
remote sensing

Article

A Lightweight Object Detection Framework for Remote
Sensing Images

Lang Huyan 1,2, Yunpeng Bai 1,3, Ying Li 1,*, Dongmei Jiang 1, Yanning Zhang 1, Quan Zhou 2, Jiayuan Wei 2,
Juanni Liu 2, Yi Zhang 2 and Tao Cui 2

����������
�������

Citation: Huyan, L.; Bai, Y.; Li, Y.;

Jiang, D.; Zhang, Y.; Zhou, Q.; Wei, J.;

Liu, J.; Zhang, Y.; Cui, T. A

Lightweight Object Detection

Framework for Remote Sensing

Images. Remote Sens. 2021, 13, 683.

https://doi.org/10.3390/rs13040683

Academic Editor: Pedro Melo-Pinto

Received: 8 January 2021

Accepted: 10 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science, National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big
Data Application Technology, Shaanxi Provincial Key Laboratory of Speech & Image Information Processing,
Northwestern Polytechnical University, Xi’an 710129, China; huyanlang@mail.nwpu.edu.cn (L.H.);
cloudbai@nwpu.edu.cn (Y.B.); jiangdm@nwpu.edu.cn (D.J.); ynzhang@nwpu.edu.cn (Y.Z.)

2 Key Laboratory of Science and Technology on Space Microwave, CAST Xi’an, Xi’an 710100, China;
zhouq97@cast504.com (Q.Z.); weijy@cast504.com (J.W.); liujn@cast504.com (J.L.); zhangy4@cast504.com (Y.Z.);
cuit81@cast504.com (T.C.)

3 School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications,
Shaanxi, Xi’an 710121, China

* Correspondence: lybyp@nwpu.edu.cn; Tel.: +86-029-8925-3208

Abstract: Onboard real-time object detection in remote sensing images is a crucial but challenging task
in this computation-constrained scenario. This task not only requires the algorithm to yield excellent
performance but also requests limited time and space complexity of the algorithm. However, previous
convolutional neural networks (CNN) based object detectors for remote sensing images suffer from
heavy computational cost, which hinders them from being deployed on satellites. Moreover, an
onboard detector is desired to detect objects at vastly different scales. To address these issues, we
proposed a lightweight one-stage multi-scale feature fusion detector called MSF-SNET for onboard
real-time object detection of remote sensing images. Using lightweight SNET as the backbone network
reduces the number of parameters and computational complexity. To strengthen the detection
performance of small objects, three low-level features are extracted from the three stages of SNET
respectively. In the detection part, another three convolutional layers are designed to further extract
deep features with rich semantic information for large-scale object detection. To improve detection
accuracy, the deep features and low-level features are fused to enhance the feature representation.
Extensive experiments and comprehensive evaluations on the openly available NWPU VHR-10
dataset and DIOR dataset are conducted to evaluate the proposed method. Compared with other
state-of-art detectors, the proposed detection framework has fewer parameters and calculations,
while maintaining consistent accuracy.

Keywords: object detection; remote sensing imagery; lightweight; feature fusion; cost density;
deep learning

1. Introduction

Object detection in remote sensing images is one of the basic tasks within satellite
imagery processing. Its initial purpose is to extract the category and location information of
the object from a remote sensing image [1]. This task involves a wide range of applications
in various fields, such as remote sensing image road detection [2], ship detection [3],
aircraft detection [4], etc. It is also a high-advance technique for remote sensing image
analysis, image content understanding, and scene understanding. Since object detection
is the foundation of many other tasks, its importance has attracted the attention of many
scholars, and extensive and in-depth research has been carried out, resulting in many
research achievements.

However, object detection in remote sensing images is still a challenging task due
to multiple reasons [5,6]. First, the remote sensing image is obtained from an overhead

Remote Sens. 2021, 13, 683. https://doi.org/10.3390/rs13040683 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13040683
https://doi.org/10.3390/rs13040683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040683
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/683?type=check_update&version=2

Remote Sens. 2021, 13, 683 2 of 25

perspective, so objects can have any orientation. Second, the scale of different types
of objects varies greatly. Third, the size of remote sensing images is extremely large, it
is an inhibitor for existing algorithms to be applied to images with such a large size.
Besides, labeled remote sensing image samples are scarce [5], and thus the available labeled
samples are insufficient for training an onboard detector, which increases the difficulty of
object detection.

Generally, remote sensing images are transmitted back to the ground through a
satellite data transmission system, and then an object detection task is performed, which
requires several procedures to complete. However, object detection on satellite has its
unique advantages in military and civilian missions, it responds to ground conditions and
provides feedback in real-time. For reasons that direct object detection on satellite makes it
possible to transfer what the user might be looking for, and thus the bandwidth and cost of
the data transmission technology used to send images data from the satellite camera to the
ground station can be reduced greatly. It is a promising direction in this domain.

The focus is on performance when performing remote sensing image object detection
on the ground. In the past ten years, a variety of algorithms have been proposed for object
detection in remote sensing images. These methods can be roughly divided into traditional
methods and deep learning (DL)-based methods. Traditional machine learning methods
such as template matching-based object detection, knowledge-based object detection,
object-based image analysis (OBIA) object detection, and machine learning-based object
detection have made great efforts to improve the performance of object detection algorithm,
but DL-based methods can often result in better performance.

These methods mentioned above all use low-level features for object detection. The
disadvantage of using low-level features is that it requires manual extraction of features.
Although it can achieve better results in specific application scenarios, this type of method is
highly dependent on prior knowledge, resulting in the poor adaptability and generalization
of the detection model.

However, with the continuous development of deep learning technology, its perfor-
mance grows to be excellent, such as faster regions with CNN features (Faster-RCNN) [7],
you only look once (YOLO) [8–10], single-shot multi-box detector (SSD) [11], and Thun-
derNet [12]. Various methods have been proposed by applying deep learning technology
to remote sensing image object detection, such as rotation-invariant convolutional neu-
ral networks (RICNN) [13], newly trained CNN [13], and context-based feature fusion
single shot multi-box detector (CBFF-SSD) [14], which deploys feature fusion methods to
improve detection performance. Although the use of deep learning methods for remote
sensing image object detection greatly improves the performance of the detectors, its mas-
sive computational complexity and extremely large storage space requirements hinder its
deployment on satellites.

With the progress of remote sensing technology, the demand for object detection on
satellites is becoming increasingly urgent. However, limited by the space environment, the
computing power that can be provided on the satellite is far from that on the ground. In
this situation, remote sensing image object detection on satellites not only has to deal with
the ongoing challenges but also needs to solve the problem of the feasibility of the detector.
The feasibility of the detector on the satellite is equally important as its performance. To
improve the performance of the detector, some techniques used on the ground, such as
feature fusion, and the use of a deeper network, may consume massive storage space and
calculations that may make them impossible to implement on satellites.

To solve the problems mentioned above, this paper introduces the idea of a lightweight
network into remote sensing image object detection and proposes a lightweight remote
sensing image object detection framework called multi-scale feature fusion SNET (MSF-
SNET). The backbone network of the proposed framework is partly modified based on
the lightweight network SNET [12] to reduce the on-board processing complexity and the
number of parameters. In this framework, a recursive feature fusion strategy is used to
balance performance and feasibility. The proposed framework performs object detection

Remote Sens. 2021, 13, 683 3 of 25

on multiple feature maps to solve the problem of large-scale changes between different
classes of objects.

Due to the lack of training samples and the large changes in the object appearance
affected by the imaging conditions, the training samples are particularly rotated, cut,
symmetrically flipped, zoomed, and moderately occluded. It is worth noting that the
remote sensing image is difficult to adapt to the input of the deep learning model, the large
size image is split according to a certain overlap ratio during training and detection.

The main contributions of this paper are summarized as follows.
1. We introduce a novel lightweight remote sensing image object detection framework

called MSF-SNET. The proposed framework is an end-to-end detection model with multiple
scale features in the detection part and feature reuse and fusion strategy is adopted. It is
applicable to object detection on satellite.

2. Through experiments on NWPU-VHR-10 [15] and DIOR [16] remote sensing image
object detection dataset we show that our framework achieves acceptable performance with
fewer parameters and less computational cost compared with state-of-the-art methods [12–14].
The feasibility of the framework is important as its performance. We make a balance between
performance and feasibility by reducing network parameters and computing costs.

3. A feature fusion method is proposed to take advantage of low-level features and
deep features to improve the performance of object detection with a negligible amount of
parameters and computational cost increase.

4. Cost Density is proposed in this paper. It is a fair and effective metric suitable for
evaluating the performance of the algorithm under the condition of consuming the same
resources. It provides a quantitative approach to evaluate the algorithm with effectiveness.

The rest of this paper is organized as follows. Section 2 reviews the related work of
the object detection framework for remote sensing images. In Section 3, we introduce our
proposed method and present the details of the proposed framework, namely Multi-scale
fusion SNET, MSF-SNET. In Section 4, experimental results on two different datasets are
illustrated to demonstrate the performance of our method. Section 5 contains a discussion
of the implication of the results of Section 4. Section 6 involves our conclusions plus some
ideas for further work.

2. Related Work

Remote sensing image object detection methods can be roughly divided into four
categories: expert-based methods, machine learning (ML)-based methods, deep learning
(DL)-based methods, and light DL methods.

Expert-based methods are further divided into three classes as template matching-
based methods, knowledge-based methods, and object-based image analysis (OBIA) [1].

Template matching-based methods regard the object detection task as a similarity
matching problem between template and objects. For example, these methods are used to
detect roads in remote sensing images because roads can be viewed as a simple template
and shifted through the image [17–21] to find the best matches. Although this method is
simple and effective, it is easily affected by rotation, scale changes, and viewpoint change.

Knowledge-based methods regard the object detection problem as a hypothesis testing
problem [22], such as using the geometric knowledge of the object to detect buildings in
the image [23–26]. In this type of method, the establishment of prior knowledge and rules
is essential. The performance of these methods depends heavily on the prior knowledge of
experts and detection rules. However, complete prior knowledge establishment is difficult
and detection rules are subjective.

OBIA object detection converts the object detection task into a classification problem.
The image is first broken up into objects representing land-based features, and then prior
knowledge or established rules are applied to classify these objects [27,28]. This type of
method can comprehensively use the object shape, texture, context knowledge, expert
knowledge, and other information for object detection. For example, these methods
are used to detect landslide mapping [29–33], land cover, and land-use mapping [34,35].

Remote Sens. 2021, 13, 683 4 of 25

Moreover, the prior knowledge is not complete and expert knowledge used in classification
is still subjective.

ML-based methods play an important role in remote sensing image object detec-
tion. These methods first extract features from the training data, such as histogram of
gradient (HOG) features [36], bag-of-words (BoW) features [37], local binary patterns
(LBP) features [38], and Haar-like features [39]. Then supervised, semi-supervised, or
weakly supervised methods are used to train a classifier, such as support vector machine
(SVM) classifier [40], AdaBoost [41], and k-nearest-neighbor (kNN) [42] to classify the
extracted features. These methods are used in many applications, for example, aircraft
detection [43,44], ship detection [45,46], vehicle detection [47,48], and airport runway detec-
tion [49]. Although these methods have achieved promising performance in applications
mentioned above, they still rely on handcrafted feature descriptors. Generic feature de-
scriptor is still not available. It is still a challenging issue to design a general discriminative
feature for object detection.

