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Abstract: Infrared small-object segmentation (ISOS) has a persistent trade-off problem—that is,
which came first, recall or precision? Constructing a fine balance between of them is, au fond, of
vital importance to obtain the best performance in real applications, such as surveillance, tracking,
and many fields related to infrared searching and tracking. F1-score may be a good evaluation
metric for this problem. However, since the F1-score only depends upon a specific threshold value, it
cannot reflect the user’s requirements according to the various application environment. Therefore,
several metrics are commonly used together. Now we introduce F-area, a novel metric for a panoptic
evaluation of average precision and F1-score. It can simultaneously consider the performance in
terms of real application and the potential capability of a model. Furthermore, we propose a new
network, called the Amorphous Variable Inter-located Network (AVILNet), which is of pliable
structure based on GridNet, and it is also an ensemble network consisting of the main and its sub-
network. Compared with the state-of-the-art ISOS methods, our model achieved an AP of 51.69%,
F1-score of 63.03%, and F-area of 32.58% on the International Conference on Computer Vision 2019
ISOS Single dataset by using one generator. In addition, an AP of 53.6%, an F1-score of 60.99%, and
F-area of 32.69% by using dual generators, with beating the existing best record (AP, 51.42%; F1-score,
57.04%; and F-area, 29.33%).

Keywords: infrared small-object segmentation; detection; F1-measure; state-of-the-art; AVILNet;
novel method

1. Introduction

Infrared small-target applications are widely exploited in many fields such as maritime
surveillance [1–4], early warning systems [5–7], tracking [8–13], and medicine [14–18], to
name but a few. Heat reveals a critical salient characteristic in the local background of
infrared images, and it could be a conclusive, distinct clue for effortless object segmentation.
Nevertheless, infrared small-object segmentation (ISOS) is a challenging task because heavy
background clutters and sensor noise as shown in Figure 1. Suppose local patch-based ISOS
handcraft methods [19–21] perform the segmentation task in those scenarios, i.e., under
heavy clutter or sensor noise. What happens next in the confidence map? Essentially, this
gives rise to umpteen false alarms from employing too narrow a receptive field, perceiving
local visual-context information, and using too few filters when learning from several cases.
Therefore, that condition makes it hard to distinguish the foreground from various complex
background patterns.

Viewed in this light, the performance in the ISOS task is contingent on the learning
ability, that how well it distinguishes out the complex background patterns surrounding
the objects of interest, and not the objects themselves. Specifically, this tendency occurs
more often from following three major characteristics of infrared small objects. First, owing
to either a long distance from the sensor or its actual size, the object appears very small
in the image and its inner pattern convergences to one point. This phenomenon makes
almost all category classification impossible. Second, following the first effect, if objects
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have similar shapes, instance classification is not reliable anymore. Third, when two or
more objects overlap, they may appear as one object. That is a fatal constraint if we must
separate them into different instances.

Figure 1. Infrared small-object samples. A lot of background clutter and sensor noise distorts the
objects of interest.

Incidentally, at the pixel level, these three characteristics reduce the difference in the
task between small-object segmentation and detection from the vantage point of the ISOS
task. That is why we include detection in this paper’s title. To enhance understanding, let
us presume a drastic, but practical example. Wang et al. [22] published the ISOS Single
dataset at the International Conference on Computer Vision (ICCV). That dataset has some
sparse images that have only one object, sized at 1 pixel by 1, in one image. Suppose the
two tasks (i.e., segmentation and detection) perfectly perform their operations on the same
image satisfying the above case. The objects, separated from the background in the results,
must be exactly the same as each other. As a result, the segment which is yielded from
the bounding box surrounding the object has a size of 1 pixel by 1. The size is the same
compared to the segmentation result. Starting from this perspective, we can compare the
state-of-the-art (SOTA) detection method, i.e., YoloV4 [23].

As a result that the object in the image is so small, an understanding of context
(comprised of the pixels surrounding the object) works as a critical proviso, more so than
the shape of the object itself. This fact shows that methods based on a convolutional
neural network (CNN), which consist of numerous filters for training various patterns,
surpass the handcraft-based methods. DataLossGAN [22] is a CNN-based method. It
exploits two generators, assigning different opposite objectives to obtain a delicate balance
between missed detection (MD) and false alarm (FA). This strategy was greatly effective,
and sufficient to set up the SOTA ICCV2019 ISOS Single dataset.

The whole DataLossGAN [22] structure is comprised of several plain networks as
shown in Figure 2. As a result that the two generators are constructed with a few shal-
low layers, DataLossGAN [22] must go through quite a few iterations to find the global
optimum in the manifold background patterns. These dual-learning systems have a non-
immediate connection to each other so that, indirectly, they depend on only L1-distance at
the feature level via the discriminator to regulate the delicate balance between MD and FA.
Consequentially, these dual-learning systems succeed in obtaining a high score for average
precision (AP), but a low F1-score. Specifically, the one generator only concentrates on
decreasing MD, while the other only concentrates on decreasing FA, and as the discrimina-
tor endeavors to reduce the difference in the inclination between the two generators, it is
overly indirect.
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We hypothesize that one generator is more efficient than two in terms of direct infor-
mation interchange via perceptrons for one goal, i.e., ISOS. At the end of various analytical
experiments, we succeed in obtaining what we call the Amorphous Variable Inter-located
Network (AVILNet). This successful network harmoniously tunes the balance between
recall and precision quite well.

Figure 2. Model overview of DataLossGAN International Conference on Computer Vision (ICCV)
2019 [22]: On the left are two generators (G1 and G2), and on the right is one discriminator. In the
two generators, the blue number within each layer is the dilation factor. For the discriminator, the
height, width, and channel number of the output feature maps are marked beside each layer. The two
generators compose the dual-learning system concentrating on opposing objectives while sharing
information (e.g., L1-distance between G1 and G2 feature maps) with the discriminator to alleviate
radical bias training.

AVILNet is comprised of various methods following the latest fashions, that achieved
the SOTA in each of their fields, e.g., GridNet [24], Cross-Stage-Partial-Net (CSP-Net) [25],
atrous convolution [26] (dilation convolution), and Dense-Net [27]. Aside from that, other
related methods are exploited for the various experiments in Section 5.2. The contributions
of this paper can be summarized as follows.

(1) We introduce AVILNet, inspired by GridNet [24]. This deep CNN was designed
for its increasing learning ability, and for distinguishing the foreground from a complicated
background. In addition, this network finds the global optimum very quickly (within two
epochs). It means AVILNet may provide better performance with more extensive training
data. To alleviate the gradient vanishing problem which is intensified by a complex deep
structure, we adopted CSP-Net [25] with dilation convolution [26] in AVILNet.

(2) To obtain a suitable model and establish its validity, we performed various experi-
ments, step by step, building a hypothesis and confirming it. Plenty of experiments show
that our method was achieved elaborately, not by coincidence.

(3) We discreetly introduce the novel metric F-area, which multiplies AP by the
best F1-score. It is a trustworthy metric when true negatives are greater than 99% in an
image, compared to area under the receiver operating characteristic (ROC) curve (AUC). In
addition, it simultaneously considers performance in terms of real application and potential
capability.

(4) We compared AVILNet with relevant state-of-the-art small-object segmentation
methods on public data from ICCV2019 ISOS. The results demonstrate the superiority of
AVILNet, beating the existing best record.

