in the model.

To summarize the above, the radiative transfer model can generally simulate the
aerosol effects on SSR trends during 2005–2018 over the eastern half of China using the
annual mean inputs of AOD. The simulated effects of cloud cover from all cloud types agree
reasonably well with the SSR trends induced by the clouds in most regions of northern
and northeastern China, except for southern China. This can be well explained by the
reasons mentioned above. Thus, further study is still needed to explore the cloud effects
on SSR trends.

3.4. The Relative Contributions of Cloud Cover from Different Cloud Types to the Annual and
Seasonal ACC-Induced SSR Trends by a Radiative Transfer Model

This study aims to explore the relative contributions of cloud cover from different
cloud types to the ACC-induced SSR trends using the radiative transfer model. Figure 6
illustrates the simulated annual SSR trend percentages caused by HCC, mid-HCC, mid-
LCC, and LCC relative to the ACC-induced SSR trends and the SSR trend percentages
due to ACC relative to the total SSR trends during 2005–2018 in China. The SSR increases
caused by the declines in HCC (Figure S7a) and especially LCC (Figure S7d) are the
primary contributors to the simulated ACC-induced SSR increases over eastern, northern,
and northeastern China during this period (Figure 6a,d,e), while contributions from mid-
HCC and mid-LCC play opposite roles except for some individual regions (Figure 6b,c and
Figure S7b,c). However, the simulated decreases in ACC-induced SSR over southern China
(Figure 6e) are mainly from the contributions of HCC, mid-HCC, and particularly mid-LCC
(Figure 6a–c and Figure S7a–c), whereas contributions from LCC have an opposite effect
(Figure 6d and Figure S7d).

The contributions of cloud cover from different cloud types to the simulated ACC-
induced SSR trends mainly depend on sub-regions and their seasonal variations. Similarly,
as can be seen from supplementary Figures S8–S11 for the seasonal contributions, the
variation of LCC is undoubtedly the major cause of the simulated ACC-induced SSR
changes all year round over the eastern half of China, especially in winter. Besides central
and eastern China in the spring season, changes in HCC overall have positive effects on the
simulated ACC-induced SSR variations. Interestingly, the mid-LCC variations generally
show contrary impacts with that of LCC in addition to the spring season. However, the
contributions from mid-HCC over studying regions seem much more irregular compared
to the other cloud types. This is likely due to the complicated heating and cooling roles of
the mixed-phase clouds in the atmosphere.

To determine the relative contributions of cloud cover from different cloud types to
the ACC-induced SSR trends averaged over some specific regions in detail, four typical
sub-regions showing large discrepancies among different cloud types are selected in this
study with symbols of 1–4 as shown in Figure 6, which represent the North China Plain,
East China, southwestern China, and South China, respectively. The simulated annual and
seasonal relative contributions of cloud cover from different cloud types averaged over
these four sub-regions are shown in Figure 7. As can be seen from Figure 7a, the simulated
annual and seasonal ACC-induced increasing SSR trends over the North China Plain
(Figure 6e, Figures S8–S11e) are largely due to the reductions in LCC, and the SSR trend
contributions are generally larger than 60%, with the largest contribution even reaching
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74% in summer. Overall, the SSR trends due to LCC and HCC show strong and slightly
positive contributions, respectively, while mid-LCC appears to provide slightly negative
contributions both on annual and seasonal time scales. However, contributions from
mid-HCC vary from season to season, with slightly positive contributions in summer and
winter as well as negative effects for the other seasons, with up to 32% for autumn. The
distributions of annual SSR contributions due to different cloud types are similar to those
in spring and autumn, although mid-HCC contributing more in autumn, whereas the
distributions are alike in summer and winter, despite slightly larger contributions from
HCC and mid-HCC in winter.
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Figure 6. Annual mean simulated SSR trend percentages (unit: %) due to (a) high cloud
cover (HCC), (b) mid-HCC, (c) mid-low cloud cover (LCC), and (d) LCC relative to the
sum of absolute trends due to each type of cloud cover (ACC-induced SSR trends), as well
as simulated SSR trend percentage (unit: %) due to (e) cloud cover from all cloud types
relative to the sum of absolute trends due to each driving factor (total SSR trends) from
2005 to 2018 over China. The blue labeled sub-regions represent the (1) North China Plain,
(2) East China, (3) southwestern China, and (4) South China, which occupy latitudinal
ranges of 34–38◦N, 27.5–32.5◦N, 23–32◦N, and 22.5–25.5◦N, and longitudinal ranges of
115–119◦E, 116–121◦E, 99–105◦E, and 107–115◦E, respectively.
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For East China, the contributions of cloud cover from different cloud types greatly vary
from each other at annual and seasonal time scales (Figure 7b). The annual contributions
of HCC and LCC are positive, while other cloud types show negative contributions with
percentages of no more than 35%. The negative contribution of mid-LCC is the main
cause (37%) of the simulated ACC-induced declines in SSR trends in spring, followed by
LCC and mid-HCC (very small), and the contribution of HCC is positive with a similar
contribution percentage as that of LCC. In summer, the decreases in HCC account for 56%
of the simulated ACC-induced SSR trends, while contributions from other cloud types
appear to have very small negative impacts. The negative contributions from mid-HCC
and mid-LCC contribute a little more to the SSR trends in autumn when compared to the
only slightly positive contribution of LCC. In winter, the variations in LCC dominate the
simulated increasing SSR trends with a percentage reaching 70%, while contributions of
cloud cover from other cloud types can be neglected.