DL-based methods, especially deep convolutional neural networks (CNN), have
started to dominate the object detection task. One significant advantage of CNN is
completely unsupervised feature learning. It can learn discriminative features directly
from data.

These methods can be categorized into two main types: one-stage methods and two-
stage methods. One-stage methods adopt a fully convolutional architecture that outputs
a fixed number of predictions on the grid. While two-stage methods leverage a proposal
network to find regions that have a high probability to contain an object. Then a second
network is used to get the classification score and spatial offsets of the proposals from
the proposal network. One-stage methods prioritize inference speed. While two-stage
methods prioritize detection accuracy.

The typical two-stage methods are R-CNN [50], Fast R-CNN [51], and Faster R-
CNN [7]. The typical single-stage methods are YOLO [8], YOLO9000 [9], YOLO V3 [10],
YOLO V4 [52], SSD [11], and DSSD [53].

Although the CNN-based algorithms perform well in the object detection task, their
excellent performance comes at the cost of many parameters and high computational cost.

Light CNN methods have been proposed, such as ThunderNet [54], MobilenetV1 [55],
MobilenetV2 [56], SqueezeNet [57], ShuffleNet [58], ShuffleNet V2 [57], Xception [59],
Light Head R-CNN [60], and model compression to reduce the time complexity and space
complexity of the network.

Some of these light CNN methods use a lightweight backbone such as SNET used
in ThunderNet. While some of these methods use a light head such as Light Head R-
CNN. Otherwise, model compression is also used to shrink trained neural networks.
Compressed models usually perform similarly to the original model while using a fraction
of the computational resources.

In the field of remote sensing, the excellent performance of CNN in object detection
task has attracted many researchers to make great efforts to CNN based remote sensing
image object detection [61–64].

To solve the problem of object rotation variations in remote sensing images, some meth-
ods are proposed based on or Faster-RCNN architecture. For example, a rotation-invariant
layer [13] is proposed and added to RCNN. Besides, rotation-invariant regularity and
Fisher discrimination regularizer [65] are added to Faster-RCNN. Multi-angle anchors [66]
are also introduced into the region proposal network (RPN) [7] to solve this problem.

To improve the object positioning accuracy, an unsupervised score-based bounding
box regression (USB-BBR) method [61] is proposed, and a position-sensitive balancing
(PSB) method [6] is used to enhance the quality of the generated region proposal.

For the sake of inference speed, some one-stage methods are proposed. For example,
a regression-based vehicle detection method [67] and a rotation-invariant detector [68]
with a rotatable bounding box are proposed based on SSD. A method [69] that can detect
ships in any direction is proposed based on YOLOv2. A detection framework [70] with

Remote Sens. 2021, 13, 683 5 of 25

multi-scale feature fusion is proposed based on YOLO, and a novel effectively optimized
one-stage network (NEOON) [71] method based on YOLOV3 is proposed.

The abovementioned methods have achieved superior performance and facilitated
the development of remote sensing image object detection greatly. However, there are still
some challenges to be addressed when the detector is deployed on the satellite. Constrained
by affordable resources in the space environment, a more lightweight model is desired to
reduce calculations, parameter storage space, and power consumption.

In this paper, we tackle the previous problem and propose a lightweight object detec-
tion framework for remote sensing images. Due to the lightweight property of ThunderNet,
we construct our framework based on its backbone network named SNET. Inspired by
the idea of the deconvolutional single shot detector (DSSD), a lightweight feature fusion
method is proposed and we detect small objects on shallow features and big objects on
the deep features. The experimental results confirmed that the proposed lightweight
object detection framework can achieve excellent performance in remote sensing image
object detection.

3. Method

Remote sensing datasets may involve a variety of objects at different scales. For
example, among the ten classes of objects contained in NWPU VHR-10 dataset, vehicles
and storage tanks are very different in scale from ships, baseball fields, and basketball
courts. Therefore, the remote sensing image object detection network is required to be
able to detect objects in large and small sizes in an onboard environment. Constrained by
affordable computing power, it is still a very challenging problem to achieve the object
detection of satellite imagery.

This paper proposes an onboard object detection framework based on SNET, called
Multi-scale fusion SNET (MSF-SNET), which is optimized for the onboard application
environment and is a lightweight framework. Next, the characteristics of MSF-SNET will
be analyzed. The working process of MSF- SNET framework on the satellite is shown
in Figure 1.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 25

reside in each chip. The location regression and classification method are logistic regres-
sion which was also adopted by YOLO V3.

Step 5: detection results. The final detection results are obtained according to indices
of the slices and the detection result of each slice.

Figure 1. Onboard detection process. First, capture images by an onboard camera. Second, split
large size image into small chips. Third, feature extraction. Fourth, location regression and classifi-
cation. Fifth, get detection results.

3.1. Multi-Scale Fusion SNET
In this part, the details of MSF-SNET are described. Our model design emphasizes

the lightweight feature and computational efficiency of the model without reduction of
detection accuracy. The MSF-SNET network structure is illustrated in Figure 2.

3.1.1. Input Image Size
The input image size in the object detection network is relatively large. For instance,

the YOLO input image size is 416 × 416, and the FPN input image size exceeds 800×800.
Although the input image with large size has certain advantages, it will cause huge calcu-
lation burden. The results of ThunderNet indicate that the input image size of the CNN
network needs to be compatible with its backbone network. When a large backbone net-
work is used to extract features of a small image, the size of the extracted features is low,
and detailed features will be lost. On the contrary, when a small backbone network is used
to extract features of a large image, its ability to extract features is limited by the network,
so that information of the image is lost. In practical scenarios, satellite images are sent to
the detection model after being sliced and the model is implemented by dedicated hard-
ware, which limited the input image size. The selected image size needs to be suitable and

Figure 1. Onboard detection process. First, capture images by an onboard camera. Second, split large size image into small
chips. Third, feature extraction. Fourth, location regression and classification. Fifth, get detection results.

Remote Sens. 2021, 13, 683 6 of 25

The workflow of an onboard object detection system in which MSF-SNET is used is
divided into five steps.

Step1: image capture. The image obtained by the satellite camera has an ultra-large
size, which far exceeds the input image size of the convolutional network.

Step 2: slice the image. Although the captured image can be rescaled, adjusting the size
will cause information loss, particularly small objects may be lost completely. Therefore,
it is necessary to slice the captured image to make the size meet the input requirements
of the convolutional network. Considering the hardware implementation of the onboard
environment, each slice is fixed at 256 × 256 in this article, and the step size is 220, that is,
the input size of the convolutional network is 256 × 256.

Step 3: features extraction. The backbone network of MSF-SNET plays a vital role in
the overall architecture which is responsible for extracting features. The performance of
the backbone network determines the performance of the entire detector, and its compu-
tational cost also occupies most of the calculation of the entire detector. MSF-SNET uses
a lightweight backbone network to reduce the amount of calculation while maintaining
its performance.

Step 4: position regression and classification. Position regression and classification
are performed on six different scale feature maps to get the locations and classes of objets
reside in each chip. The location regression and classification method are logistic regression
which was also adopted by YOLO V3.

Step 5: detection results. The final detection results are obtained according to indices
of the slices and the detection result of each slice.

3.1. Multi-Scale Fusion SNET

In this part, the details of MSF-SNET are described. Our model design emphasizes
the lightweight feature and computational efficiency of the model without reduction of
detection accuracy. The MSF-SNET network structure is illustrated in Figure 2.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 25

simple for hardware implementation. Considering comprehensively, the input image size
is set to 256 × 256. The input image into the model in this work is an RGB image.

stage2 state3 stage4

256x256x3 32x32x128 16x16x256 8x8x512

CONV5 conv6

4x4x256 2x2x256 1x1x256

Conv7 C7_lat

Broadcast

2x2

f6

2x2

C6_lat

f5C5_lat

f4C4_lat

U&C: Upsample &1*1Cov

f3C3_lat
U&C

f2

4x4

8x8

16x16

32x32

U&C

U&C

U&C

PMF

PM: Prediction Module

PME

Backbone

PMD

PMC

PMB

PMA

DetectorsFeature Fusion

Figure 2. The overall structure of the proposed multi-scale feature detector (MSF-SNET) algorithm
framework with six detectors, named (prediction module A) PMA, PMB, PMC, PMD, PME, and
PMF. Each component consists of this framework will be described in detail in 3.1.2.

3.1.2. Backbone Network
The basic function of the backbone network is to extract features from the image,

which has a significant impact on the performance of object detection. The design goal of
the MSF-SNET backbone network is to obtain as many objects features as possible with a
low computational cost.

Previous work [60] has proved the importance of the receptive field to the object de-
tection model. In terms of large objects in remote sensing images, such as baseball fields,
basketball courts, ships, etc., they require a larger receptive field to extract contextual in-
formation and related feature information. Large receptive fields can effectively represent
more features of large objects. The small receptive field only perceives the local infor-
mation of the object, which causes the decrease of the precision rate. For large objects de-
tection, deeper features with a large receptive field are required, while for small objects
detection, low-level features are required.

Besides, low-level features contain a large amount of spatial location information.
The localization subtask is more sensitive to the low-level features, but deep features are
more discriminative and important to the classification subtasks. The lightweight back-
bone network needs to consider the impact of both features on two types of subtasks.
Therefore, our backbone uses multi-stage to extract both deep features and low-level fea-
tures, so that MSF-SNET can make use of the discriminability of deep features to improve
the accuracy of a classification and make use of the spatial detail information of low-level
features to improve the accuracy of the location.

While the previous lightweight object detection models can improve speed and re-
duce model parameters, there are still some limitations, for example, ShuffleNetV1/V2 has
restricted receptive field, MobileNetV2 lacks low-level features, and Xception suffer from
the insufficient high-level features under small computational budgets [54].

ThunderNet considers the above factors and makes improvements based on Shuf-
fleNet V2, but it can still be improved.

Based on these insights, we built a more lightweight backbone network based on the
backbone network (SNET) of Thundernet.

Figure 2. The overall structure of the proposed multi-scale feature detector (MSF-SNET) algorithm framework with six
detectors, named (prediction module A) PMA, PMB, PMC, PMD, PME, and PMF. Each component consists of this framework
will be described in detail in Section 3.1.2.

3.1.1. Input Image Size

The input image size in the object detection network is relatively large. For instance,
the YOLO input image size is 416 × 416, and the FPN input image size exceeds 800 × 800.
Although the input image with large size has certain advantages, it will cause huge
calculation burden. The results of ThunderNet indicate that the input image size of the
CNN network needs to be compatible with its backbone network. When a large backbone

Remote Sens. 2021, 13, 683 7 of 25

network is used to extract features of a small image, the size of the extracted features is
low, and detailed features will be lost. On the contrary, when a small backbone network
is used to extract features of a large image, its ability to extract features is limited by the
network, so that information of the image is lost. In practical scenarios, satellite images are
sent to the detection model after being sliced and the model is implemented by dedicated
hardware, which limited the input image size. The selected image size needs to be suitable
and simple for hardware implementation. Considering comprehensively, the input image
size is set to 256 × 256. The input image into the model in this work is an RGB image.