2. Related Work

ISOS methods can generally be categorized into two groups, depending on whether
they are CNN-based or not. Recently, fully connected network (FCN) [28] based methods
have been applied to ISOS [7,22,29–31]. In particular, DataLossGAN [22] and Asymmet-
ric Contextual Modulation (ACM) [31] have obtained magnificent performance on their
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datasets. Meanwhile, handcraft-based methods [6,20,21,32–38] have also been studied.
Researchers have analyzed local properties in scenes to distinguish the foreground from the
background, patch by patch, and have applied a few well-designed filters to whole images
in a sliding window manner. Both groups, finally, adopt a mono- or adaptive-threshold
policy to produce a gray scale confidence map.

In this section, we briefly pinpoint and visit the few properties and problems for ISOS
in terms of CNN structures with related successful studies.

2.1. Deeper Network vs. Vanishing Gradient

In a broad sense, the ISOS task is classified into two objectives. The first is background
suppression; the second is intensification of the objects of interest. Most traditional ap-
proaches [6,20,21,32–38] execute the two objectives sequentially with only a few filters,
which are elicited through human analysis. CNN-based methods perform the whole task
under latent space comprised of numerous parameters in the network regardless of the
sequence. Each kernel of a CNN, as a unique filter, is aimed at suppressing background
clutter or sensor noise, or to enhance the object of interest.

Consequently, owing to the limits of manual methods, the handcraft-based methods
construct only a few filters by observing several cases. This strategy gives rise to a phe-
nomenon whereby generalization performance is decided from the rules, by which the
training data determine how well the selected cases represent the distribution of all the
test data.

In comparison, the CNN-based methods [7,22,29–31] have numerous filters, which
are sufficient to cover the distribution of all the test data. This is why the CNN is superior
in terms of absolute performance measure, than the handcraft-based methods.

The capacity of the filters affects the performance of ISOS. Simultaneously, it increases
the probability of incurring the vanishing gradient problem. To alleviate this phenomenon,
there have been many studies in terms of architecture methodology, e.g., HighwayNet [39],
ResNet [40], ResNext [41], Drop out [42], GoogleNet [43], and DenseNet [27].

2.2. Attention and the Receptive Field

A deeper network, comprised of multi-layers, could be a solution for increasing the
learning capability. However, it is too hard to preserve the features of small infrared objects
in deep layers, so that re-awakening strategies, which remember prior or low-level layer
feature information, have been studied [24,31,44,45].

Luong et al. [44] proposed global and local attention for neural machine translation. The
global attention takes all prior memories and the local attention takes several prior memories
at a current prediction. In the computer vision, generally these attention concepts have been
utilized in a slightly different way. The global attention refers to all prior feature maps, but
the local attention refers to several prior feature maps to a current layer. The definition of
receptive field is the size of the region in the input that produces the feature map [46].

In segmentation, deep CNNs should be able to access all the relevant parts of the
object of interest to understand context. That is why multi-scale approaches are commonly
taken to accelerate the performance [24,31,45,47].

GridNet [24] exploits a grid organization with a two-dimensional architecture for
multi-scale attention. The grid organization has two advantages for architecture. The one
is that GridNet can simultaneously consider the problem of setting the attention and the
receptive field by two parameters (i.e., width and height). The other is that GridNet follows
the rule of grid, so the produced model meets always a grid shape. The second advantage
makes less an effort to set the detailed configuration for layers.

Furthermore, GridDehazeNet [45] ameliorates GridNet by replacing the residual
block [40] with a dense block [27], and replacing simple addition with attention-based
addition at each confluence in the network.

Chen et al. [48] successfully adopted dilation convolution of the semantic segmen-
tation field [26]. Its benefit is that it does not increase the computational parameters,
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but spreads the receptive field, and concomitantly alleviates lattice patterns caused by
overlap accumulation. Dai et al. [31] proposed the ACM for ISOS. This module takes a
two-directional path (top-down and bottom-up) to preserve prior feature information.

We analyzed GridNet [24] for diverse experiments because of its pliable structure.
Furthermore, GridDehazeNet [45] was chosen as the baseline.

2.3. Data-driven Loss and Ensemble

DataLossGAN [22] proposed data-driven loss to obtain a delicate balance between MD
and FA. DataLossGAN consists of two generators, in which they concentrate on mutually
incompatible objectives, and in the test phase, decision making is done in an ensemble
manner. This study inspired us, so that AVILNet adopts both data loss and the ensemble
manner. However, in our case, we construct a sub-network within the main network.
A detailed explanation is in Section 3.2.2.

2.4. Generative Adversarial Network

A generative adversarial network consists of two parts: a generative network (gen-
erator) and a adversarial network (discriminator) [49]. In the training step, the goal of
the generator is to learn to generate fake data following the distribution of real data.
Meanwhile, the aim of the discriminator is to learn to distinguish between fake data and
real data.

Auto-encoder is a generalized approach for image-to-image segmentation [47,50,51].
If an auto-encoder is considered as one generator, a generative adversarial network is avail-
able. Especially, in our case, input vector Z ∼ latent space is replaced with input vector Z ∼
RW,H,C, so that the whole model can be regarded as conditional GAN (cGAN) [52].

DataLossGAN [22] also used this methodology and exploited a discriminator to
mitigate the output difference between two generators. Our proposed training strategy
dose not share the outputs via the discriminator, but has direct connections within the
generative network.

Our generative network can be divided into two networks. One is the main net-
work and the other is the sub-network. Therefore, the generative network operates as an
ensemble manner for the final decision making the confidence map.

2.5. Resizing during Pre-Processing

Generally, most CNN-based semantic segmentation studies have focused on com-
mercial usage [48,53]. Therefore, they do not need to consider small-sized objects within
a small image. This history leads to resizing the input image to go through a large-scale
backbone for small-object applications [31,54,55]. In the field of ISOS, ACM [31] adjusts
the size of the input image to 512× 512, and then, randomly crops one segment, which
has a size of 480× 480, from within the whole image area. On the other hand, DataLoss-
GAN [22] adopted a patch training strategy in which input patches are sized at 128× 128.
We experimented with both the above strategies to make an impartial observation of
each effect.

3. The Proposed Method

This section discusses handling the above issues with our approach. After that, our
proposed model overview is shown. Following that, details of the structure and the loss
function are presented.

3.1. Our Approach

To find the solution for ISOS, we conducted an experiment to determine what archi-
tecture is truly proper for ISOS. Most backbone research, unfortunately, was performed
on the assumption that a large-scale object is in a large image [40,56]. In addition, the
laminated backbone structure is not pliable enough for executing experiments with various
configurations. For this reason, our first objective was finding a flexible backbone for
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a varied receptive field or multi-scale attention, either way. The GridNet [24] structure
perfectly corresponds to the objective as shown in Figure 3. We set GridDehazeNet [45]
with a modified loss function as our initial study due to fact that they published their
clean code. GridDehazeNet is based on GridNet, too, but replaces feature addition with
attention-based addition. This method boosts performance. The difference between D8
and D17 in Table 1 is only that of exploiting attention-based addition or not. Therefore, we
set the GridDehazeNet as the baseline.

Figure 3. AVILNet is inspired by GridNet [24]. This ’grid’ structure is extremely pliable. In terms of
network perception, the horizontal stream (black arrow pointing right) enforces local properties and
the vertical stream (black arrow pointing downward) enforces global properties. To transform the
grid structure, we only have to set the two parameters (‘width’ and ‘height’).

Table 1. Ablation study for diverse hyper-parameters and strategies on the ICCV 2019 infrared small-object segmentation
(ISOS) Single dataset. In these experiments, we set st at 36, except for D1 (st = 8) and D8 (st = 34). D12 did not adopt the
CSP [25]. D17 replaced attention-based feature addition with feature addition and D18 replaced the mish activation function
with leaky ReLU (0.2) compared to D8. The bold denote the best scores.