For southwestern China (Figure 7c), annual and autumn mean contributions are
alike, both reductions in mid-LCC and LCC show much larger positive contributions than
negative contributions from HCC and mid-HCC. The SSR trends in spring are attributed to
the positive and negative contributions of mid-LCC and LCC, respectively, followed by a
slightly positive contribution from HCC. A significantly negative HCC contribution occurs
in summer, followed by much smaller positive contributions from mid-LCC and LCC. All
cloud types show positive contributions to ACC-induced SSR trends in winter, especially
for mid-LCC and LCC being up to 44% and 33%, respectively.

The contributions over South China are featured by negative contributions of mid-
LCC at both annual and seasonal time scales and positive ones of LCC except for autumn
(Figure 7d). The annual negative contribution of mid-LCC is greater than the positive
contribution of LCC. Thus, the annual SSR over this region tends to decrease combined
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with the much smaller negative contributions from HCC and mid-HCC. In spring, mid-
LCC shows a much larger negative contribution than the positive contributions from
LCC, HCC, and mid-HCC. In summer, only LCC exhibits a positive contribution and
is smaller than the negative contribution of HCC. All cloud types in autumn appear to
have negative contributions, with the largest contribution from mid-LCC reaching 60%. A
marked positive contribution of LCC accounts for 74% of the ACC-induced SSR trends in
winter, while other cloud types have much smaller negative contributions.

In general, from the perspective of different time scales and sub-regions, the decreases
in LCC have the largest positive contributions to the ACC-induced SSR trends over the
North China Plain irrespective of the annual or seasonal time scales. For East China, the
ACC-induced SSR increases are mainly from positive contributions of HCC in summer
and LCC in winter, respectively. The positive contributions from mid-LCC and LCC
are attributable to the annual, autumn, and winter mean ACC-induced SSR trends over
southwestern China, while increases in HCC have a marked negative contribution in
summer. The increases in mid-LCC play substantial roles in the simulated annual, spring,
and autumn mean ACC-induced SSR trends over South China, whereas the decline in LCC
is the major contributor to that in winter.

4. Conclusions and Discussions

The annual SSR variations under all-sky, clear-sky, all-sky-no-aerosol, and clear-sky-
no-aerosol conditions, as well as their associated driving factors (e.g., cloud cover from
different cloud types, AOD, water vapor, and O3) derived from satellite products during
2005–2018 over China, are investigated to identify the major causes of the SSR trends. Then,
the annual and seasonal means of the above driving factors for 14 years are used as inputs
into a radiative transfer model to calculate their respective effects on the SSR trends by
using a concept of relative SSR trend percentage to avoid discrepancies caused by different
model assumptions. Furthermore, this study examines the relative contributions of cloud
cover from different cloud types to the simulated ACC-induced SSR trends averaged over
four typical regions of China both at annual and seasonal time scales.