3.1.2. Backbone Network

The basic function of the backbone network is to extract features from the image,
which has a significant impact on the performance of object detection. The design goal of
the MSF-SNET backbone network is to obtain as many objects features as possible with a
low computational cost.

Previous work [60] has proved the importance of the receptive field to the object
detection model. In terms of large objects in remote sensing images, such as baseball
fields, basketball courts, ships, etc., they require a larger receptive field to extract contextual
information and related feature information. Large receptive fields can effectively represent
more features of large objects. The small receptive field only perceives the local information
of the object, which causes the decrease of the precision rate. For large objects detection,
deeper features with a large receptive field are required, while for small objects detection,
low-level features are required.

Besides, low-level features contain a large amount of spatial location information. The
localization subtask is more sensitive to the low-level features, but deep features are more
discriminative and important to the classification subtasks. The lightweight backbone
network needs to consider the impact of both features on two types of subtasks. Therefore,
our backbone uses multi-stage to extract both deep features and low-level features, so that
MSF-SNET can make use of the discriminability of deep features to improve the accuracy
of a classification and make use of the spatial detail information of low-level features to
improve the accuracy of the location.

While the previous lightweight object detection models can improve speed and reduce
model parameters, there are still some limitations, for example, ShuffleNetV1/V2 has
restricted receptive field, MobileNetV2 lacks low-level features, and Xception suffer from
the insufficient high-level features under small computational budgets [54].

ThunderNet considers the above factors and makes improvements based on Shuf-
fleNet V2, but it can still be improved.

Based on these insights, we built a more lightweight backbone network based on the
backbone network (SNET) of Thundernet.

First, we replace the 5 × 5 depthwise convolutions with a 3 × 3 separable atrous
convolution (dilated rate = 2) [72]. It effectively reduces the computational cost and the
number of parameters while maintaining its receptive field.

Second, to adapt to the detection of super-large objects, three additional convolutional
layers are added to extract deeper features. At the same time, to perform position regression
and improve the detection ability of small objects, and balance the deep and low-level
features, three feature layers from the backbone network together with the last three layers
are used as detection feature layers.

The last convolutional layer of stage2 is denoted as C2, the last convolutional layer
of stage3 is denoted as C3, and the last convolutional layer of Stage4 is denoted as C4.
Three newly added convolutional layers are denoted as C5, C6, and C7 respectively. Object
detection and position regression are performed on the output feature maps of these 6
convolutional layers. Table 1 shows the overall architecture of the backbone.

Remote Sens. 2021, 13, 683 8 of 25

Table 1. The architecture of the MSF-SNET backbone networks. SNet was used as a basic framework
but replaces all 5 × 5 depthwise convolutions with 3 × 3 separable atrous convolutions (dilated rate
= 2). SAC in the table stands for separable atrous convolution. The number after close bracket means
this module will be repeated the number times. For example, SAC3 × 3, [128, s1] × 3 in stage 2, 3
after close bracket means this module will be repeated 3 times.

Stage Output Size Layer

input 256 × 256 image
Conv1 128 × 128 × 24 3 × 3.24, s2
Pool 64 × 64 × 24 3 × 3 maxpool, s2

Stage2 32 × 32 × 128
32 × 32 × 128

SAC3 × 3, [128, s2]
SAC3 × 3, [128, s1] × 3

Stage3 16 × 16 × 256
16 × 16 × 256

SAC3 × 3, [256, s2]
SAC3 × 3, [256, s1] × 7

Stage4 8 × 8 × 512
8 × 8 × 512

SAC3 × 3, [512, s2]
SAC3 × 3, [512, s1] × 3

Conv5 4 × 4 × 128
4 × 4 × 256

conv1 × 1 × 128
conv3 × 3 × 256

Conv6 2 × 2 × 128
2 × 2 × 256

Conv1 × 1 × 128
Conv3 × 3 × 256

Conv7 1 × 1 × 128
1 × 1 × 256

Conv1 × 1 × 128
Conv3 × 3 × 256

The basic building blocks of MSF-SNET are shown in Figure 3. In Table 1, the basic
components of stage2, stage3, and stage4 use the same units as Shufflenet v2 used. Stage2
is composed of one SDU and three BUs cascaded to each other. The SDU achieves 2 times
downsampling, and BU is the basic component of the backbone network.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 25

has been reduced by 5.0% when the input image size is 256 × 256. By reducing the number
of parameters and the computational complexity, the proposed algorithm is more efficient.

BN

SAC：Separable Atrous Convolution

Channel Split

1x1 Conv

3x3 SAC

1x1 Conv

Channel Shuffle

Concat

BN ReLU

BN

BN ReLU

1x1 Conv

3x3 SAC
Stride=2

1x1 Conv

Channel Shuffle

Concat

BN ReLU

BN

BN ReLU

3x3 SAC
Stride=2

1x1 Conv

BN ReLU

(a) (b)
Figure 3. Building blocks of MSF-SNET. (a) SDU: spatial downsampling (2x) unit; (b) BU: basic
building unit.

Table 2. Parameters and computing cost for MSF-SNET.

Algorithms Input size Parameters Flops

ThunderNet
224 × 224

1.58 M
168.65 M

256 × 256 220.12 M
320 × 320 343.64 M

MSF-SNET
224 × 224

1.54 M
160.28 M

256 × 256 209.18 M
320 × 320 326.55 M

3.2. Feature Fusion
To improve the accuracy of classification and location, deep features and low-level

features are combined so that the discriminability of deep features can be fully utilized.
The most common feature fusion method is the feature pyramid network (FPN) [73].
While improving the detection performance, FPN tends to obtain a limited receptive field
and an increase of the number of blocks will lead to a large parameter burden and memory
consumption. Thus, it is not suitable for application in lightweight networks. Inspired by
previous work [53,74], a lightweight feature fusion method is proposed. The proposed
method is illustrated in Figure 4.

The output features of the last layer are up-sampled and then subjected to a 3 × 3
convolution to obtain the features of the same size as the previous node. Then the two
features are cascaded, and feature shuffle is performed to form the final detection feature
map. For example, the last output feature map C7 is up-sampled and convolved to obtain
C7_lat, which has the same size as C6. C7_lat and C6 are concatenated and shuffled to
form a feature map f6 for object detection. Then f6 is up-sampled and convolved to obtain

Figure 3. Building blocks of MSF-SNET. (a) SDU: spatial downsampling (2x) unit; (b) BU: basic
building unit.

Remote Sens. 2021, 13, 683 9 of 25

As shown in Table 1 the backbone is made up of three stages and four convolution
layers. The three stages contain two basic units named spatial down-sampling unit (SDU)
and basic building (BU) which are shown in Figure 3. The first layer in the backbone is
a 3 × 3 convolution layer with twenty-four filters followed by a max-pooling layer. The
max-pooling layer uses a window of size 3 × 3 with a stride of 2. Stage 2, stage 3, and stage
4 are the main blocks of the backbone. One SDU and three BUs are stacked to form stage2
and stage 4, one SDU, and seven BUs are stacked to form stage 3. the output size of each
layer or block is shown in Table 1. The output of the previous layer is the input of the next
layer, so the input size and output size of each layer can be obtained according to Table 1.

We compared the proposed framework with ThunderNet in terms of network parame-
ters and computational cost (Flops, one Flop stands for one multiplication and one addition
operation). The comparison results in Table 2, it implies that the network parameters of
the proposed framework have been reduced by 4.2%, and the computational cost has been
reduced by 5.0% when the input image size is 256 × 256. By reducing the number of
parameters and the computational complexity, the proposed algorithm is more efficient.

Table 2. Parameters and computing cost for MSF-SNET.

Algorithms Input Size Parameters Flops

ThunderNet
224 × 224

1.58 M
168.65 M

256 × 256 220.12 M
320 × 320 343.64 M

MSF-SNET
224 × 224

1.54 M
160.28 M

256 × 256 209.18 M
320 × 320 326.55 M

3.2. Feature Fusion

To improve the accuracy of classification and location, deep features and low-level
features are combined so that the discriminability of deep features can be fully utilized.
The most common feature fusion method is the feature pyramid network (FPN) [73]. While
improving the detection performance, FPN tends to obtain a limited receptive field and
an increase of the number of blocks will lead to a large parameter burden and memory
consumption. Thus, it is not suitable for application in lightweight networks. Inspired
by previous work [53,74], a lightweight feature fusion method is proposed. The proposed
method is illustrated in Figure 4.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 25

C6_lat. Concatenate C6_lat and C5 to form a feature map of another scale. By analogy, all
object detection feature maps are obtained. This method achieves the fusion of deep fea-
tures and low-level features with a little computational cost.

Figure 4. Feature fusion method. The deeper fused feature was up-sampled and concatenate with
the upper feature. The fusion feature is generated by shuffling the concatenated feature and con-
voluted with a 3 × 3 convolution kernel.

Many references have concluded that although the fusion of multi-layer features can
improve the performance of the algorithm, it requires many computing resources. SSD
experimental results suggest that feature fusion can improve the accuracy by about 1-1.5%.
Although the performance was slightly improved, the computation cost of feature fusion
was 5.04G Flops (one multiplication and one addition), which increased by 14.2%. Com-
putation cost is too high compared with the performance improvement brought by feature
fusion. Unlike DSSD, our method abandons the use of deconvolution. Instead, the fused
features are directly up-sampled and cascaded with the features obtained from the back-
bone network. The features are shuffled and convolved to obtain the fusion features of the
upper layer. The experimental results demonstrate that this method achieves similar per-
formance as the feature fusion method of DSSD, but the method results in a reduction of
computing cost.

3.3. Predict Module
RCNN series are the representatives of two-stage detection algorithms, YOLO and

SSD are the typical representatives of one-stage detection algorithms. For two-stage de-
tection algorithms, the proposed boxes are first obtained through the region proposal net-
work (RPN), and then position regression and classification are performed on this basis.
The one-stage object detection network considers that each point on the feature map as a
detection point, which corresponds to several anchors, and then performs position regres-
sion and classification based on these anchors. Compared with the one-stage algorithm,
the two-stage algorithm requires an additional RPN network to propose a frame. There-
fore, it needs to take up extra storage space for parameters and occupy extra computing
resources, while its accuracy will be slightly higher than that of the one-stage object de-
tection algorithm. For object detection onboard, a balance needs to be made between ac-
curacy and computational cost. High accuracy is not the only pursuit. Moreover, it is ex-
pected that the detection part is simple and efficient, thus the computational complexity
is reduced.

A one-stage detection network is more suitable for satellite applications due to its
simplicity and rapidity. To this end, we adopt the one-stage network as the basic detection
method. Inspired by SSD and DSSD algorithms, objects are detected on multiple feature

backbone Feature Conv5

Upsam
ple

Concatenate

Conv 3x3x256

Fusion Feature

4x4x256

2x2x256

4x4x256

Shuffle

 Last Fusion Feature Layer

Figure 4. Feature fusion method. The deeper fused feature was up-sampled and concatenate with the
upper feature. The fusion feature is generated by shuffling the concatenated feature and convoluted
with a 3 × 3 convolution kernel.