Index gw nd w h RS lr l2 DL L SF λMD, λFA ep F1 AP AUC Fa

D1 16 4 3 6 1 10−4 X X X 100, 10 123 0.564 0.486 0.799 0.274
D2 8 7 3 6 1 10−4 X X 100, 10 23 0.561 0.495 0.783 0.278
D3 8 7 3 6 3 10−4 X X 100, 10 76 0.601 0.503 0.793 0.302
D4 8 7 3 6 3 10−4 X X X 100, 10 4 0.564 0.485 0.785 0.236
D5 8 7 6 3 3 10−4 X X 100, 10 51 0.570 0.494 0.799 0.282
D6 8 7 6 3 3 10−4 X 100, 10 4 0.594 0.441 0.726 0.251
D7 8 7 6 3 3 10−3 X X 100, 10 24 0.554 0.437 0.729 0.242

D8 24 7 4 6 3 10−4 X X X 100, 10 2 0.630 0.517 0.832 0.326

D9 24 7 4 6 3 10−4 X X X (b) 100, 10 17 0.576 0.496 0.789 0.286
D10 24 7 4 6 3 10−4 X X X (c) 100, 10 31 0.575 0.477 0.790 0.279
D11 24 7 4 3 3 10−4 X X X 100, 10 5 0.574 0.440 0.740 0.252
D12 24 7 4 6 3 10−4 X 100, 10 26 0.552 0.448 0.753 0.247
D13 24 7 4 6 3 10−5 X X X 100, 10 3 0.546 0.449 0.779 0.245
D14 24 7 4 6 3 0.5× 10−4 X X X 100, 10 3 0.560 0.475 0.798 0.266
D15 24 7 4 6 3 10−5 X X X 100, 3 3 0.563 0.486 0.782 0.273
D16 24 7 4 6 3 10−4 X X X 100, 3 19 0.564 0.470 0.771 0.265
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Table 1. Cont.

Index gw nd w h RS lr l2 DL L SF λMD, λFA ep F1 AP AUC Fa

D17 24 7 4 6 3 10−4 X X X 100, 10 2 0.581 0.485 0.790 0.282
D18 24 7 4 6 3 10−4 X X X 100, 10 10 0.593 0.507 0.849 0.301
D19 24 7 4 6 2 10−4 X X X 100, 10 5 0.575 0.522 0.817 0.300
D20 24 7 4 6 1 10−4 X X X 100, 10 5 0.566 0.495 0.801 0.280
D21 24 7 4 6 3 10−4 X X 100, 10 2 0.581 0.455 0.782 0.264

3.2. The Amorphous Variable Inter-Located Network

In this subsection, we do not deal with the experiments in detail, but concentrate
on AVILNet itself. As illustrated in Figure 4, AVILNet consists of one generator and a
discriminator, like cGAN [52]. It is a common strategy, but the inner architecture of the
generator is novel. Our most valuable choice was adopting a grid structure as the devel-
opment backbone. The greatly pliable organic architecture led us to various experiments.
As shown in Table 1, AVILNet (denoted as D8) was obtained after plenty of attempts.
Increasing the width of the generator improves the representational ability of the shape,
the local context, and the semantic information. Conversely, height improves the receptive
field, the global context, and the deep semantic information. As a consequence, AVILNet is
flexible in responding to the given task by changing height and width. In short, AVILNet is
amorphous and variable.

(a) AVILNet: Generator. In this picture, height and width are 6 and 4, respectively. Note that the network is
rotated 90 degrees to the left for easier viewing. The black whole numbers are the output feature map size of each
layer. We set the depth of the stream channel (denoted as st) of our generator at 34.

(b) AVILNet: Discriminator. The black numbers to the right of each layer are kernel size, stride, and padding, and
the other side is the output feature map size.

Figure 4. The whole architectural overview of AVILNet (as proposed).
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3.2.1. Cross-Stage Partial Dense Block and Dense Dilation Block

The Q1 baseline only use a dense block [27]. Due to the duplicate gradient informa-
tion [25], it wanders in the local minimum. The details of Q1 are shown in Table 2. To
overcome this problem, we apply the cross-stage partial strategy (CSP) to the dense block
of Q1. Therefore, it is called the cross-stage dense block (CDB). The original CSP strategy,
which records the best performance on a large-scale object dataset [57], showed rather poor
performance compared to the last-fusion strategy in our case. This is because a secondary
transition layer distorts the feature information of a small object. We tackle this issue
by changing the original CSP with last-fusion within the CDB. Furthermore, following
successful application of dilation convolution [22,48], we propose the cross-stage partial
dense dilation block with last-fusion (CDDB-L) as shown in Figure 5. This boosts our task
from the suitable usage proportion.

(a) Cross-stage partial dense Block with last-fusion (CDB-L).

(b) Cross-stage partial dense dilation block with last-fusion (CDDB-L).

Figure 5. Detailed overviews of CDB-L and CDDB-L. Unlike the study in [25], we take the last-fusion
strategy where, in the final processing, addition is modified to concatenation. The dilation layer in
CDDB-L improves the quality of the segmentation task through alternative sampling [48]. The
ablation study for observing the effects of diverse strategies is shown in Table 2. The blue number
within the layer is the dilation factor.
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Table 2. Ablation study, step by step, in terms of the discriminator, the activation function, the extension of gw and nd, CSP
strategies, dilation, and the blocks (Dense, Res, ResNext). The baseline Q1 set the gw and nd at 16 and 4, respectively. The
bold denote the best scores.

Index Data Loss Discriminator Mish gw + nd ori lafu DL Dense Res ResNext ep F1 AP AUC Fa

Q1 X X 11 0.515 0.390 0.731 0.201

Q2 X X X 7 0.526 0.413 0.792 0.217

Q3 X X X X 8 0.534 0.426 0.786 0.227

Q4 X X X X X 4 0.509 0.399 0.724 0.203

Q5 X X X X X X 14 0.591 0.519 0.792 0.307

AVILNet (Single) X X X X X X X 2 0.630 0.517 0.832 0.326

AVILNet (Dual) X X X X X X X 1 0.610 0.536 0.928 0.327

Q6 X X X X X 22 0.586 0.464 0.801 0.272

Q7 X X X X X 15 0.576 0.460 0.774 0.265

The growth and the number of dense layers in CDB-L or CDDB-L are decided by the
hyper-parameter gw and nd. The dilation factor at the θth layer in CDDB-L is calculated as

when θ ∈ {1, 2, 3, ..., nd} the dilation factor k = 2θ−1 (1)

3.2.2. Multi-Scale Attention-Based Ensemble Assistant Network and Feature-Highway
Connections

One of the main contributions is that we successfully analyzed the feature-highway
connections and formulated its structure. The overview of feature-highway connections
is shown in Figure 6. Following the last-fusion strategy, feature-highway connections
are consequentially built within the generator to flow information smoothly without
congestion. In particular, it works to assist the regularization of object shape and context at
the final decision in an ensemble manner, like ResNext [41]. The equations representing
the above theory can be expressed as follows.

Figure 6. To explain the difference between GridNet [24] and our methods, we illustrate the informa-
tion flow of them. (a) GridNet, and (b) the feature-highway connections (blue arrows). This allows
the information to flow through the down-sampling block (DSB) and the up-sampling block (USB),
like a grid pattern, without entering the transition layer.