Compared to the ground-based observations from the CMA, the CERES SYN1deg
product can generally be regarded as credible during this period over the eastern half of
China. The satellite-derived results confirm the primary roles of clouds and aerosols in
SSR trends during this period, while those of water vapor and O3 are much smaller in their
magnitudes. A nationwide brightening appears over most regions in China and the clouds
and aerosols are the major causes of this increase over northern and northeastern China,
albeit stronger aerosol effects can be seen in individual regions. However, the cloud effects
contribute more to the all-sky SSR reductions over southern China.

The radiative transfer model can generally simulate the aerosol effects on SSR trends
from the CERES SYN1deg product during 2005–2018 over the eastern half of China by the
annual mean inputs of AOD, while the inputs of annual mean all types of cloud cover
can reproduce the SSR trends induced by the clouds in most regions of northern and
northeastern China, in addition to southern China. The model assumptions, different
input data sources, and inadequacies in the assumptions with respect to the vertical cloud
overlaps, as well as the interactions between clouds and aerosols in the model, are the
likely causes for the poor simulations of clouds over southern China.

The relative contributions of cloud cover from different cloud types to ACC-induced
SSR trends simulated with the single-column radiative transfer model vary among different
regions in China. The significant positive contribution of LCC over the North China Plain
is the major contributor to the simulated annual and seasonal ACC-induced increases in
SSR trends, with percentages generally greater than 60%. For East China, the marked
ACC-induced SSR increases in summer and winter are primarily due to the strong positive
contributions from HCC and LCC, with percentages reaching 56% and 70%, respectively,
while the declines in SSR during other seasons result from the combined effects of all
cloud types, especially increases in mid-LCC and mid-HCC. The magnitudes of the relative
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contributions from all cloud types averaged over southwestern China seem to be much
more uniform. The increases in HCC in summer are attributable to the simulated ACC-
induced decreasing SSR trends, whereas the changes in mid-LCC and LCC are responsible
for the simulated increasing SSR trends for other seasons. The declines in LCC and increases
in mid-LCC dominate the simulated ACC-induced increases and declines in SSR trends
averaged over South China in winter and autumn with percentages of 74% and 60%,
respectively. The negative mid-LCC contributions except for HCC in summer and positive
LCC contributions together result in the ACC-induced SSR declines over South China in
other seasons.

Overall, the simulated relative contributions of cloud cover from different cloud types
to the ACC-induced SSR trends over China in recent years largely depend on sub-regions
and seasons, and the changes in HCC usually contribute more to the ACC-induced SSR
trends in summer over most regions in China, which is possibly associated with the
deep convection in this season. However, the contributions from LCC or mid-LCC are
responsible for the ACC-induced SSR trends over most regions all year round.

The vast majority of the climate models tend to overestimate the SSR from surface
direct observations, which has been a long-standing problem over several decades [64].
Hopefully, this study would provide some implications for a regional or global climate
model with a radiation module to reduce the bias of the solar radiation reaching the surface.
The possible reasons for the discrepancies between the model-estimated and satellite-
derived SSR might also help improve the accuracy of surface energy budgets in the climate
systems, thereby contributing to a more credible climate model.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/4/704/s1, Figure S1–S4: Validation of seasonal average surface solar radiation (SSR) and their
corresponding trends under all-sky conditions from CERES satellite-derived product using ground-
based observations, Figure S5: Map of provinces in China, Figure S6: Annual mean distributions of
different driving factors from various satellite-derived products, Figure S7: Annual mean trends of
different types of cloud cover from CERES-derived product, Figure S8–S11: Same as Figure 6, but for
seasonal means.