Remote Sens. 2021, 13, 683 10 of 25

The output features of the last layer are up-sampled and then subjected to a 3 × 3
convolution to obtain the features of the same size as the previous node. Then the two
features are cascaded, and feature shuffle is performed to form the final detection feature
map. For example, the last output feature map C7 is up-sampled and convolved to obtain
C7_lat, which has the same size as C6. C7_lat and C6 are concatenated and shuffled to
form a feature map f6 for object detection. Then f6 is up-sampled and convolved to obtain
C6_lat. Concatenate C6_lat and C5 to form a feature map of another scale. By analogy,
all object detection feature maps are obtained. This method achieves the fusion of deep
features and low-level features with a little computational cost.

Many references have concluded that although the fusion of multi-layer features
can improve the performance of the algorithm, it requires many computing resources.
SSD experimental results suggest that feature fusion can improve the accuracy by about
1–1.5%. Although the performance was slightly improved, the computation cost of feature
fusion was 5.04G Flops (one multiplication and one addition), which increased by 14.2%.
Computation cost is too high compared with the performance improvement brought by
feature fusion. Unlike DSSD, our method abandons the use of deconvolution. Instead, the
fused features are directly up-sampled and cascaded with the features obtained from the
backbone network. The features are shuffled and convolved to obtain the fusion features
of the upper layer. The experimental results demonstrate that this method achieves similar
performance as the feature fusion method of DSSD, but the method results in a reduction
of computing cost.

3.3. Predict Module

RCNN series are the representatives of two-stage detection algorithms, YOLO and SSD
are the typical representatives of one-stage detection algorithms. For two-stage detection
algorithms, the proposed boxes are first obtained through the region proposal network
(RPN), and then position regression and classification are performed on this basis. The one-
stage object detection network considers that each point on the feature map as a detection
point, which corresponds to several anchors, and then performs position regression and
classification based on these anchors. Compared with the one-stage algorithm, the two-
stage algorithm requires an additional RPN network to propose a frame. Therefore, it needs
to take up extra storage space for parameters and occupy extra computing resources, while
its accuracy will be slightly higher than that of the one-stage object detection algorithm. For
object detection onboard, a balance needs to be made between accuracy and computational
cost. High accuracy is not the only pursuit. Moreover, it is expected that the detection part
is simple and efficient, thus the computational complexity is reduced.

A one-stage detection network is more suitable for satellite applications due to its
simplicity and rapidity. To this end, we adopt the one-stage network as the basic detection
method. Inspired by SSD and DSSD algorithms, objects are detected on multiple feature
scales. The second stage output, third stage output, and fourth stage output of SNET are
employed as the detection feature maps. These features are low-level features that contain
rich location information and are more beneficial to small object detection. Besides, to
detect large-scale objects, another three convolution layers are added to the network, thus
three more feature maps are generated respectively. These three feature maps are extracted
from deep features that contain rich semantic information. Therefore, it is convenient for
large object detection.

After trying four kinds of detection modules, DSSD describes the result that the
detection module shown in Figure 5 conducted the highest efficiency. In this paper, this
detection module is used as the object detection part.

Remote Sens. 2021, 13, 683 11 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 25

scales. The second stage output, third stage output, and fourth stage output of SNET are
employed as the detection feature maps. These features are low-level features that contain
rich location information and are more beneficial to small object detection. Besides, to de-
tect large-scale objects, another three convolution layers are added to the network, thus
three more feature maps are generated respectively. These three feature maps are ex-
tracted from deep features that contain rich semantic information. Therefore, it is conven-
ient for large object detection.

After trying four kinds of detection modules, DSSD describes the result that the de-
tection module shown in Figure 5 conducted the highest efficiency. In this paper, this de-
tection module is used as the object detection part.

Figure 5. Prediction module. This module was proved to be an efficient prediction module and was
used as the detection part in DSSD. The outputs of this module in DSSD are the probability of classes
and location information, while the confidence information is added in the proposed framework.

3.4. Detection Architecture
As shown in Figure 2, the output size of stage2, stage3, and stage4 are 32 × 32 × 128,

16 × 16 × 256, 8 × 8 × 512 respectively. The feature map size is reduced to half of the original
size after each stage by convolution with a stride of 2. To build a rich feature representa-
tion of the original image, another three convolution layers named C5, C6, and C7 are
added. The feature map size of each layer is also reduced to half of the original size after
each layer by maxpooling with a stride of 2. So, the output size of C5, C6, and C7 are 4 ×
4 × 256, 2 × 2 × 256, and 1 × 1 × 256 respectively. The strategy for feature fusion shown in
Figure 4 is adopted to generate the fused feature maps, i.e., f2, f3, f4, f5, and f6.

The prediction module shown in Figure 5 is used as a detector to perform detection.
Six detectors (PMA, PMB, PMC, PMD, PME, and PMF) are set up to perform detection on
different fused feature maps and the output of conv7 simultaneously. The six detectors of
diverse sizes and sensitivities could take advantage of both low-level and high-level fea-
tures in this way to improve the detection performance.

The input image is split into a grid of S × S cells in YOLO network. A cell is responsi-
ble for detecting the existence of the object if the center of which is failed into the cell.
Similarly, these six detectors make detection at feature maps of six different sizes, having
strides 256, 128, 64, 32, 2, and 16 respectively. This means, with an input image of size 256
× 256, we make detections on scales 1 × 1, 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32. The 1 × 1
and 2 × 2 layers are responsible for detecting large objects, the 4 × 4 and 8 × 8 layers are for
detecting medium objects, and the 16 × 16 and 32 × 32 layers detect the smaller objects.
Therefore, the sensitivity of the six detectors is different from each other. Each of them
plays a complementary role with each other.

3.5. Model Training
MSF-SNET uses multiple detectors to detect objects on feature maps of different

scales. The scales of the feature maps sizes are 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1
respectively. The network adopts the same training strategy as YOLO V3. Several prese-
lected boxes are preset on the grid of each feature map. Each preselected box has a differ-
ent scale and aspect ratio. The preselected box is matched with the real box (GT box) dur-
ing the training process. The matching rule is that the intersection over union (IOU) value
between the preselected box and the real box is greater than a certain threshold (IOU >

Feature Layer

Conv1x1x256

Conv1x1x256

Conv1x1x1024

Eltw Sum

Cls

Loc Regress

confidence

Figure 5. Prediction module. This module was proved to be an efficient prediction module and was
used as the detection part in DSSD. The outputs of this module in DSSD are the probability of classes
and location information, while the confidence information is added in the proposed framework.

3.4. Detection Architecture

As shown in Figure 2, the output size of stage2, stage3, and stage4 are 32 × 32 × 128,
16 × 16 × 256, 8 × 8 × 512 respectively. The feature map size is reduced to half of the
original size after each stage by convolution with a stride of 2. To build a rich feature
representation of the original image, another three convolution layers named C5, C6, and
C7 are added. The feature map size of each layer is also reduced to half of the original size
after each layer by maxpooling with a stride of 2. So, the output size of C5, C6, and C7
are 4 × 4 × 256, 2 × 2 × 256, and 1 × 1 × 256 respectively. The strategy for feature fusion
shown in Figure 4 is adopted to generate the fused feature maps, i.e., f2, f3, f4, f5, and f6.

The prediction module shown in Figure 5 is used as a detector to perform detection.
Six detectors (PMA, PMB, PMC, PMD, PME, and PMF) are set up to perform detection on
different fused feature maps and the output of conv7 simultaneously. The six detectors
of diverse sizes and sensitivities could take advantage of both low-level and high-level
features in this way to improve the detection performance.

The input image is split into a grid of S× S cells in YOLO network. A cell is responsible
for detecting the existence of the object if the center of which is failed into the cell. Similarly,
these six detectors make detection at feature maps of six different sizes, having strides 256,
128, 64, 32, 2, and 16 respectively. This means, with an input image of size 256 × 256, we
make detections on scales 1 × 1, 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32. The 1 × 1 and
2 × 2 layers are responsible for detecting large objects, the 4 × 4 and 8 × 8 layers are for
detecting medium objects, and the 16 × 16 and 32 × 32 layers detect the smaller objects.
Therefore, the sensitivity of the six detectors is different from each other. Each of them
plays a complementary role with each other.

3.5. Model Training

MSF-SNET uses multiple detectors to detect objects on feature maps of different
scales. The scales of the feature maps sizes are 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and
1 × 1 respectively. The network adopts the same training strategy as YOLO V3. Several
preselected boxes are preset on the grid of each feature map. Each preselected box has
a different scale and aspect ratio. The preselected box is matched with the real box (GT
box) during the training process. The matching rule is that the intersection over union
(IOU) value between the preselected box and the real box is greater than a certain threshold
(IOU > 0.5). To remove the overlap detections, non-maximum suppression (NMS) is used
for post-processing. The NMS threshold is equal to 0.5.

After the above matching process, a small number of predicted bounding boxes can
be matched with the real bounding boxes, while most of the predicted bounding boxes
are filtered. This will result in an imbalance between positive and negative samples. To
avoid this situation, we sort the probability of each predicted bounding box and discard
the predicted bounding box with low probability to adjust the ratio between positive and
negative samples to 1:3. This will make the training process converge more easily.

Normally, the number of large objects in an image is much smaller than the number
of tiny objects. We put this factor into consideration when setting anchors. The number of
anchors set on each grid of the low-level feature map is greater than that of the deep feature
map. Six anchors are set on each grid of the first two feature maps, four anchors are set

Remote Sens. 2021, 13, 683 12 of 25

on each grid of the middle two feature maps, and two anchors are set on each grid of the
last two feature maps. The final setting is [6,6,4,4,2,2], which greatly reduces the number
of anchors on these feature maps. The aspect ratio of Anchors is set to [1,2,3,1/2,1/3,1].
Each anchor corresponds to six parameters, which refer to four positional parameters, one
confidence parameter, and one class parameter respectively.

As shown in Equation (1), the loss function of YOLO V3 is adopted as the loss function
of MSF-SNET whichconsists of three parts, i.e., position loss, class loss, and confidence loss.

L = Lloc + Lcls + Lconf (1)

For each predicted bounding box, the four parameters output by the network are the
normalized coordinate offset value tx and ty of the object center point and the scaling factor
tw and th of the bounding box. The coordinates of the center point and the width and
height of the predicted bounding box are represented by bx, by, bw, and bh respectively. Pw
and Ph are the width and height of the anchor mapped to the feature map. The relationship
between these parameters can be expressed by Equation (2).

bx= σ(tx) + Cxby = σ
(
ty
)
+ Cybw = Pwetwbh= Pheth (2)

The position loss function uses squared error loss, which can be expressed by Equation (3).

Lloc= λcoord

k2

∑
i=0

B

∑
j=0

Iobj
ij ×scale× SE (3)

where Iobj
ij is a binary factor, which means that the value is 1 only when the IOU between

the j-th predicted bounding box in the i-th grid and the ground truth box is the largest,
otherwise it is 0. That is, only those predicted bounding boxes with the largest IOU of the
ground truth boxes contribute to the loss function, otherwise, they are not included in the
loss function.