Let ζ, x, and y be the group residual block, the input, and output, respectively:

y = x +
C

∑
i=1

ζi(x) i = 0, 1, 2, ..., C C is cardinality (2)

Equation (2) explains one ResNext [41] block formula. Then, our generator denotes height
and width as h and w, respectively. In addition, in a CDB-L or CDDB-L, the feature maps
of the generator in a stage are split into two parts through channel x = [x0, x1]. The x0
undergoes the feature-highway connections, and y0 is the output from the connections. In
that case, we can set ai,j, Di,j, bi,j, Ui,j, x, and y to denote a feature vector corresponding
to the i, j coordinates down-stream, to denote the down-sampling block (DSB), a feature
vector corresponding to i, j coordinates up-stream, an up-sampling block (USB), input, and
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output, respectively. For simplicity, we leave out the weighted sum operation, and we
replace symbols of the x0, y0 with x, y. Note that the i, j coordinates indicate each addition
confluence of the grid. Details on the DSB and the USB are shown in Figure 7. Following
that, our feature-highway connections can be expressed as:

On downstream,

a11 = D11(x)

a12 = a11 + D12(x)

.

a1,w/2 = a1,w/2−1 + D1,w/2(x)

.

ah−1,w/2 = ah−1,w/2−1 + Dh−1,w/2(ah−2,w/2)

(3)

On upstream,

bh−1,w/2+1 = ah−2,w/2 + Uh−1,w/2+1(ah−1,w/2)

bh−1,w/2+2 = bh−1,w/2+1 + Uh−1,w/2+2(ah−1,w/2)

.

bh−1,w = bh−1,w−1 + Uh−1,w(ah−1,w/2)

bh−2,w = bh−2,w−1 + Uh−2,w(bh−1,w)

.

b1,w/2+1 = x + U1,w/2+1(b2,w/2+1)

b1,w/2+2 = b1,w/2+1 + U1,w/2+2(b2,w/2+2)

.

b1,w = b1,w−1 + U1,w(b2,w)

y = b1,w = x + U1,w/2+1(b2,w/2+1) · · · + U1,w(b2,w)

(4)

Finally, we get Equation (5):

y = x +
w

∑
i=w/2+1

U1,i(b2,i) i = w/2, w/2 + 1, ..., w− 1, w (5)

Figure 7. Detailed overviews of the down-sampling block (DSB) and the up-sampling block (USB).
Instead of simple binary up-sampling, two convolutional processes operate. This strategy makes our
feature-highway connections trainable.

Following Equation (5), we can illustrate the overview of our proposed method, i.e., a
multi-scale attention-based ensemble assistant network (MEN), as shown in Figure 8. This
obtained latent network gives us profound insight into how our generator preserves the
low-level information of small objects at a high level without any short connections. In
comparison to ResNext [41], the MEN has attention-based flow, which is represented by the
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interconnected black lines in Figure 8. It encourages inter-exchange of semantic information
between each decision group. In addition, ResNext [41] performs in an ensemble manner
by through channel-wise grouping, but our method exploits all the channels. The former
obtains an advantage in terms of reducing computational resources, but the blocks (ζ),
have nothing to communicate to each other. ResNext [41] concentrates on improving
performance at the decision level in an ensemble manner, rather than an attention manner.
On the other hand, our generator has much smaller cardinality (ResNext [41] set the
cardinality at 32 by default, but our generator set the cardinality at 2.) than the former,
while having plentiful inter-connections for attention. As shown in Table 3, the results of
the experiment verify that our method (MEN) is more suitable for the ISOS task. To sum
up, we regard the MEN as a sub-network supporting the main network.

(a) ResNext (b) Multi-scale Attention-based Ensemble Assistant Network

Figure 8. Illustrated are (a) ResNext [41] and (b) our assistant network, which has a multi-scale
attention-based ensemble decision system with feature-highway connections.

Table 3. Comparison of MEN and ResNext. The bold denote the best scores.

Sub-Network Setting ep F1 AP AUC Fa

MEN (Proposed) D8 1 0.630 0.517 0.832 0.326
ResNext D8 1 0.560 0.433 0.721 0.243

3.2.3. Over-Parameterization

Allen-Zhu et al. [58] explained the relationship between network parameters and
learning convergence time. In detail, they suggested that if input data do not degenerate,
i.e., any x ∈ Rdim, xi 6= xj where i 6= j, and the network is over-parameterized, it can
indeed be trained by regular first-order methods (e.g., SGD) to the global minima. This
theorem can be expressed as follows:

In convolution neural networks...

T = Õ
(

poly(n, L, d)
δ2 · log ε−1

) (6)

where T is the number of iterations; Õ is the symbol for time complexity; n, L, and d are the
number of samples in the training dataset, the number of layers, and the number of pixels
in the feature maps; δ denotes the relative distance between two training data points, and ε
is the objective error value. Furthermore, Allen-Zhu et al. [59] compared the relationship
between the number of layers and hidden neurons. Following the two conclusions, our
AVILNet generator is designed to have many more trainable parameters and layers than
other state-of-the-art methods. Thanks to this strategy, our method obtains wonderful
convergence speed, as shown in Table 4. AVILNet educes maximum performance within
two epochs.
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3.3. Formulation

AVILNet consists of three parts: adversarial loss, L2 loss, and a data loss. The data loss
was adopted from a successful study [22]. In cGAN [52], two networks (i.e., generator G
and discriminator D) apply adversarial rules to their counterparts. The generator makes a
fake image to pool the discriminator, while the discriminator distinguishes it from ground
truth. For the discriminator, adversarial loss can be expressed as:

Lc(G, D) = EI,IGT [logD(I, IGT)] +EI [log(1− D(G(I)))] (7)

where I and IGT denote input image and ground truth, respectively. For the generator, the
L2 loss, L2, and the data loss, Ldata, can be expressed as:

Table 4. Comparison of state-of-the-art methods. The bold denote the best scores for each indicator.

Method FLOPs Parameters ep F1 AP AUC Fa Framework

AVILNet (Single) 10.98B 90.98M 2 0.630 0.517 0.832 0.326 Pytorch
AVILNet (Dual) 21.96B 161.96M 1 0.610 0.536 0.928 0.327 Pytorch
DataLossGAN 30.89B 3.14M 29 0.577 0.514 0.834 0.293 Pytorch

ACM-FPN 0.565B 0.387M 91 0.616 0.475 0.803 0.293 Pytorch
ACM-UNet 0.9B 0.520M 38 0.568 0.422 0.821 0.240 Pytorch

YoloV4 31.05B 20.6M 21 0.503 0.356 0.851 0.184 Pytorch
DeepLabV3 44.425B 59.34M 11 0.105 0.026 0.124 0.003 Pytorch

IPI ’ ’ ’ 0.449 0.313 0.397 0.141 Matlab
MPCM ’ ’ ’ 0.358 0.278 0.744 0.099 Matlab
PSTNN ’ ’ ’ 0.465 0.200 0.321 0.093 Matlab

MoG ’ ’ ’ 0.276 0.282 0.697 0.078 Matlab
RIPT ’ ’ ’ 0.295 0.189 0.403 0.056 Matlab

FKRW ’ ’ ’ 0.311 0.153 0.265 0.048 Matlab
NRAM ’ ’ ’ 0.379 0.119 0.203 0.045 Matlab
AAGD ’ ’ ’ 0.210 0.061 0.199 0.013 Matlab
Top-hat ’ ’ ’ 0.171 0.066 0.182 0.011 Python
NIPPS ’ ’ ’ 0.144 0.047 0.293 0.007 Matlab
LSM ’ ’ ’ 0.103 0.059 0.915 0.006 Matlab

Max-median ’ ’ ’ 0.153 0.001 0.012 0.000 Python

The L2 loss L2 and data loss Ldata can be expressed as:

L2(G) = ‖P− IGT‖2
2 (8)

Ldata(G) = λMD‖(P− IGT)⊗ IGT‖2
2 + λFA‖(P− IGT)⊗ (1− IGT)‖2

2 (9)

where P means G(I), and λMD and λFA are hyper-parameters to control the balance ratio
of miss detection to false alarm [22]. The ⊗ operator means element-wise multiplication.