Author Contributions: Wrote the manuscript, Q.W.; proposed the ideas and gave some comments
and suggestions to the manuscript, Q.W., H.Z., and M.W.; provided the ground-based all-sky SSR
data and the simulated AOD vertical distributions for the year 2006, respectively, S.Y. and Y.C.;
contributed to the better understanding of the radiative transfer model, Q.C.; X.Z. and G.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (Grant Number: 2017YFA0603502), the (Key) National Natural Science Foundation of China
(Grant Number: 91644211), and Science and Technology Development Fund of Chinese Academy of
Meteorological Sciences (Grant Number: 2021KJ004). Global dimming and brightening research at
ETH Zurich obtaining fundings from a sequence of Swiss National Science Foundation Grants (Grant
No 200021_135395, 200020_159938, 200020_188601) and from the Federal Office of Meteorology and
Climatology MeteoSwiss within the framework of GCOS Switzerland.

Data Availability Statement: The CERES SYN1deg data is available at https://ceres-tool.larc.nasa.
gov/ord-tool/jsp/SYN1degEd41Selection.jsp (accessed on 1 January 2021); The AIRS data is accessi-
ble from https://disc.gsfc.nasa.gov/datasets/AIRS3STM_006/summary?keywords=AIRS (accessed
on 1 January 2021); The MODIS data is from https://ladsweb.modaps.eosdis.nasa.gov/archive/
allData/61/MYD08_M3/?process=ftpAsHttp&path=allData%2f61%2fMYD08_M3 (accessed on 1 Jan-
uary 2021); The CloudSat data is from http://www.cloudsat.cira.colostate.edu/data-products/level-
2b/2b-cwc-ro (accessed on 1 January 2021); The MERRA2 dataset is obtained at https://disc.gsfc.nasa.
gov/datasets/M2IMNPANA_5.12.4/summary?keywords=merra-2 (accessed on 1 January 2021).
The ERA-Interim is from https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc
(accessed on 1 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/2072-4292/13/4/704/s1
https://www.mdpi.com/2072-4292/13/4/704/s1
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
https://disc.gsfc.nasa.gov/datasets/AIRS3STM_006/summary?keywords=AIRS
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_M3/?process=ftpAsHttp&path=allData%2f61%2fMYD08_M3
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYD08_M3/?process=ftpAsHttp&path=allData%2f61%2fMYD08_M3
http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cwc-ro
http://www.cloudsat.cira.colostate.edu/data-products/level-2b/2b-cwc-ro
https://disc.gsfc.nasa.gov/datasets/M2IMNPANA_5.12.4/summary?keywords=merra-2
https://disc.gsfc.nasa.gov/datasets/M2IMNPANA_5.12.4/summary?keywords=merra-2
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc


Remote Sens. 2021, 13, 704 18 of 20

References
1. Pinker, R.T.; Zhang, B.; Dutton, E.G. Do Satellites Detect Trends in Surface Solar Radiation? Science 2005, 308, 850. [CrossRef]
2. Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From

dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 2005, 308, 847–850. [CrossRef]
3. Wild, M. Global dimming and brightening: A review. J. Geophys. Res. Atmos. 2009, 114, D00D16. [CrossRef]
4. Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation

with discussion of its probable causes and possible agricultural consequences. Agric. Forest Meteorol. 2001, 107, 255–278.
[CrossRef]

5. Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [CrossRef]
6. Beer, J.; Mende, W.; Stellmacher, R. The role of the sun in climate forcing. Quat. Sci. Rev. 2000, 19, 403–415. [CrossRef]
7. Che, H.Z.; Shi, G.Y.; Zhang, X.Y.; Arimoto, R.; Zhao, J.Q.; Xu, L.; Wang, B.; Chen, Z.H. Analysis of 40 years of solar radiation data

from China, 1961–2000. Geophys. Res. Lett. 2005, 32, L06803. [CrossRef]
8. Shi, G.Y.; Hayasaka, T.; Ohmura, A.; Chen, Z.H.; Wang, B.; Zhao, J.Q.; Che, H.Z.; Xu, L. Data quality assessment and the long-term

trend of ground solar radiation in China. J. Appl. Meteorol. Clim. 2008, 47, 1006–1016. [CrossRef]
9. Yang, S.; Shi, G.Y.; Wang, B.; Yang, H.L.; Duan, Y.X. Trends in Surface Solar Radiation (SSR) and the Effect of Clouds on SSR

during 1961–2009 in China. Chin. J. Atmos. Sci. 2013, 37, 963–970.
10. Zhang, H.; Yin, Q.; Nakajima, T.; Makiko, N.M.; Lu, P.; He, J. Influence of changes in solar radiation on changes of surface

temperature in China. Acta Meteorol. Sin. 2013, 27, 87–97. [CrossRef]
11. Tang, W.J.; Yang, K.; Qin, J.; Cheng, C.C.K.; He, J. Solar radiation trend across China in recent decades: A revisit with quality-

controlled data. Atmos. Chem. Phys. 2011, 11, 393–406. [CrossRef]
12. Wang, K.C. Measurement Biases Explain Discrepancies between the Observed and Simulated Decadal Variability of Surface