To improve the detection rate of the model for small objects, a penalty factor is added
to the loss function, which can be expressed as Equation (4).

scale = 2− (bw)ij(bh)ij (4)

SE stands for squared error and can be expressed as Equation (5).

SE = ((t̂x)ij − (tx)ij)
2 + ((t̂y)ij − (ty)ij)

2 + ((t̂w)ij − (tw)ij)
2 + ((t̂h)ij − (th)ij)

2 (5)

The class loss function adopts the cross-entropy loss function, which can be expressed
as Equation (6).

Lloc= λcls

k2

∑
i=0

B

∑
j=0

Iobj
ij ∑

c∈classes
−[P̂j

i log Pj
i + (1− P̂j

i) log (1− Pj
i)] (6)

The confidence loss function also uses the cross-entropy loss function. Unlike the class
loss function, which only calculates the loss corresponding to the prediction bounding box
with the largest IOU, the confidence loss function calculates all prediction boxes, which
can be expressed as Equation (7).

Lconf =
k2

∑
i=0

B

∑
j=0

Iobj
ij ×BCE + λnoobj

k2

∑
i=0

B

∑
j=0

Inoobj
ij ×BCE (7)

Remote Sens. 2021, 13, 683 13 of 25

where BCE represents cross-entropy loss, which can be expressed as Equation (8).

BCE = −[Ĉj
i log Cj

i + (1− Ĉj
i) log (1−Cj

i)] (8)

The parameter λ involved in the above loss function is the adjustment factor of the
loss function, and the proportion of each part of the loss function can be adjusted according
to the actual situation. Here λ is equal to 1.

To strengthen the robustness and generalization of the model, image data are aug-
mented. Since the remote sensing image is obtained overhead, the same object may present
different directions and multiple perspectives. Therefore, image rotation, object rotation,
and image scaling are used to augment the data, with a scaling range of [0.5, 2]. In both the
training and testing process, the image size input to the model is 256 × 256. Therefore, the
remote sensing images are clipped at a 20% overlap rate before being sent to the model.
Besides, we add objects randomly in the image to improve the detection performance of
small objects.

4. Experimental Results

To verify and evaluate the performance of the proposed MSF-SNET framework, the
public dataset NWPU VHR-10 and the DIOR dataset are used in our work. The following
is a detailed description of the experimental environment, test procedures, and dataset
used in our work.

4.1. Datasets

The NWPU VHR-10 dataset contains ten types of objects. A total of 650 images,
including 757 airplanes, 302 ships, 655 storage tanks, 390 baseball diamonds, 524 tennis
courts, 159 basketball courts, 163 ground track fields, 224 harbors, 124 bridges, and 477
vehicles, with the bounding boxes of manual annotation. The maximum size of images in
NWPU VHR-10 dataset is 1728 × 1028 pixels, and the minimum size is 533 × 597 pixels.
The DIOR data set contains 20 types of objects and a total of 23,463 images. The size of
images in the DIOR dataset is 800 × 800 pixels.

The number of images in NWPU VHR-10 is relatively small compared with DIOR
dataset. Two datasets with different number of images are both utilized to verify whether
the model is effective on different dataset. Meanwhile, DIOR dataset covers more object
types, which can effectively verify the adaptability performance of the model.

4.2. Implementation

Due to the number of images in the NWPU VHR-10 dataset is small, 80% of the images
were randomly selected as the training set and 20% of the images as the test set in our
experiment. In contrast, The DIOR dataset is larger. In the experiment, 90% of the images
were randomly selected as the training set and 10% of the images as the test set. Besides,
to improve the generalization ability of the model, the data within these two datasets are
augmented as described in Section 3.3.

The MSF-SNET model is an end-to-end model. We implemented the model using the
open-source PyTorch1.3 framework and trained it using graphics processing units (GPUs).
Since MSF-SNET is modified based on SNET, we use the pre-training weight of SNET on
the VOC2007 dataset as the initial weight of MSF-SNET. Then fine-tuned it on the NWPU
VHR-10 and DIOR datasets. In our experiment, we used a stochastic gradient descent
algorithm (SGD) to update the parameters. The batch size used in the experiment is 16, and
a total of 300 epochs were performed. The learning rate of the first 100 Epochs is 0.01, that
of the middle 100 epochs is 0.001, and that of the next 100 epochs is 0.0001. The momentum
and weight decay were set to 0.9 and 0.0005 respectively. The PC operating system used in
the experiment is Ubuntu 18.04, the CPU is Intel i7-7700, the RAM is 16GB and the GPU is
NVIDIA GeForce GTX1080.

Remote Sens. 2021, 13, 683 14 of 25

4.3. Evaluation Metrics

Precision-Recall Curve, average precision (AP) and mean average precision (mAP)
is widely applied as quantitative evaluation indicators for object detection. In this paper,
these indicators are also adopted to evaluate the performance of the proposed algorithm.
Besides, the time complexity and space complexity of the proposed framework are also
evaluated by cost density.

Precision and recall are defined as Equations (9) and (10).

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Accuracy indicates how many of all positive objects are correctly predicted, and the
recall rate shows how many of all positive objects are correctly predicted. AP calculates the
average of all precisions with a recall rate between 0 and 1. AP is a commonly used index
to measure the detection accuracy of the detector. For example, algorithms such as RCNN,
YOLO, and SSD also use this evaluation index. In practical applications, the calculation
method is as Equation (11)

AP =
n−1

∑
i=1

(ri+1−ri)Pinterp(ri+1) (11)

where Pinterp(r) = max
r′≥r

p(r′).

For single class objects, AP is used to measure algorithm performance, but in multi-
class object detection tasks, mAP (see Equation (12)) is used to measure detector perfor-
mance, which is defined as the average value of AP on multiple classes of objects.

mAP =
∑K

i=1 APi
K

(12)

The time complexity of a model is measured by the amount of calculation it consumes.
The greater the amount of calculation it consumes, the higher its time complexity is. In
this paper, the time complexity of the model is measured by counting the number of Flops
consumed in the testing phase. Flop is defined as multiply and accumulation (MAC).
Besides, the number of parameters is also an important indicator of model performance, as
well as algorithm space complexity, which determines whether the model can be deployed.

As each algorithm runs on different platforms with different performances, the com-
puting power is not the same. A comparison of average running time per image does
not indicate the pros and cons of the algorithm. To fairly compare the performance of the
algorithm, a cost density evaluation metrics is proposed, which is related to the number of
parameters and computational costs required by the algorithm. The calculation method is
as Equation (13).

cost density =
Parameters×Computing Cost

mAP
(13)

The smaller the cost density is, the better performance the algorithm can achieve while
consuming the same resources.

4.4. Experimental Results and Analysis
4.4.1. Results for NWPU VHR-10 dataset

Some examples of the detection results of the proposed framework MSF-SNET on
NWPU VHR-10 are illustrated in Figure 6. The results imply that the proposed algorithm is
effective when detecting ten classes of objects. The proposed algorithm is not only effective
for large objects detection, (for example, the Ground track field in Figure 6f,g, the harbor in

Remote Sens. 2021, 13, 683 15 of 25

Figure 6h and the bridge in Figure 6i), but also effective for small objects. For example, it
can detect the small ship object in Figure 6b and the Vehicle small object in Figure 6j.

Figure 6. Cont.

Remote Sens. 2021, 13, 683 16 of 25
Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 25

(g) (h)

(i) (j)

Figure 6. Object detection examples on NWPU-VHR-10 dataset. (a) Airplane; (b)ship; (c) storage
tank; (d) baseball diamond; (e) tennis court; (f) basketball court; (g) ground track field; (h) harbor;
(i) bridge and(j) vehicle.

To examine and evaluate the performance of the proposed framework MSF-SNET,
we compared this algorithm with the other five benchmark algorithms on AP and mAP
indicators, and the results are presented in Table 3.

Table 3. Performance comparison of different algorithms on NWPU-VHR-10 dataset.

 RICNN R-P-Faster R-CNN NEOON Thundernet CBFF-SSD MSF-SNET
Airplane 88.4% 90.4% 78.29% 86.06% 96.93% 93.53%

Ship 77.3% 75.0% 81.68% 85.04% 94.26% 92.18%
Storage tank 85.3% 44.4% 94.62% 47.28% 80.95% 58.77%

Baseball diamond 88.1% 89.9% 89.74% 89.57% 99.09% 97.93%
Tennis court 40.8% 79.7% 61.25% 51.32% 91.50% 65.06%

Basketball court 58.5% 77.6% 65.04% 68.31% 92.64% 79.46%
Ground track field 86.7% 87.7% 93.23% 86.81% 98.82% 94.68%

Harbor 68.6% 79.1% 73.15% 60.35% 91.59% 75.55%
Bridge 61.5% 68.2% 59.46% 86.25% 89.68% 91.43%
Vehicle 71.1% 73.2% 78.26% 63.80% 78.78% 75.46%

Mean AP 72.6% 76.5% 77.47% 72.48% 91.42% 82.40%
As shown in Table 3, the MSF-SNET algorithm is slightly better than the Thundernet

algorithm which is due to the adopted multi-scale feature detection method in our pro-
posed algorithm and the improvement brought by the fusion of deep and low-level fea-
tures. Compared with Thundernet, the MSF-SNET algorithm has a higher average detec-
tion accuracy (AP) in all categories. In particular, the AP on the three types of objects of
Storage tank, Tennis court, and Vehicle exceed the Thundernet algorithm by nearly 10%
and the mAP is 9.92% higher than Thundernet.

Compared with CBFF-SSD [14], MSF-SNET only has a slightly higher average detec-
tion accuracy of the Bridge category, and the average detection accuracy of other catego-
ries is slightly lower than that of the CBFF-SSD algorithm, and mAP is 9% lower than this

Figure 6. Object detection examples on NWPU-VHR-10 dataset. (a) Airplane; (b)ship; (c) storage
tank; (d) baseball diamond; (e) tennis court; (f) basketball court; (g) ground track field; (h) harbor;
(i) bridge and(j) vehicle.

To examine and evaluate the performance of the proposed framework MSF-SNET,
we compared this algorithm with the other five benchmark algorithms on AP and mAP
indicators, and the results are presented in Table 3.

Table 3. Performance comparison of different algorithms on NWPU-VHR-10 dataset.

RICNN R-P-Faster
R-CNN NEOON Thundernet CBFF-SSD MSF-

SNET

Airplane 88.4% 90.4% 78.29% 86.06% 96.93% 93.53%
Ship 77.3% 75.0% 81.68% 85.04% 94.26% 92.18%

Storage
tank 85.3% 44.4% 94.62% 47.28% 80.95% 58.77%

Baseball
diamond 88.1% 89.9% 89.74% 89.57% 99.09% 97.93%

Tennis
court 40.8% 79.7% 61.25% 51.32% 91.50% 65.06%

Basketball
court 58.5% 77.6% 65.04% 68.31% 92.64% 79.46%

Ground
track field 86.7% 87.7% 93.23% 86.81% 98.82% 94.68%

Harbor 68.6% 79.1% 73.15% 60.35% 91.59% 75.55%
Bridge 61.5% 68.2% 59.46% 86.25% 89.68% 91.43%
Vehicle 71.1% 73.2% 78.26% 63.80% 78.78% 75.46%

Mean AP 72.6% 76.5% 77.47% 72.48% 91.42% 82.40%

As shown in Table 3, the MSF-SNET algorithm is slightly better than the Thundernet
algorithm which is due to the adopted multi-scale feature detection method in our proposed
algorithm and the improvement brought by the fusion of deep and low-level features.
Compared with Thundernet, the MSF-SNET algorithm has a higher average detection
accuracy (AP) in all categories. In particular, the AP on the three types of objects of Storage

Remote Sens. 2021, 13, 683 17 of 25

tank, Tennis court, and Vehicle exceed the Thundernet algorithm by nearly 10% and the
mAP is 9.92% higher than Thundernet.