Finally, the complete objective of ours network can be expressed as:

L(G, D) = arg min
G

max
D

(α1L2 + α2Lc + α3Ldata) (10)

in which α1, α2, and α3 are the algorithmic coefficients decided by heuristic experiments.
The setting details are provided in the implementation details in Section 4.2. DataLoss-
GAN [22], to make up for L2 loss fault, separates it into two segments in terms of miss
detection and false alarm. Finally, L2 is replaced with Ldata. As a result, there is no L2.
However, is that sufficient to boost performance? Our ablation study shows that in a
specific setting when the growth rate is 24, L2 encourages training stability. Consequently,
it leads to better performance.
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3.4. Implementation Details

In this section, we describe our whole network architecture in detail. Our main
proposal network is the generator because in the real applications, the generator performs
discretely from the whole network. We provide the configurations and the input/output
dimensions table of our networks. Our generator, which is based on GridNet [24], has a
complex structure so that we do not deal with it deeply. While this sub-section concentrates
on that which are practically changed compared to the baseline [45].

3.4.1. Generator

The overview of our proposed generator is shown in Figure 4a, and the segment
modules are shown in Figures 5 and 7. The configurable hyper-parameters are stream (st),
growth rate (gw), number of dense layers (nd), width (w), height (h), learning rates (lr),
λ1,2, and α1,2,3. We set them at 34, 24, 7, 4, 6, 10−4, (100,10), and (1,10,100), respectively.
The st decides the depth of feature map at the first floor. The gw and the nd decide the
growing channel depth and the number of dense layers in CDB-L and CDDB-L like the
DenseNet [27]. The w and h decide the width and height of our generator. To improve the
understanding about the roles of width and height of our generator, we added the Figure 9.

Figure 9. Understanding the meaning of width and height of our generator. In terms of feature
dimension, our generator can be divided into 6 floors (denoted as H). The number of floors is the
same as the height of our generator. For instance, H1 means the 1th floor. In terms of the number of
the information up and down stream, we can divide the generator into 4 streams (denoted as W).
Each stream W combines a number of either USBs or DSBs.

In Figure 4a, every block on the same floor (height) releases the same shape of feature
map by padding, represented by the same color of arrows. Before network processing
begins in earnest, the input image goes through the shallow convolutional layer (kernel
size = 3, stride = 1). Similarly, before it predicts the confidence map, the last feature map
goes through a shallow convolutional layer, too. The former works the channel-expanding
module and decides the capacity of information flow all through the network. Contrarily,
the latter fuses information from the last feature map and makes a final decision (i.e.,
a prediction).

Each time it passes through the DSB, the feature map’s depth is doubled and the width
and height are each halved. Conversely, passing through the USB, the depth of the feature
map is cut in half, and the width and height are doubled. The ratio for the CDDB-L is
calculated with Equation (11). Note that the units for the CDDB-L ratio is columns.

The number of CDDB-L columns = (width− 1)//3 (11)

The selective strategies are resizing (RS), shuffle (SF). Resizing is shown in Figure 10, and
shuffle is shown in Figure 11. In resizing, we take the route for case 3. Each route in
resizing does not show a dramatic performance gap, but the shuffle strategy is not the
same. We cautiously adopted the direct through shuffle strategy as the end process within
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every CDB-L, and CDDB-L because of the validity of our sub-network, as explained in
Section 3.2.2.

The exact configurations of each block in the generator are shown in Table 5 and the
input/output dimensions are shown in Table 6.

Table 5. Block details for CDB-L, CDDB-L, USB, and DSB. The growth rate and the number of dense layers for the CDB-L
and CDDB-L are gw = 24 and nd = 7, respectively.

Block Layer/Operation Kernel/Dilation/Stride/Padding

CDB-L

conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat

conv-concat

3× 3, 1, 1, 1
3× 3, 1, 1, 1
3× 3, 1, 1, 1
3× 3, 1, 1, 1
3× 3, 1, 1, 1
3× 3, 1, 1, 1
3× 3, 1, 1, 1
1× 1, 1, 1, 0

CDDB-L

conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat
conv-batch normalization-mish activation-concat

conv-concat

3× 3, 1, 1, 1
3× 3, 2, 1, 2
3× 3, 4, 1, 4
3× 3, 8, 1, 8

3× 3, 16, 1, 16
3× 3, 32, 1, 32
3× 3, 64, 1, 64

1× 1, 1, 1, 0

USB transposed conv-batch normalization-mish activation
conv-batch normalization-mish activation

3× 3, 1, 2, 1
3× 3, 1, 1, 1

DSB conv-batch normalization-mish activation
conv-batch normalization-mish activation

3× 3, 1, 2, 1
3× 3, 1, 1, 1

Table 6. Input and output dimensions for each block.

Block Height Input Dimension Output Dimension

CDB-L, CDDB-L

1
2
3
4
5
6

128, 128, 34
64, 64, 68
32, 32, 136
16, 16, 272
8, 8, 544

4, 4, 1088

128, 128, 34
64, 64, 68

32, 32, 136
16, 16, 272

8, 8, 544
4, 4, 1088

USB

2
3
4
5
6

64, 64, 68
32, 32, 136
16, 16, 272
8, 8, 544

4, 4, 1088

128, 128, 34
64, 64, 68

32, 32, 136
16, 16, 272

8, 8, 544

DSB

2
3
4
5
6

128, 128, 34
64, 64, 68
32, 32, 136
16, 16, 272
8, 8, 544

64, 64, 68
32, 32, 136
16, 16, 272

8, 8, 544
4, 4, 1088
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Figure 10. Each phase can choose to resize the input image or not. Asymmetric Contextual Mod-
ulation (ACM) [31] takes the route for case 1, since it exploits the backbone, and is constructed
for large-scale object images. On the other hand, AVILNet takes the route for case 3, because it is
constructed for small-object images from beginning to end.

Figure 11. Shuffle strategies for last-fusion include (a) direct through, (b) shuffle, and (c) grain-shuffle.
(b) and (c) differentiate our ensemble assistant network. Therefore, those strategies lead to the pool
performance shown in Table 1.

3.4.2. Discriminator

Our discriminator was motivated by U-GAT-IT [60], which exploits spectral normal-
ization [61] to stabilize the training of the discriminator. Likewise, we applied spectral
normalization to the end of each fully connected layer within the discriminator. The one
average-pooling layer and the one max-pooling layer are settled at the front of each fully
connected layer to escape the input-size dependency. This is a decisive difference, com-
pared with DataLossGAN [22]. The whole structure of DataLossGAN is illustrated in
Figure 2. As a result that there is no apparatus for compressing the feature map, Dat-
aLossGAN is dependent on the input-size. The whole structures of our discriminator are
illustrated in Figure 4b. The specific configurations and the input/output dimensions of
the discriminator are shown in Table 7.
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Table 7. Details for our discriminator.

Input
Dimension

Output
Dimension Layer/Operation Kernel/Dilation/Stride/Padding

128, 128, 2
64, 64, 24
32, 32, 48

16, 16, 192

64, 64, 24
32, 32, 48
16, 16, 192

8, 8, 768

conv-batch normalization-lrelu activation
conv-batch normalization-lrelu activation
conv-batch normalization-lrelu activation
conv-batch normalization-lrelu activation

4, 1, 2, 1
4, 1, 2, 1
4, 1, 2, 1
4, 1, 2, 1

8, 8, 768 1, 1, 2 avgpooling-fully connected layer-spectral normalization 768× 2
8, 8, 768 1, 1, 2 maxpooling-fully connected layer-spectral normalization 768× 2

1, 1, 4 2 addition-softmax -

4. Experimental Results

In this section, we compare AVILNet with other related state-of-the-art ISOS methods
and one small-object detection method, (YoloV4 [23]). In addition, plentiful results from
the ablation study prove our approach is reasonable.