Incident Solar Radiation. Sci. Rep. 2014, 4, 6144. [CrossRef]
13. Wang, K.C.; Ma, Q.; Li, Z.J.; Wang, J.K. Decadal variability of surface incident solar radiation over China: Observations, satellite

retrievals, and reanalyses. J. Geophys. Res. Atmos. 2015, 120, 6500–6514. [CrossRef]
14. Wang, Y.W.; Wild, M. A new look at solar dimming and brightening in China. Geophys. Res. Lett. 2016, 43, 11, 711–777, 785.

[CrossRef]
15. He, Y.Y.; Wang, K.C.; Zhou, C.L.; Wild, M. A Revisit of Global Dimming and Brightening Based on the Sunshine Duration.

Geophys. Res. Lett. 2018, 45, 4281–4289. [CrossRef]
16. Yang, S.; Wang, X.L.; Wild, M. Homogenization and Trend Analysis of the 1958–2016 In Situ Surface Solar Radiation Records in

China. J. Clim. 2018, 31, 4529–4541. [CrossRef]
17. Yang, S.; Wang, X.L.; Wild, M. Causes of Dimming and Brightening in China Inferred from Homogenized Daily Clear-Sky and

All-Sky in situ Surface Solar Radiation Records (1958–2016). J. Clim. 2019, 32, 5901–5913. [CrossRef]
18. Liang, F.; Xia, X.A. Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Ann. Geophys.

Ger. 2005, 23, 2425–2432. [CrossRef]
19. Li, J.; Jiang, Y.W.; Xia, X.G.; Hu, Y.Y. Increase of surface solar irradiance across East China related to changes in aerosol properties

during the past decade. Environ. Res. Lett. 2018, 13, 34006. [CrossRef]
20. Norris, J.R.; Wild, M. Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar

“dimming,” and solar “brightening”. J. Geophys. Res. Atmos. 2009, 114, D00D15. [CrossRef]
21. Xia, X.G. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005.

J. Geophys. Res. Atmos. 2010, 115, D00K06. [CrossRef]
22. Wang, C.H.; Zhang, Z.F.; Tian, W.S. Factors affecting the surface radiation trends over China between 1960 and 2000. Atmos.

Environ. 2011, 45, 2379–2385. [CrossRef]
23. Zhang, X.T.; Liang, S.L.; Wild, M.; Jiang, B. Analysis of surface incident shortwave radiation from four satellite products. Remote

Sens. Environ. 2015, 165, 186–202. [CrossRef]
24. Wang, Y.W.; Yang, Y.H.; Han, S.M.; Wang, Q.X.; Zhang, J.H. Sunshine dimming and brightening in Chinese cities (1955–2011) was

driven by air pollution rather than clouds. Clim. Res. 2013, 56, 11–20. [CrossRef]
25. Tang, W.J.; Yang, K.; Qin, J.; Niu, X.L.; Lin, C.G.; Jing, X.W. A revisit to decadal change of aerosol optical depth and its impact on

global radiation over China. Atmos. Environ. 2017, 150, 106–115. [CrossRef]
26. Feng, F.; Wang, K.C. Does the modern-era retrospective analysis for research and applications-2 aerosol reanalysis introduce an

improvement in the simulation of surface solar radiation over China? Int. J. Clim. 2019, 39, 1305–1318. [CrossRef]
27. Lin, C.Q.; Liu, G.; Lau, A.K.H.; Li, Y.; Li, C.C.; Fung, J.C.H.; Lao, X.Q. High-resolution satellite remote sensing of provincial PM2.5

trends in China from 2001 to 2015. Atmos. Environ. 2018, 180, 110–116. [CrossRef]
28. Zhang, H.; Nakajima, T.; Shi, G.Y.; Suzuki, T.; Imasu, R. An optimal approach to overlapping bands with correlated k distribution

method and its application to radiative calculations. J. Geophys. Res. Atmos. 2003, 108, 4641. [CrossRef]
29. Zhang, H.; Shi, G.Y.; Nakajima, T.; Suzuki, T. The effects of the choice of the k-interval number on radiative calculations. J. Quant.