Compared with CBFF-SSD [14], MSF-SNET only has a slightly higher average detec-
tion accuracy of the Bridge category, and the average detection accuracy of other categories
is slightly lower than that of the CBFF-SSD algorithm, and mAP is 9% lower than this
algorithm. Although the MSF-SNET algorithm is inferior to the CBFF-SSD algorithm in
performance, it has obvious advantages in terms of the number of parameters and com-
putational complexity. The number of parameters of MSF-SNET is 1.52M, and CBFF-SSD
is 14.74M, which is 9 times of the proposed framework. The computational cost of the
MSF-SNET is 0.327 GFlops, while that of the CBFF-SSD is 5.51 GFlops, which is 16.85 times
that of the algorithm proposed in this article.

As shown in Table 4, the Cost Density of MSF-SNET is the lowest among these
algorithms, which is only 0.39, It implies that the algorithm proposed in this paper has the
best performance within the same computational resources.

Table 4. Cost comparison of different algorithms.

CBFF-SSD Thundernet MSF-SNET

Parameters (M) 14.74 1.58 1.54
Computing Cost

(GFlops) 5.51 0.344 0.21

mAP (%) 91.42 77.78 82.42
Cost Density 88.83 0.69 0.39

Figure 7 shows the PR curves of MSF-SNET in each category. It can be seen from the
figure that although the algorithm’s mAP reaches 82.42%, the detection accuracy on the
storage tank and tennis court categories is relatively low.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 25

algorithm. Although the MSF-SNET algorithm is inferior to the CBFF-SSD algorithm in
performance, it has obvious advantages in terms of the number of parameters and com-
putational complexity. The number of parameters of MSF-SNET is 1.52M, and CBFF-SSD
is 14.74M, which is 9 times of the proposed framework. The computational cost of the
MSF-SNET is 0.327 GFlops, while that of the CBFF-SSD is 5.51 GFlops, which is 16.85 times
that of the algorithm proposed in this article.

As shown in Table 4, the Cost Density of MSF-SNET is the lowest among these algo-
rithms, which is only 0.39, It implies that the algorithm proposed in this paper has the best
performance within the same computational resources.

Table 4. Cost comparison of different algorithms.

 CBFF-SSD Thundernet MSF-SNET
Parameters(M) 14.74 1.58 1.54

Computing Cost (GFlops) 5.51 0.344 0.21
mAP(%) 91.42 77.78 82.42

Cost Density 88.83 0.69 0.39
Figure 7 shows the PR curves of MSF-SNET in each category. It can be seen from the

figure that although the algorithm’s mAP reaches 82.42%, the detection accuracy on the
storage tank and tennis court categories is relatively low.

(a) (b)

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Airplane

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Ship

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
storage tank

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Baseball diamond

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

Figure 7. Cont.

Remote Sens. 2021, 13, 683 18 of 25
Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 25

(e) (f)

(g) (h)

(i) (j)

Figure 7. The precision recall curves of the proposed algorithm. (a) Airplane; (b)ship; (c) storage
tank; (d) baseball diamond; (e) tennis court; (f) basketball court; (g) ground track field; (h) harbor;
(i) bridge and(j) vehicle.

4.4.2. Results for DIOR Dataset
To further evaluate the performance of the proposed MSF-SNET framework, it was

also trained on DIOR dataset. The detection average precision (%) of the proposed frame-
work and other 13 representative deep learning-based algorithms are shown in Table 5
from category 1 to category 10, and in Table 6 from category 11 to category 20. each object
category in DIOR is assigned an index. In Tables 5 and 6, C1, C2, C3, C4, C5, C6, C7, C8,
C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, and C20 are corresponding to Air-
plane, Airport, Baseball field, Basketball court, Bridge, Chimney, Dam, Expressway ser-
vice area, Expressway, toll station, Golf course, Ground track field, Harbor, Overpass,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Tennis court

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Basketball court

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Ground track field

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Harbor

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Bridge

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Vehicle

Pr
ec

is
io

n

Recall

 CBFF-SSD
 R-P-Faster R-CNN
 RICNN
 ThunderNet
 MSF-SNET

Figure 7. The precision recall curves of the proposed algorithm. (a) Airplane; (b) ship; (c) storage
tank; (d) baseball diamond; (e) tennis court; (f) basketball court; (g) ground track field; (h) harbor;
(i) bridge and (j) vehicle.

4.4.2. Results for DIOR Dataset

To further evaluate the performance of the proposed MSF-SNET framework, it was
also trained on DIOR dataset. The detection average precision (%) of the proposed frame-
work and other 13 representative deep learning-based algorithms are shown in Table 5
from category 1 to category 10, and in Table 6 from category 11 to category 20. each object
category in DIOR is assigned an index. In Tables 5 and 6, C1, C2, C3, C4, C5, C6, C7, C8, C9,
C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, and C20 are corresponding to Airplane,
Airport, Baseball field, Basketball court, Bridge, Chimney, Dam, Expressway service area,

Remote Sens. 2021, 13, 683 19 of 25

Expressway, toll station, Golf course, Ground track field, Harbor, Overpass, Ship, Stadium,
Storage tank, Tennis court, Train station, Vehicle, and Wind mill respectively.

Table 5. Detection AP (%) comparison of different algorithms on DIOR dataset (C1–C10).

Backbone C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

R-CNN VGG16 35.6 43.0 53.8 62.3 15.6 53.7 33.7 50.2 33.5 50.1
RICNN VGG16 39.1 61.0 60.1 66.3 25.3 63.3 41.1 51.7 36.6 55.9

RICAOD VGG16 42.2 69.7 62.0 79.0 27.7 68.9 50.1 60.5 49.3 64.4
RIFD-
CNN VGG16 56.6 53.2 79.9 69.0 29.0 71.5 63.1 69.0 56.0 68.9

FRCNN VGG16 53.6 49.3 78.8 66.2 28.0 70.9 62.3 69.0 55.2 68.0
SSD VGG16 59.5 72.7 72.4 75.7 29.7 65.8 56.6 63.5 53.1 65.3

YOLOv3 Darknet-
53 72.2 29.2 74.0 78.6 31.2 69.7 26.9 48.6 54.4 31.1

FRCNN
with FPN

Resnet-50 54.1 71.4 63.3 81.0 42.6 72.5 57.5 68.7 62.1 73.1
Resnet-

101 54.0 74.5 63.3 80.7 44.8 72.5 60.0 75.6 62.3 76.0

MRCNN
with FPN

Resnet-50 53.8 72.3 63.2 81.0 38.7 72.6 55.9 71.6 67.0 73.0
Resnet-

101 53.9 76.6 63.2 80.9 40.2 72.5 60.4 76.3 62.5 76.0

RetinaNet
Resnet-50 53.7 77.3 69.0 81.3 44.1 72.3 62.5 76.2 66.0 77.7

Resnet-
101 53.3 77.0 69.3 85.0 44.1 73.2 62.4 78.6 62.8 78.6

PANet
Resnet-50 61.9 70.4 71.0 80.4 38.9 72.5 56.6 68.4 60.0 69.0

Resnet-
101 60.2 72.0 70.6 80.5 43.6 72.3 61.4 72.1 66.7 72.0

CornerNet Hourglass-
104 58.8 84.2 72.0 80.8 46.4 75.3 64.3 81.6 76.3 79.5

Thundernet Snet 90.1 68.8 90.8 67.4 38.3 86.8 59.5 68.6 61.0 67.3
MSF-
SNET Ours 90.3 76.6 90.9 69.6 37.5 88.3 70.6 70.8 63.6 69.9

Table 6. Detection AP (%) comparison of different algorithms on DIOR dataset (C11–C20).

Backbone C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP

R-CNN
[50] VGG16 49.3 39.5 30.9 9.1 60.8 18.0 54.0 36.1 9.1 16.4 37.7

RICNN
[13] VGG16 58.9 43.5 39.0 9.1 61.1 19.1 63.5 46.1 11.4 31.5 44.2

RICAOD
[73] VGG16 65.3 42.3 46.8 11.7 53.5 24.5 70.3 53.3 20.4 56.2 50.9

RIFD-CNN VGG16 62.4 51.2 51.1 31.7 73.6 41.5 79.5 40.1 28.5 46.9 56.1
FRCNN VGG16 56.9 50.2 50.1 27.7 73.0 39.8 75.2 38.6 23.6 45.4 54.1

SSD VGG16 68.6 49.4 48.1 59.2 61.0 46.6 76.3 55.1 27.4 65.7 58.6
YOLOv3 Dk-53 61.1 44.9 49.7 87.4 70.6 68.7 87.3 29.4 48.3 78.7 57.1
FRCNN

with FPN
Resnet-50 76.5 42.8 56.0 71.8 57.0 53.5 81.2 53.0 43.1 80.9 63.1

Resnet-101 76.8 46.4 57.2 71.8 68.3 53.8 81.1 59.5 43.1 81.2 65.1
MRCNN
with FPN

Resnet-50 75.8 44.2 56.5 71.9 58.6 53.6 81.1 54.0 43.1 81.1 63.5
Resnet-101 75.9 46.5 57.4 71.8 68.3 53.7 81 62.3 43.0 81.0 65.2

RetinaNet
Resnet-50 74.2 50.7 59.6 71.2 69.3 44.8 81.3 54.2 45.1 83.4 65.7

Resnet-101 76.6 49.9 59.6 71.1 68.4 45.8 81.3 55.2 44.4 85.5 66.1

PANet
Resnet-50 74.6 41.6 55.8 71.7 72.9 62.3 81.2 54.6 48.2 86.7 63.8

Resnet-101 73.4 45.3 56.9 71.7 70.4 62.0 80.9 57.0 47.2 84.5 66.1

CornerNet Hourglass-
104 79.5 26.1 60.6 37.6 70.7 45.2 84.0 57.1 43.0 75.9 64.9

Thundernet Snet 57.7 51.8 56.0 18.3 89.5 72.0 80.4 56.5 34.8 54.2 63.5
MSF-SNET Ours 61.9 59.0 57.5 20.5 90.6 72.4 80.9 60.3 39.8 58.6 66.5

Remote Sens. 2021, 13, 683 20 of 25

Nine region proposal-based algorithms and four regression-based algorithms are
selected as the benchmark algorithms for tests [16]. Proposal-based algorithms include
R-CNN [50], RICNN [13], RICAOD [66], Faster R-CNN (FRCNN) [7], RIFD-CNN [75],
Faster R-CNN with FPN, Mask R-CNN (MRCNN) [76] with FPN, PANet [77] and Thun-
dernet. regression-based algorithms include YOLOv3 [10], SSD [11], RetinaNet [78], and
CornerNet [79].