4.1. Methods in Comparison

We compared AVILNet with two groups: CNNs and handcraft-based methods. In the
CNN group, two networks were not originally designed for the ISOS task. DeepLabV3 [48]
is a generic large-object segmentation method, and YoloV4 [55] is a detector following
the single-stage, one-shot affiliation method. They are based on the CNN, but are not
designed for ISOS. Nevertheless, they are SOTA in their own fields. To obtain extensive
discernment, they were included in CNN group. The other methods, DataLossGAN [22]
and ACM [31], were designed for ISOS from beginning to end, and they achieved incredible
performance on their datasets. For a non-partisan comparison, all methods were measured
on the ICCV 2019 ISOS Single dataset only. The other group (handcraft-based) consisted of
IPI [6], MPCM [32], PSTNN [37], MoG [62], RIPT [36], FKRW [33], NRAM [38], AAGD [34],
Top-hat [13], NIPPS [35], LSM [19], and Max-median [21].

4.2. Hardware/Software Configuration

The experiment was conducted on a single GPU (RTX 3090) with a 3.4 GHz four-core
CPU. All the handcraft-based methods were implemented in Python or Matlab and all
the CNN-based methods were implemented in Pytorch. All weights within the networks
underwent initialization [63], and all models were trained from scratch. For a fair competi-
tion, we singled out the best results from among all epochs for every method. Each method
had the maximum number of epochs set to 130. Overall detailed settings of all methods are
shown in Table 8.
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Table 8. Detailed hyper-parameter settings of all the methods.

Methods Parameter Settings

AVILNet
bs = 12, st = 34, gw = 24, nd = 7, w = 4, h = 6,

λ1 = 100, λ2 = 10, α1,2,3 = 1, 10, 100, lrG,D = 10−4, 10−5, Adam optimizer

DataLossGAN bs = 36, λ1 = 100, λ2 = 10, α1,2 = 100, 10, lrG1,G2,D = 10−4, 10−4, 10−5, Adom optimizer

ACM bs = 260, lr = 0.05, Resizing size = 480, number of block = 5, Adagrad optimizer

YoloV4 bs = 4, lr = 0.00261, Resizing size = 608, Adam optimizer

DeepLabV3 bs = 25, lr = 10−4, Resizing size = 256, SGD optimizer

IPI Patch size = 50× 50, sliding step = 10, λ = 1/
√

min(m, n), ε = 10−7

MPCM L = 3, N = 3, 5, 7, 9

PSTNN Patch size = 40× 40, sliding step = 40, λ = 0.7/
√

max(n1, n2)× n3, ε = 10−3

MoG Temporal sliding length = 3, Patch size = 50× 50, sliding step = 5, patch length = 3, k = 3, ε = 10−3

RIPT Patch size = 16× 16, sliding step = 8, λL = 0.7, µ = 5, h = 1, ε = 10−7

FKRW Patch size = 11× 11, k = 4, p = 6, β = 200

NRAM Patch size = 50× 50, sliding step = 10, λ = 1/
√

min(m, n), µ0 = 3×
√

max(m, n),
β = 3/

√
min(m, n), γ = 0.002, C =

√
min(m, n)/2.5, ε = 10−7

AAGD K = 4, Φ = [1, 2, 2, 3], Ω = [10, 25, 35, 45]

Top-hat Patch size = 3× 3

NIPPS Patch size = 50× 50, sliding step = 10, λ = 2/
√

min(m, n), ε = 10−7

LSM L = 3, N = 3, 5, 7, 9

Max-median Patch sizemean,median = 3× 3

4.3. Datasets

Wang, Huan et al. [22] published the ICCV 2019 ISOS Datasets consisting of two
parts: AllSeqs and Single. The Single dataset contains 100 real, exclusive infrared images
with different small objects, and AllSeqs contains 11 real infrared sequences with 2098
frames. The published version of the datasets is slightly different. The Single dataset
remains unchanged, but AllSeqs is not provided as raw images, but as 10,000 synthetic
augmented frames. The synthetic augmented frames consist of 128× 128 image patches
which are randomly sampled from the raw images. This corresponds to configuration I
in [22]. Accordingly, we conducted experiments under configuration I, in which, AllSeq was
used for training and Single was used for test. Some Single examples are shown in Figure 1.
All the training samples in AllSeqs have a size of 128× 128. To increase the difficulty of the
tasks and ensuring an accurate evaluation of generalization capability, the backgrounds in
the test images are not seen in the training images [22]. The detailed description about the
ISOS datasets is given in Table 9.
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Table 9. ISOS datasets: Nos. 1–11 are the eleven sequences in “AllSeqs”, dataset, and No. 12 is the
single frame image dataset “Single”.

No. Name Size Frames/Images

1 Canonball 352× 288 30
2 Car 344× 256 116
3 Plane 320× 240 298
4 Bird 640× 480 232
5 Cat 216× 256 292
6 Rockets 320× 240 242
7 Drone 384× 288 396
8 Target1 480× 360 361
9 Target2 256× 200 30
10 Target3 352× 240 50
11 Target4 384× 288 51

12 Single-frame
image set

Min: 173× 98,
Max: 407× 305 100

4.4. Evaluation Metrics

In a CNN-based ISOS method, each binary pixel value indicates confidence in the
object’s existence. Following [22], we set the threshold value at 0.5 to make a binary
confidence map in all methods. In short, pixels with a score of less than 0.5, were ignored.
In that state, precision–recall, the receiver operating characteristic, and F1-score were
obtained by increasing the threshold value by 0.1. Finally, this measured data were used to
obtain the average precision and area under the ROC curve, with the new F-area metric
added to weigh the capability of real applications. Precision, recall, true positive rate (TPR),
false positive rate (FPR) are calculated using Equation (12)

Precision =
TP

TP + FP
Recall = TPR =

TP
TP + FN

FPR =
FP

FP + TN
(12)

TP, FP, TN, and FN stand for True Positive, False Positive, True Negative, and
False Negative. F1-score is calculated using Equation (13)

F1-score = 2× Precision× Recall
Precision + Recall

(13)

4.5. New Metric: F-Area

F1-score is used to measure harmonious performance. This is valuable for real ap-
plications, since the threshold value must be fixed when they operate. While operating
with a fixed threshold value, the methods cannot educe full potential performance (i.e.,
average precision). To consider two cases simultaneously, we introduce a new metric:
F-area. This metric takes into account both harmonious and potential performance aspects
of any technique. F-area is simply obtained as the product of two values, expressed as:

F-area = Average Precision× F1-score (14)

5. Results and Discussion
5.1. Comparison with State-of-the-Art Methods

Evaluations of the performance by all other state-of-the-art methods are reported
in Table 4 and are illustrated in Figure 12. In addition, some output results (denoted as
a to e) are shown in Figures 13 and 14. Our proposed AVILNet outperformed all the
existing CNN-based and handcraft-based ISOS methods and detectors (i.e., YoloV4) in
terms of all metrics. From the results of over-parameterization, AVILNet converges to a
global minimum within just two epochs—overwhelmingly fewer iterations than the other
methods (refer to Figure 15). On the other hand, ACM-FPN [31] recorded the second-best
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performance, despite having the fewest parameters and the minimum computing cost,
although it recorded the highest number of iterations (91 epochs). That is an inevitable
consequence based on the trade-off. In particular, DeepLab V3 [48] recorded the worst
performance from among the CNN-based methods. Since DeepLab V3 was designed for
large-scale objects, it is hard to forward small-object information to deep semantic layers.
In addition, Yolo V4 was designed for large-scale objects, too. Nevertheless, how did it
obtain such a fine performance? The answer to this question is that the backbone of Yolo V4
is based on the cross-stage partial network. CSP tends to forward information well into the
deep semantic layers. AVILNet also exploits CSP to surmount the vanishing information
problem. Meanwhile, all the handcraft-based methods obtained immature performance.
These phenomena come from the overwhelming lack of filters to distinguish objects from
the background, compared to the CNN-based methods.