Spectrosc. Radiat. Transfer. 2006, 98, 31–43. [CrossRef]
30. Zhang, H.; Suzuki, T.; Nakajima, T.; Shi, G.Y.; Liu, Y. Effects of band division on radiative calculations. Opt. Eng. 2006, 45, 016002.

[CrossRef]

http://doi.org/10.1126/science.1103159
http://doi.org/10.1126/science.1103215
http://doi.org/10.1029/2008JD011470
http://doi.org/10.1016/S0168-1923(00)00241-0
http://doi.org/10.1175/BAMS-D-11-00074.1
http://doi.org/10.1016/S0277-3791(99)00072-4
http://doi.org/10.1029/2004GL022322
http://doi.org/10.1175/2007JAMC1493.1
http://doi.org/10.1007/s13351-013-0109-8
http://doi.org/10.5194/acp-11-393-2011
http://doi.org/10.1038/srep06144
http://doi.org/10.1002/2015JD023420
http://doi.org/10.1002/2016GL071009
http://doi.org/10.1029/2018GL077424
http://doi.org/10.1175/JCLI-D-17-0891.1
http://doi.org/10.1175/JCLI-D-18-0666.1
http://doi.org/10.5194/angeo-23-2425-2005
http://doi.org/10.1088/1748-9326/aaa35a
http://doi.org/10.1029/2008JD011378
http://doi.org/10.1029/2009JD012879
http://doi.org/10.1016/j.atmosenv.2011.02.028
http://doi.org/10.1016/j.rse.2015.05.015
http://doi.org/10.3354/cr01139
http://doi.org/10.1016/j.atmosenv.2016.11.043
http://doi.org/10.1002/joc.5881
http://doi.org/10.1016/j.atmosenv.2018.02.045
http://doi.org/10.1029/2002JD003358
http://doi.org/10.1016/j.jqsrt.2005.05.090
http://doi.org/10.1117/1.2160521


Remote Sens. 2021, 13, 704 19 of 20

31. Zhang, H.; Shi, G.Y. A new approach to solve correlated k-distribution function. J. Quant. Spectrosc. Radiat. Transfer. 2005, 96,
311–324. [CrossRef]

32. Lu, P.; Zhang, H.; Li, J.N. Correlated k-Distribution Treatment of Cloud Optical Properties and Related Radiative Impact. J. Atmos.
Sci. 2011, 68, 2671–2688. [CrossRef]

33. Zhang, H.; Chen, Q.; Xie, B. A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. J.
Quant. Spectrosc. Radiat. Transfer. 2015, 150, 76–86. [CrossRef]

34. Wei, X.D.; Zhang, H. Analysis of optical properties of nonspherical dust aerosols. Chin. Acta. Meteorol. Sin. 2011, 31, 7–14.
35. Zhang, H.; Shen, Z.P.; Wei, X.D.; Zhang, M.; Li, Z.Q. Comparison of optical properties of nitrate and sulfate aerosol and the direct

radiative forcing due to nitrate in China. Atmos. Res. 2012, 113, 113–125. [CrossRef]
36. Zhou, C.; Zhang, H.; Wang, Z.L. Impact of Different Mixing Ways of Black Carbon and Non-Absorbing Aerosols on the Optical

Properties. Chin. Acta Meteorol. Sin. 2013, 33, 270–281.
37. Nakajima, T.; Tsukamoto, M.; Tsushima, Y.; Numaguti, A.; Kimura, T. Modeling of the radiative process in an atmospheric general

circulation model. Appl. Optics. 2000, 39, 4869–4878. [CrossRef]
38. Zhang, H. BCC_RAD Radiative Transfer Model; China Meteorological Press: Beijing, China, 2016.
39. Randles, C.A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; et al.

Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative
Transfer Experiment. Atmos. Chem. Phys. 2013, 13, 2347–2379. [CrossRef]

40. Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; et al.
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 2013, 13, 1853–1877.
[CrossRef]

41. Zhang, H.; Zhao, S.Y.; Wang, Z.L.; Zhang, X.Y.; Song, L.C. The updated effective radiative forcing of major anthropogenic aerosols
and their effects on global climate at present and in the future. Int. J. Clim. 2016, 36, 4029–4044. [CrossRef]

42. Zhang, H.; Xie, B.; Wang, Z.L. Effective Radiative Forcing and Climate Response to Short-Lived Climate Pollutants Under
Different Scenarios. Earths Future 2018, 6, 857–866. [CrossRef]

43. Zhou, C.; Zhang, H.; Zhao, S.Y.; Li, J.N. On Effective Radiative Forcing of Partial Internally and Externally Mixed Aerosols and
Their Effects on Global Climate. J. Geophys. Res. Atmos. 2018, 123, 401–423. [CrossRef]

44. An, Q.; Zhang, H.; Wang, Z.L.; Liu, Y.; Xie, B.; Liu, Q.X.; Wang, Z.Z.; Gong, S.L. The Development of an Atmospheric
Aerosol/Chemistry-Climate Model, BCC_AGCM_CUACE2.0, and Simulated Effective Radiative Forcing of Nitrate Aerosols. J.
Adv. Model. Earth Sy. 2019, 11, 3816–3835. [CrossRef]

45. Zhang, H.; Zhu, S.H.; Zhao, S.Y.; Wei, X.D. Establishment of high-resolution aerosol parameterization and its influence on
radiation calculations. J. Quant. Spectrosc. Radiat. Transfer. 2020, 243, 106802. [CrossRef]

46. Zhang, H.; Zhao, M.; Chen, Q.; Wang, Q.Y.; Zhao, S.Y.; Zhou, X.X.; Peng, J. Water and ice cloud optical thickness changes and
radiative effects in East Asia. J. Quant. Spectrosc. Radiat. Transfer. 2020, 254, 107213. [CrossRef]

47. Wang, F.; Zhang, H.; Chen, Q.; Zhao, M.; You, T. Analysis of Short-term Cloud Feedback in East Asia Using Cloud Radiative
Kernels. Adv. Atmos. Sci. 2020, 37, 1007–1018. [CrossRef]

48. Rutan, D.A.; Kato, S.; Doelling, D.R.; Rose, F.G.; Nguyen, L.T.; Caldwell, T.E.; Loeb, N.G. CERES Synoptic Product: Methodology
and Validation of Surface Radiant Flux. J. Atmos. Ocean. Tech. 2015, 32, 1121–1143. [CrossRef]

49. Thorsen, T.J.; Kato, S.; Loeb, N.G.; Rose, F.G. Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels.
J. Climate. 2018, 31, 10039–10058. [CrossRef]

50. IPCC. Climate Change 2013-The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014.
51. Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products:

Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res.
Atmos. 2014, 119, 13, 913–965, 989. [CrossRef]

52. Zhao, Y.; Zhou, T. Asian water tower evinced in total column water vapor: A comparison among multiple satellite and reanalysis
data sets. Clim. Dynam. 2020, 54, 231–245. [CrossRef]

53. Wargan, K.; Labow, G.; Frith, S.; Pawson, S.; Livesey, N.; Partyka, G. Evaluation of the Ozone Fields in NASA’s MERRA-2
Reanalysis. J. Climate. 2017, 30, 2961–2988. [CrossRef] [PubMed]

54. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.;
et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011,
137, 553–597. [CrossRef]

55. Austin, R.T.; Heymsfield, A.J.; Stephens, G.L. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave
radar and temperature. J. Geophys. Res. Atmos. 2009, 114, D00A23. [CrossRef]

56. Yang, B.Y.; Zhang, H.; Peng, J.; Wang, Z.L.; Jing, X.W. Analysis on Global Distribution Characteristics of Cloud Microphysical and
Optical Properties Based on the CloudSat Data. Chin. Plateau Meteorol. 2014, 33, 1105–1118.