As shown in Tables 5 and 6, MSF-SNET achieves the best mAP value of 66.5%. Com-
pared with Thundernet, MSF-SNET obtains 3% mAP gains and MSF-SNET improves AP
values of twenty object categories, which illustrated that our multi-scale feature detector
works properly.

Besides, MSF-SNET outperforms other representative algorithms in terms of mAP and
obtains the best AP value for Airplane, Baseball field, Chimney, Harbor, Stadium, and Stor-
age tank. These results demonstrate that our lightweight object detection framework can
get even better performance with much fewer parameters and fewer computing operations.

SSD gets the best mAP in four regression-based algorithms and RetinaNet gets the
best mAP in Nine region proposal-based algorithms. In this experiment, we choose SSD
and RetinaNet as two representative models to compared Cost Density metrics for fair
evaluations, in which three representative backbone networks are used.

Table 7 shows that our framework has the lowest Cost Density compared with VGG16,
Resnet-50, Resnet-101, which are set in SSD and RetinaNet respectively. It illustrated that
our proposed framework gets the best mAP with only about half Cost Density compared
with RetinaNet algorithm (Resnet-50 backbone). SSD has about 49 times of Cost Density
compared proposed framework with accuracy dropping nearly 8%.

Table 7. Cost comparison of different backbones.

VGG16 Resnet-50 Resnet-101 Ours

Parameters (M) 138.36 25.56 44.55 1.54
Computing Cost

(GFlops) 15.5 4.12 7.85 0.21

mAP (%) 58.6 65.7 66.1 66.5
Cost Density 36.59 1.60 5.29 0.49

The experiment results show that MSF-SNET is a superior lightweight object detection
framework. It not only surpasses other benchmark models on mAP performance but also
significantly reduces the computational costs compared with other models.

5. Discussion

The experimental results show that the MSF-SNET proposed in this paper has com-
parable performance in remote sensing image object detection, and it is effective on both
the NWPU VHR-10 dataset and the DIOR dataset. When the performance of the detection
algorithm is not inferior or slightly inferior, the time complexity and space complexity of
the model reaches SOTA. At present, most of the object detection algorithms only focus on
the evaluation indicators of the algorithm itself, such as accuracy, AP, and mAP, while few
of them consider the time complexity of the algorithm.

There are generally two application scenarios for remote sensing image object detec-
tors. One of the scenarios is to detect objects in remote sensing images on the ground.
Another application scenario is to apply the detector in an onboard environment, which
is the application scenario that this article focuses on. In this application scenario, the
detector has too many parameters to store or is too expensive to be applied on the satellite
due to the computational cost of predictions. In fact, for satellite detection, the number of
parameters and the computational cost is as important as the performance. The advantage
of our proposed algorithm lies in that it not only enhances the performance of the algorithm
itself but also carefully considers the key issues that need to be urgently solved in actual
satellite application scenarios.

Remote Sens. 2021, 13, 683 21 of 25

The number of parameters of our detector and its computational cost is compared with
the current mainstream remote sensing image object detection algorithms in Table 4, and the
SOTA results are obtained. The test results show that the architecture proposed in this paper
can be used in scenarios where storage resources and computing resources are limited,
especially is suitable for satellites application. The results will promote the deployment of
object detection frameworks on satellites by easing the burden of computation.

Besides, the Cost Density parameter proposed in this paper can be further applied
to better evaluate the performance of different algorithms in case of consuming the same
resources, and can also be used to evaluate the performance of the algorithms in situations
of limited resources.

It should be noted that when designing the detector in this article, we did not consider
the types of accelerators to deploying on the satellite, such as CPU, GPU, a dedicated
processor, or FPGA. Therefore, it is not optimized for a certain accelerator. For example,
when using an accelerator on field programmable gate array (FPGA), it is necessary to pay
attention to the influence of network structure, quantization method, whether pruning is
required, model parameters, and image data loading, etc. It is worthwhile to further study
the detector based on a hardware for a certain accelerator.

6. Conclusions

In our research, we use modified SNET to extract features. However, the difference
is that MSF-SNET adopts a one-stage end-to-end model, which considers the two aspects
of accuracy and lightweight comprehensively and makes a compromise between them.
The number of parameters and the amount of calculation consumed by CNN is further
significantly reduced without loss of performance.

The test results on the NWPU VHR-10 dataset and the DIOR dataset demonstrate
that our proposed lightweight model is not inferior to other algorithms in accuracy and
mAP, but has notable advantages in terms of parameters and computational cost reduction.
Through training and testing of the network, we can draw the following conclusions:

1. The performance of the lightweight model MSF-SNET is not inferior to other deep
network models.

2. Although MSF-SNET has been tested on the NWPU VHR-10 dataset and DIOR
dataset, which indicates our model MSF-SNET can be widely applied to remote
sensing object detection tasks.

3. Due to its lightweight characteristics, MSF-SNET can meet the strict requirements of
onboard object detection with the constraints of time and space complexity.

4. The design goal of MSF-SNET is not the pursuit of the ultimate performance, but
rather a balance between performance and complexity. This research is more inclined
to use limited performance loss to reduce the implementation complexity.

However, in this study, no assumption is made about the accelerator used in the pro-
posed algorithm. In future research, we will further explore the use of specific accelerators
in remote sensing image object detection tasks, the further optimization of the lightweight
model, and the impact on network design. As far as we know, there is no mature re-
mote sensing image object detection model deployed on satellites. We are committed to
advancing the application of the deep learning network model with our research.

Author Contributions: Conceptualization, L.H., and Y.L.; methodology, Y.B., D.J. and Y.Z. (Yanning
Zhang); software, L.H. and J.W.; validation, L.H., and J.W.; formal analysis, Q.Z. and Y.Z. (Yi Zhang);
investigation, J.W.; resources, L.H.; data curation, J.W., and J.L.; writing—original draft preparation,
L.H.; writing—review and editing, Q.Z.; visualization, J.W. and T.C.; supervision, Y.L.; project
administration, Q.Z.; funding acquisition, Q.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Innovation Foundation of CASC, grant number Y20-JTKJCX-
02, National Key Laboratory Foundation of China, grant number 6142411204306, 6142411192205, and
HTKJ2020KL504011.

Remote Sens. 2021, 13, 683 22 of 25

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: NWPU-VHR-10 dataset and DIOR dataset presented in this study are
openly available in [Baidupan] at [doi:10.1016/j.isprsjprs.2014.10.002, doi:10.1016/j.isprsjprs.2019.11.023,],
reference number [15,16].

Acknowledgments: The authors would like to express gratitude to Gong Cheng from Northwestern
Polytechnical University for providing the remote sensing objection dataset NWPU VHR-10. The
authors would also like to express thanks to the anonymous reviewers for their very competent
comments and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117,

11–28. [CrossRef]
2. He, H.; Yang, D.; Wang, S.; Wang, S.; Li, Y. Road extraction by using atrous spatial pyramid pooling integrated encoder-decoder

network and structural similarity loss. Remote Sens. 2019, 11, 1015. [CrossRef]
3. Zou, Z.; Shi, Z. Ship detection in spaceborne optical image with SVD networks. IEEE Trans. Geosci. Remote Sens. 2016, 54,

5832–5845. [CrossRef]
4. Zhu, M.; Xu, Y.; Ma, S.; Li, S.; Ma, H.; Han, Y. Effective airplane detection in remote sensing images based on multilayer feature

fusion and improved nonmaximal suppression algorithm. Remote Sens. 2019, 11, 1062. [CrossRef]
5. Etten, A.V. You only look twice: Rapid multi-scale object detection in satellite imagery. arXiv 2018, arXiv:1805.09512.
6. Han, X.; Zhong, Y.; Zhang, L. An efficient and robust integrated geospatial object detection framework for high spatial resolution

remote sensing imagery. Remote Sens. 2017, 9, 666. [CrossRef]
7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
8. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of

the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE:
New York, NY, USA, 2016; pp. 779–788, ISBN 978-1-4673-8851-1.

9. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; pp. 6517–6525; ISBN
978-1-5386-0457-1.

10. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. Computer Vision

– ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham,
Switzerland, 2016; pp. 21–37. ISBN 978-3-319-46447-3.

12. Zheng, Q.; Zeming, L.; Zhaoning, Z.; Yiping, B.; Gang, Y.; Yuxing, P.; Jian, S. ThunderNet: Towards real-time generic object
detection. arXiv 2019, arXiv:1903.11752.

13. Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote
sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [CrossRef]

14. Li, L.; Zhang, S.; Wu, J. Efficient object detection framework and hardware architecture for remote sensing images. Remote Sens.
2019, 11, 2376. [CrossRef]

15. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection
of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132. [CrossRef]

16. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.
ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

17. Chaudhuri, D.; Kushwaha, N.; Samal, A. Semi-automated road detection from high resolution satellite images by directional
morphological enhancement and segmentation techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1538–1544.
[CrossRef]

18. Kim, T.; Park, S.-R.; Kim, M.-G.; Jeong, S.; Kim, K.-O. Tracking road centerlines from high resolution remote sensing images by
least squares correlation matching. Photogramm. Eng. Remote Sens. 2004, 70, 1417–1422. [CrossRef]

19. McKeown, D.M., Jr.; Denlinger, J.L. Cooperative methods for road tracking in aerial imagery. In Proceedings of the Computer
Society Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; pp. 662–672, ISBN
0-8186-0862-5.

20. Zhang, J.; Lin, X.; Liu, Z.; Shen, J. Semi-automatic road tracking by template matching and distance transformation in urban areas.
Int. J. Remote Sens. 2011, 32, 8331–8347. [CrossRef]

21. Zhou, J.; Bischof, W.F.; Caelli, T. Road tracking in aerial images based on human-computer interaction and Bayesian filtering.
ISPRS J. Photogramm. Remote Sens. 2006, 61, 108–124. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2016.03.014
http://doi.org/10.3390/rs11091015
http://doi.org/10.1109/TGRS.2016.2572736
http://doi.org/10.3390/rs11091062
http://doi.org/10.3390/rs9070666
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1109/TGRS.2016.2601622
http://doi.org/10.3390/rs11202376
http://doi.org/10.1016/j.isprsjprs.2014.10.002
http://doi.org/10.1016/j.isprsjprs.2019.11.023
http://doi.org/10.1109/JSTARS.2012.2199085
http://doi.org/10.14358/PERS.70.12.1417
http://doi.org/10.1080/01431161.2010.540587
http://doi.org/10.1016/j.isprsjprs.2006.09.002

Remote Sens. 2021, 13, 683 23 of 25

22. Baltsavias, E.P. Object extraction and revision by image analysis using existing geodata and knowledge: Current status and steps
towards operational systems. ISPRS J. Photogramm. Remote Sens. 2004, 58, 129–151. [CrossRef]

23. Huertas, A.; Nevatia, R. Detecting buildings in aerial images. Comput. Vis. Graph. Image Process. 1988, 41, 131–152. [CrossRef]
24. Leninisha, S.; Vani, K. Water flow based geometric active deformable model for road network. ISPRS J. Photogramm. Remote Sens.