(a) F-area comparison with other state-of-the-art methods. (b) Average precision comparison with other state-of-the-art meth-
ods.

(c) Area under the ROC curve comparison with other state-of-the-art
methods

Figure 12. The performance of all state-of-the-art methods on the ICCV2019 ISOS Single dataset: (a) the proposed metric
(F-area), (b) average precision, and (c) area under the ROC curve.
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Figure 13. The results of CNN-based methods. Green, red, and yellow indicate true positive, false
negative, and false positive, respectively. To make a binary map, a threshold value of 0.5 was
applied for each method’s confidence map. GT(D) and GT(S) indicate ground truth for detection and
segmentation, respectively.
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Figure 14. The results of handcraft-based methods.
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Figure 15. Training and test loss graphs for our AVILNet.

5.2. Ablation Study

In this section, we explore the following questions to ensure that the contributions of
our proposed model components are reasonable. Then we answer the all questions point
by point.

Question 1. Does thin pathway really block information flow?
Question 2. In ISOS, is resizing the input image instructive?
Question 3. Does L2 stabilize the regularization from over-parameterization?
Question 4. Height vs. width. What is more important?
Question 5. Are there just more dilation layers for better performance?
Question 6. How effective is the cross-stage partial strategy?
Question 7. What is the best shuffle strategy in last-fusion?
Question 8. Feature addition vs. attention-based feature addition. What is the best?
Question 9. Is the ratio of λMD,FA suitable for our task?
Question 10. Is mish activation better than leaky ReLU activation in our task?
Question 11. Is the learning rate we used the best?
Question 12. Is the dual-learning system superior than the single in our case?

All hyper-parameters and selective strategies, except for the discriminator, were
changed variously for the ablation study. We performed the massive experiments and
divided them into four branches by subject. One is single (denoted as D), another is dual
(denoted as T), a third is MEN, and the other (denoted as Q) is a step-by-step approach.
Therefore, our plenty of experiments gave us considerable insight into finding the best way
as shown in Tables 1 and 10, and especially, Table 2, which clearly confirm the effectiveness
of each contribution, step by step. Specifically, Table 1 is the experiments for the single
network, Table 10 is for the dual networks, Table 3 is for the MEN, and Table 2 is for the
step-by-step approach. The notations Dindex, Tindex, and Qindex indicate the corresponding
relevant Tables 1, 2, and 10, respectively. Especially, Table 2 clearly shows the effectiveness
of each sectional idea, from the baseline to the proposed method. In this section, we skip
the expression to indicate each table, and instead, we directly designate each index (e.g.,
D1, T1, Q1, etc.). All the graphical results for the each tables are shown in Figures 16–18.
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(a) F-area of D (b) F-area of T

(c) Average precision of D. (d) Average precision of T

(e) Area under the ROC curve of D. (f) Area under the ROC curve of T

Figure 16. The performance of ablation study D and T.
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(a) F-area of Q (b) F-area of sub-networks

(c) Average precision of Q (d) Average precision of sub-networks

(e) Area under the ROC curve of Q (f) Area under the ROC curve of sub-networks

Figure 17. The performance of ablation study Q and sub-networks.
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(a) F-area comparison with D, T, and Q. (b) Average precision comparison with D, T, and Q.

(c) Area under the ROC curve comparison with D, T, and Q.

Figure 18. The performance of all ablation studies.

5.2.1. Question 1. Thin Pathway Blocks Information Flow

D1 has the thickness of a stream at 8, recording the best performance after 123 epochs.
This slowest convergence-time result stems from the fact that this thin pathway blocks
information flow. Likewise, T4 has a stream thickness of 16, recording the best performance
after 21 epochs. It is the slowest convergence-time in group T (Table 10). To sum up, a
pathway that is too narrow, compared to the amount of information within each block, not
only creates a gradient bottleneck, but also leads to pool performance.

5.2.2. Question 2. In ISOS, Resizing the Input Image Is Adverse to the Performance

To confirm the effectiveness of the resizing strategy, we compared D2 with D3, and
D17, and D18 with D8. D2 and D20 follow the route for case 1, and D19 follows the route
for case 2 (see Figure 10). At first, for the training phase, resizing the input image is not
beneficial. Then, for the test phase, resizing the test image is really deleterious. The route
for case 1 reduces the performance of F-area (Fa) by up to 14%. The route for case 2 reduces
it by 7.9%.

5.2.3. Question 3. L2 Slightly Stabilizes Regularization from Over-Parameterization

L2 is shown to be ambiguous in our case. We observed an anticipated phenomenon.
This loss function consistently reduces performance on the subsets: (D3, D4), (T5, T6).
However, subsets (D8, D21), and (T7, T8) show the opposite results. This is because of the
difference in the number of parameters. The former have fewer trainable parameters than
the latter. D3 and T5 have 62.08M and 76.92M parameters, respectively, while D8 and T7
have 80.98M and 161.96M parameters, respectively.
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Table 10. Ablation study with diverse hyper-parameters and strategies for dual networks.

Index gw nd w h RS # lr L2 DL L λMD, λFA ep F1 AP AUC Fa

4 3 3 1 3 64 10−3 X 100, 10
T1 8 7 6 3 3 36 10−4 X 100, 10 5 0.577 0.491 0.847 0.283

4 3 3 1 1 64 10−4 X 100, 1
T2 8 7 4 6 1 36 10−4 X 1, 10 4 0.532 0.384 0.741 0.204

4 3 3 1 3 64 10−3 X X 100, 10
T3 8 7 6 3 3 36 10−4 X X 100, 10 3 0.575 0.474 0.821 0.273

16 4 2 4 3 16 10−4 X X 100, 10
T4 16 4 3 6 3 16 10−4 X X 100, 10 21 0.513 0.477 0.813 0.230

4 3 2 3 3 64 10−4 X X X 100, 10
T5 8 7 4 6 3 36 10−4 X X X 100, 10 5 0.530 0.447 0.805 0.237

4 3 2 3 3 64 10−4 X X 100, 10
T6 8 7 4 6 3 36 10−4 X X 100, 10 6 0.567 0.452 0.790 0.256

24 7 4 6 3 34 10−4 X X 100, 1
T7 24 7 4 6 3 34 10−4 X X 100, 10 1 0.582 0.502 0.942 0.292

24 7 4 6 3 34 10−4 X X X 100, 1
T8 24 7 4 6 3 34 10−4 X X X 100, 10 1 0.610 0.536 0.928 0.327

5.2.4. Question 4. Height Is More Important Than Width

The important decision in GridNet [24] is setting the ratio of the height to width of
the network. The height mostly affects the maximum receptive field; contrarily, width
affects the maximum stacked layer of each floor. To confirm if height or width is more
important, we conducted experiments D5 and D11. In D5, we replaced the height with the
width of D3. As a result, D5 had better pool performance than D3. Additionally in D11, to
observe the effectiveness of the receptive field, we reduced the height of D8 by half, which
reduced the performance by 22.7%. In conclusion, the height has to be longer than width
of the network.