57. Dai, T.; Cheng, Y.M.; Zhang, P.; Shi, G.Y.; Sekiguchi, M.; Suzuki, K.; Goto, D.; Nakajima, T. Impacts of meteorological nudging on
the global dust cycle simulated by NICAM coupled with an aerosol model. Atmos. Environ. 2018, 190, 99–115. [CrossRef]

58. Wang, Y.W.; Trentmann, J.; Yuan, W.; Wild, M. Validation of CM SAF CLARA-A2 and SARAH-E surface solar radiation datasets
over China. Remote Sens. 2018, 10, 1977. [CrossRef]

http://doi.org/10.1016/j.jqsrt.2005.03.002
http://doi.org/10.1175/JAS-D-10-05001.1
http://doi.org/10.1016/j.jqsrt.2014.08.024
http://doi.org/10.1016/j.atmosres.2012.04.020
http://doi.org/10.1364/AO.39.004869
http://doi.org/10.5194/acp-13-2347-2013
http://doi.org/10.5194/acp-13-1853-2013
http://doi.org/10.1002/joc.4613
http://doi.org/10.1029/2018EF000832
http://doi.org/10.1002/2017JD027603
http://doi.org/10.1029/2019MS001622
http://doi.org/10.1016/j.jqsrt.2019.106802
http://doi.org/10.1016/j.jqsrt.2020.107213
http://doi.org/10.1007/s00376-020-9281-9
http://doi.org/10.1175/JTECH-D-14-00165.1
http://doi.org/10.1175/JCLI-D-18-0045.1
http://doi.org/10.1002/2014JD022453
http://doi.org/10.1007/s00382-019-04999-4
http://doi.org/10.1175/JCLI-D-16-0699.1
http://www.ncbi.nlm.nih.gov/pubmed/29527096
http://doi.org/10.1002/qj.828
http://doi.org/10.1029/2008JD010049
http://doi.org/10.1016/j.atmosenv.2018.07.016
http://doi.org/10.3390/rs10121977


Remote Sens. 2021, 13, 704 20 of 20

59. Xia, X.A.; Wang, P.C.; Chen, H.B.; Liang, F. Analysis of downwelling surface solar radiation in China from National Centers for
Environmental Prediction reanalysis, satellite estimates, and surface observations. J. Geophys. Res. Atmos. 2006, 111, D09103.
[CrossRef]

60. Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic
emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [CrossRef]

61. Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5
air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463. [CrossRef]

62. Wild, M. The heat balance of the earth in general circulation model simulations of present and future climates. Anat. Histol.
Embryol. 1997, 34, 117–122.

63. Shen, Z.P.; Zhang, H. Analysis on the factors affecting surface solar radiation and its spectral distribution. Chin. Acta Energ. Sol.
Sin. 2009, 30, 1389–1395.

64. Wild, M. The global energy balance as represented in CMIP6 climate models. Clim. Dynam. 2020, 55, 553–577. [CrossRef]
[PubMed]

http://doi.org/10.1029/2005JD006405
http://doi.org/10.5194/acp-18-14095-2018
http://doi.org/10.1073/pnas.1907956116
http://doi.org/10.1007/s00382-020-05282-7
http://www.ncbi.nlm.nih.gov/pubmed/32704207

	Introduction 
	Materials and Methods 
	Description of Radiative Transfer Model 
	Datasets 
	Reference SSR Datasets 
	Input Datasets to the Radiative Transfer Model 
	Methodology 


	Results 
	Validation of the CERES Dataset Using CMA Observations 
	Analysis of Satellite-Derived SSR Trends under Different Conditions and Their Potential Causes 
	Comparisons of the Model-Estimated and Satellite-Derived Relative SSR Trend Percentages Due to Different Factors 
	The Relative Contributions of Cloud Cover from Different Cloud Types to the Annual and Seasonal ACC-Induced SSR Trends by a Radiative Transfer Model 

	Conclusions and Discussions 
	References