2015, 102, 140–147. [CrossRef]
25. McGlone, J.C.; Shufelt, J.A. Projective and object space geometry for monocular building extraction. In Proceedings of the 1994

IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 54–61.
26. Weidner, U.; Förstner, W. Towards automatic building extraction from high-resolution digital elevation models. ISPRS J.

Photogramm. Remote Sens. 1995, 50, 38–49. [CrossRef]
27. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [CrossRef]
28. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van

Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87,
180–191. [CrossRef]

29. Feizizadeh, B.; Tiede, D.; Rezaei Moghaddam, M.H.; Blaschke, T. Systematic evaluation of fuzzy operators for object-based
landslide mapping. South East. Eur. J. Earth Obs. Geomat. 2014, 3, 219–222.

30. Li, X.; Cheng, X.; Chen, W.; Chen, G.; Liu, S. Identification of forested landslides using LiDar data, object-based image analysis,
and machine learning algorithms. Remote Sens. 2015, 7, 9705–9726. [CrossRef]

31. Martha, T.; Kerle, N.; Westen, C.J.; Jetten, V.G.; vinod Kumar, K. Segment optimization and data-driven thresholding for
knowledge-based landslide detection by object-based image analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4928–4943.
[CrossRef]

32. Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of
landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [CrossRef]

33. Martha, T.R.; Kerle, N.; van Westen, C.J.; Jetten, V.; Vinod Kumar, K. Object-oriented analysis of multi-temporal panchromatic
images for creation of historical landslide inventories. ISPRS J. Photogramm. Remote Sens. 2012, 67, 105–119. [CrossRef]

34. Baker, B.A.; Warner, T.A.; Conley, J.F.; McNeil, B.E. Does spatial resolution matter? A multi-scale comparison of object-based and
pixel-based methods for detecting change associated with gas well drilling operations. Int. J. Remote Sens. 2013, 34, 1633–1651.
[CrossRef]

35. Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote
sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [CrossRef]

36. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; IEEE: New York, NY,
USA, 2005; pp. 886–893; ISBN 0-7695-2372-2.

37. Li, F.-F.; Perona, P. A Bayesian hierarchical model for learning natural scene categories. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; IEEE: New
York, NY, USA, 2005; pp. 524–531, ISBN 0-7695-2372-2.

38. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

39. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 December 2001; IEEE Computer
Society: New York, NY, USA, 2001; pp. I-511–I-518; ISBN 0-7695-1272-0.

40. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011,
66, 247–259. [CrossRef]

41. Schapire, R. Boosting a weak learning by maiority. INFORMS J. Comput. 1996, 121, 256–285.
42. Cover, T.M.; Hart, P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
43. Liu, L.; Shi, Z. Airplane detection based on rotation invariant and sparse coding in remote sensing images. Opt. Int. J. Light

Electron Opt. 2014, 125, 5327–5333. [CrossRef]
44. Zhang, W.; Sun, X.; Wang, H.; Fu, K. A generic discriminative part-based model for geospatial object detection in optical remote

sensing images. ISPRS J. Photogramm. Remote Sens. 2014, 99, 30–44. [CrossRef]
45. Corbane, C.; Najman, L.; Pecoul, E.; Demagistri, L.; Petit, M. A complete processing chain for ship detection using optical satellite

imagery. Int. J. Remote Sens. 2010, 31, 5837–5854. [CrossRef]
46. Bi, F.; Zhu, B.; Gao, L.; Bian, M. A visual search inspired computational model for ship detection in optical satellite images. IEEE

Geosci. Remote Sens. Lett. 2012, 9, 749–753. [CrossRef]
47. Jin, X.; Davis, C.H. Vehicle detection from high-resolution satellite imagery using morphological shared-weight neural networks.

Image Vis. Comput. 2007, 25, 1422–1431. [CrossRef]
48. Eikvil, L.; Aurdal, L.; Koren, H. Classification-based vehicle detection in high-resolution satellite images. ISPRS J. Photogramm.

Remote Sens. 2009, 64, 65–72. [CrossRef]
49. Aytekin, Ö.; Zongur, U.; Halici, U. Texture-based airport runway detection. IEEE Geosci. Remote Sens. Lett. 2013, 10, 471–475.

[CrossRef]

http://doi.org/10.1016/j.isprsjprs.2003.09.002
http://doi.org/10.1016/0734-189X(88)90016-3
http://doi.org/10.1016/j.isprsjprs.2015.01.013
http://doi.org/10.1016/0924-2716(95)98236-S
http://doi.org/10.1016/j.isprsjprs.2009.06.004
http://doi.org/10.1016/j.isprsjprs.2013.09.014
http://doi.org/10.3390/rs70809705
http://doi.org/10.1109/TGRS.2011.2151866
http://doi.org/10.1016/j.geomorph.2009.10.004
http://doi.org/10.1016/j.isprsjprs.2011.11.004
http://doi.org/10.1080/01431161.2012.724540
http://doi.org/10.1016/j.isprsjprs.2003.10.002
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.1016/j.isprsjprs.2010.11.001
http://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.1016/j.ijleo.2014.06.062
http://doi.org/10.1016/j.isprsjprs.2014.10.007
http://doi.org/10.1080/01431161.2010.512310
http://doi.org/10.1109/lgrs.2011.2180695
http://doi.org/10.1016/j.imavis.2006.12.011
http://doi.org/10.1016/j.isprsjprs.2008.09.005
http://doi.org/10.1109/LGRS.2012.2210189

Remote Sens. 2021, 13, 683 24 of 25

50. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
IEEE: New York, NY, USA, 2014; pp. 580–587, ISBN 978-1-4799-5118-5.

51. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; IEEE: New York, NY, USA, 2015; pp. 1440–1448, ISBN 978-1-4673-8391-2.

52. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
53. Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
54. Qin, Z.; Li, Z.; Zhang, Z.; Bao, Y.; Yu, G.; Peng, Y.; Sun, J. ThunderNet: Towards real-time generic object detection on mobile

devices. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2
November 2019; IEEE: New York, NY, USA, 2019; pp. 6717–6726, ISBN 978-1-7281-4803-8.

55. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

56. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; IEEE: New York, NY, USA, 2018; pp. 4510–4520, ISBN 978-1-5386-6420-9.

57. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. arXiv 2018,
arXiv:1807.11164.

58. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; IEEE: New York, NY, USA, 2018; pp. 6848–6856, ISBN 978-1-5386-6420-9.

59. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: New York, NY, USA, 2017; pp.
1800–1807, ISBN 978-1-5386-0457-1.

60. Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.D.; Sun, J. Light-head R-CNN: In defense of two-stage object detector. arXiv 2017,
arXiv:1711.07264.

61. Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate object localization in remote sensing images based on convolutional neural networks.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [CrossRef]

62. Salberg, A.-B. Detection of seals in remote sensing images using features extracted from deep convolutional neural networks. In
Proceedings of the 2015 IEEE International Geoscience and Remote Sens. Symposium (IGARSS), Milan, Italy, 26–31 July 2015;
IEEE: New York, NY, USA, 2015; pp. 1893–1896, ISBN 978-1-4799-7929-5.

63. Sevo, I.; Avramovic, A. Convolutional neural network based automatic object detection on aerial images. IEEE Geosci. Remote
Sens. Lett. 2016, 13, 740–744. [CrossRef]

64. Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Zou, H. Toward fast and accurate vehicle detection in aerial images using coupled
region-based convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3652–3664. [CrossRef]

65. Cheng, G.; Han, J.; Zhou, P.; Xu, D. Learning rotation-invariant and fisher discriminative convolutional neural networks for object
detection. IEEE Trans. Image Process. 2019, 28, 265–278. [CrossRef] [PubMed]

66. Li, K.; Cheng, G.; Bu, S.; You, X. Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 2337–2348. [CrossRef]

67. Tang, T.; Zhou, S.L.; Deng, Z.P.; Lei, L.; Zou, H.X. Arbitrary-oriented vehicle detection in aerial imagery with single convolutional
neural networks. Remote Sens. 2017, 9, 1170. [CrossRef]

68. Liu, L.; Pan, Z.; Lei, B. Learning a rotation invariant detector with rotatable bounding box. arXiv 2017, arXiv:1711.09405.
69. Liu, W.; Ma, L.; Chen, H. Arbitrary-oriented ship detection framework in optical remote-sensing images. IEEE Geosci. Remote

Sens. Lett. 2018, 15, 937–941. [CrossRef]
70. Zhuang, S.; Wang, P.; Jiang, B.; Wang, G.; Wang, C. A single shot framework with multi-scale feature fusion for geospatial object

detection. Remote Sens. 2019, 11, 594. [CrossRef]
71. Xie, W.; Qin, H.; Li, Y.; Wang, Z.; Lei, J. A novel effectively optimized one-stage network for object detection in remote sensing

imagery. Remote Sens. 2019, 11, 1376. [CrossRef]
72. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic

Image Segmentation. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham,
Switzerland, 2018; pp. 833–851. ISBN 978-3-030-01233-5.

73. Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

74. Ghassemi, S.; Fiandrotti, A.; Francini, G.; Magli, E. Learning and adapting robust features for satellite image segmentation on
heterogeneous data sets. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6517–6529. [CrossRef]

75. Cheng, G.; Zhou, P.; Han, J. RIFD-CNN: Rotation-invariant and fisher discriminative convolutional neural networks for object
detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016; pp. 2884–2893, ISBN 978-1-4673-8851-1.

76. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: New York, NY, USA, 2017; pp. 2980–2988, ISBN 978-1-5386-1032-9.

http://doi.org/10.1109/TGRS.2016.2645610
http://doi.org/10.1109/LGRS.2016.2542358
http://doi.org/10.1109/JSTARS.2017.2694890
http://doi.org/10.1109/TIP.2018.2867198
http://www.ncbi.nlm.nih.gov/pubmed/30235112
http://doi.org/10.1109/TGRS.2017.2778300
http://doi.org/10.3390/rs9111170
http://doi.org/10.1109/LGRS.2018.2813094
http://doi.org/10.3390/rs11050594
http://doi.org/10.3390/rs11111376
http://doi.org/10.1109/TGRS.2019.2906689

Remote Sens. 2021, 13, 683 25 of 25

77. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, NY, USA,
2018; pp. 8759–8768, ISBN 978-1-5386-6420-9.

78. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
42, 318–327. [CrossRef] [PubMed]

79. Law, H.; Deng, J. CornerNet: Detecting objects as paired keypoints. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 765–781. ISBN 978-3-030-01263-2.

http://doi.org/10.1109/TPAMI.2018.2858826
http://www.ncbi.nlm.nih.gov/pubmed/30040631

	Introduction
	Related Work
	Method
	Multi-Scale Fusion SNET
	Input Image Size
	Backbone Network

	Feature Fusion
	Predict Module
	Detection Architecture
	Model Training

	Experimental Results
	Datasets
	Implementation
	Evaluation Metrics
	Experimental Results and Analysis
	Results for NWPU VHR-10 dataset
	Results for DIOR Dataset

	Discussion
	Conclusions
	References