5.2.5. Question 5. Only the Proper Ratio of CDB-L to CDDB-L Can Improve the
Performance

DataLossGAN [22] obtained successful performance by adopting a dilation layer [48].
Motivated by this success, we applied dilation layers in AVILNet. CDDB-L has dilation
layers, as shown Figure 5. Then, how many CDDB-Ls are suitable? D6 and T1 exploit
only CDDB-L. As a result, compared to D5, the performance of D6 decreased by 11%,
but compared to T3, the performance of T1 increased by 3.5%. To concentrate on a single
network study, we took the strategy following Equation (11).

5.2.6. Question 6. The Cross-Stage Partial Strategy Is Imperative to Overcome the Problem
of Gradient Vanishing

One of the main contributions is applying CSP [25] in AVILNet. In ISOS, information
vanishing from within a deep CNN is a significant issue [22,31]. To tackle this, we applied
CSP to each dense block with last-fusion (denoted as CDB-L). This strategy alleviates the
issue, and dramatically improved performance. To confirm our success, we conducted an
experiment for D8 without CDBs (shown as D12). Compared to D8, the performance of
D12 decreased by 24%. This result indicates that adopting CSP is essential.
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5.2.7. Question 7. The Direct-Through Shuffle Strategy Is Superior To the Other Strategies

In adopting CSP, we took the last-fusion strategy instead of the original for embed-
ding the MEN described in Section 3.2.2. D9 and D10 selected shuffle, and grain-shuffle,
respectively—the two strategies shown in Figure 11b,c. Compared to D8, denoted as
AVILNet (Single), their performance decrease by 12% and 14%, respectively. These results
underpin the superiority of our MEN.

5.2.8. Question 8. Attention-Based Feature Addition Is Better than Simple Addition

Liu, Xiaohong et al. [45] proposed GridDehazeNet. This network replaced feature
addition in GridNet [24] with attention-based feature addition. The difference between
them is that the latter is able to use the weighted sum from trainable weights, as shown in
Figure 19. D17 shows the significance of the weighted sum. When D17 took the simple
addition strategy, it decreased by 13%, compared to D8. In our analysis, attention-based
feature addition assumes a role discerning the information that is flowing on a grid-way.
Therefore, this allows AVILNet to focus more on important information.

Figure 19. This figure illustrates the feature addition with attention and the feature addition. (a)
Weighted sum of features. (b) Simple addition.

5.2.9. Question 9. The Ratio of λMD,FA Is Dependent on Not Only the Datasets But Also the
Network Configurations

Ratio λMD,FA is needed for data loss [22]. In D15 and D16, we set λFA at 3. This value
is as low as 7, compared to D8. Therefore, they can concentrate more on reducing miss
detections rather than false alarms. However, this attempt decrease performance by 16%
and 18%, respectively. As a result, we followed the default λMD,FA setting from [22]. Dual
network T2 (which followed the setting in [22]) showed pool performance. Therefore, we
set the λFA at 1 for a dual network.

5.2.10. Question 10. Mish Activation Is Better Choice Than Leaky ReLU

Misra et al. [64] proposed mish activation. This successfully surpasses the leaky ReLU
(denoted as lrelu) [65]. We replaced lrelu with mish in AVILNet. Then, we observed
performance increasing by 8.3%. This experiment is shown as D18.

5.2.11. Question 11. The Learning Rate at 0.0001 Is the Best

To adjust the learning rate, we conducted experiments D13, D14, and D18. Finally, we
set the learning rate at 10−4. This is ten times smaller than the baseline’s learning rate.

5.2.12. Question 12. The Dual-Learning System Enhances the AP and AUC Well, But
Increases the Fa Slightly

T8 consists of two D8 networks. The difference of T8 and D8 is only the ratio of λMD,FA.
As D16 concentrates λMD more than λFA and T8 did not record the better performance, we
can conclude that the dual-learning system has advantages over the single.

5.2.13. Applying the Experiment Step by Step

To see the effectiveness of each idea at a glance, we conducted the experiments denoted
with Q. Additionally, we replaced all dense blocks [27] of our generator with Resnet [40] or
ResNext [41] to ensure that the dense block [27] is the best choice. All results are shown
in Table 2. Note that this sub-section is conducted to observe the effectiveness of each
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block. (Do not be confused by the sub-network experiment in Section 3.2.2, and Table 3) To
improve the understanding about the problem of gradient vanishing, we have to notice the
relationship between Q3 and Q4. Q4 has gw and nd at 34 and 7, respectively. While Q3
has gw and nd at 16 and 4. For Q4, The number of epoch for convergence decreases at 8
to 4. The whole performance deteriorates because Q4 encounters the gradient vanishing
problem. Q5 shows that cross-stage partial strategy is sufficient to overcome the problem
of gradient vanishing. Furthermore, we modified the original strategy of CSP to last-fusion
so that our AVILNet (Single) achieved the best score. The experiments Q6 and Q7 are
performed to confirm that any other blocks (e.g., Residual block and ResNext block) are
valid. The results of them denote that dense block is superior to residual block and ResNext
block in our task. Additionally, the result of Table 3 denotes our sub-network (MEN) is
remarkable than ResNext.

6. Summary and Conclusions

In this paper, we proposed a novel network, AVILNet, to solve the infrared small-object
segmentation problem. Motivated by the necessity for a flexible structure, we constructed
the network based on GridNet [24]. Due to its amorphous characteristics, we could conduct
various experiments to find the best optimal structure. This is a great benefit in terms of
saving time to design the network. In addition, our multi-scale attention-based ensemble
assistant network performed remarkably well when forwarding low-level information
of small objects into the deep high-level semantic layers. It operates as an independent
feature extractor within the network, and is derived from the last-fusion strategy. A plenty
of ablation study and analysis underpins the logical validity of the structure in AVILNet.
In addition, to measure performance, taking into account both the harmonious and the
potential capability, we introduced a new metric: F-area. The advantage of F-area is striking
on the infrared small-object segmentation. In the infrared small-object segmentation true
negatives are greater than true positives overwhelmingly, therefore the receiver operating
characteristic displays very high levels of score. Therefore, the comparison method using
the receiver operating characteristic is meaningless than other evaluation metrics (e.g.,
average precision, F1-score). In this situation, our F-area can be a sensible evaluation metric.
Finally the performance results demonstrate the superiority of AVILNet in terms of all
metrics in the infrared small-object segmentation task.
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Abbreviations
The following abbreviations are used in this paper:

General

AVILNet Amorphous Variable Inter-Located Network
ISOS Infrared Small-Object Segmentation
ICCV International Conference on Computer Vision
SOTA State-of-the-art

Artificial Intelligence and Computer Vision

CNN Convolutional Neural Network
CSP Cross Stage Partial
ACM Asymmetric Contextual Modulation
GAN Generative Adversarial Network

AVILNet

CDB-L Cross-stage Dense Block with Last-fusion
CDDB-L Cross-stage Dense Dilation Block with Last-fusion
USB Up-Sampling Block
DSB Down-Sampling Block
MEN Multi-scale attention-based Ensemble assistant Network

Hyper-parameters in Tables 7, 8 and 10

gw growth rate
nd number of dense layers
w width
h height
RS Resizing
SF Shuffle
lr Learning rate
DL CDDB-L
L CDB-L
L2 L2 cost function
ep Epoch
ori The original strategy of CSP
lafu The last-fusion strategy of CSP
Dense Dense Block
Res Residual Block
ResNext ResNext Block

Metric

MD Missed Detection
FA False Alarm
AP Average Precision
ROC Receiver Operating Characteristic
AUC Area Under the ROC Curve
TPR True Positive Rate
FPR False Positive Rate
TP True Positive
FP False Positive
TN True Negative
FN False Negative
F1 F1-score
Fa F-area
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