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Abstract: Monitoring the spatial and temporal variability of yield crop traits using remote sensing
techniques is the basis for the correct adoption of precision farming. Vegetation index images
are mainly associated with yield and yield-related physiological traits, although quick and sound
strategies for the classification of the areas with plants with homogeneous agronomic crop traits
are still to be explored. A classification technique based on remote sensing spectral information
analysis was performed to discriminate between wheat cultivars. The study analyzes the ability of
the cluster method applied to the data of three vegetation indices (VIs) collected by high-resolution
UAV at three different crop stages (seedling, tillering, and flowering), to detect the yield and yield
component dynamics of seven durum wheat cultivars. Ground truth data were grouped according
to the identified clusters for VI cluster validation. The yield crop variability recorded in the field at
harvest showed values ranging from 2.55 to 7.90 t. The ability of the VI clusters to identify areas with
similar agronomic characteristics for the parameters collected and analyzed a posteriori revealed
an already important ability to detect areas with different yield potential at seedling (5.88 t ha−1

for the first cluster, 4.22 t ha−1 for the fourth). At tillering, an enormous difficulty in differentiating
the less productive areas in particular was recorded (5.66 t ha−1 for cluster 1 and 4.74, 4.31, and
4.66 t ha−1 for clusters 2, 3, and 4, respectively). An excellent ability to group areas with the same
yield production at flowering was recorded for the cluster 1 (6.44 t ha−1), followed by cluster 2
(5.6 t ha−1), cluster 3 (4.31 t ha−1), and cluster 4 (3.85 t ha−1). Agronomic crop traits, cultivars, and
environmental variability were analyzed. The multiple uses of VIs have improved the sensitivity of
k-means clustering for a new image segmentation strategy. The cluster method can be considered an
effective and simple tool for the dynamic monitoring and assessment of agronomic traits in open
field wheat crops.

Keywords: UAV; crop monitoring; crop yield; precision agriculture; yield components

1. Introduction

In the last few decades, several studies highlighted the environmental, economic,
technical, and practical benefits related to the adoption of precision farming techniques [1,2].
Durum wheat is one of the most important crops worldwide [3], but due to climate change,
population increase, and socio-economic factors, it requires specific attention to ensure
stable and high yield by optimizing sustainable agronomic management [4]. Grain yield
in durum wheat is the result of several morphological and physiological changes during
the different growing stages [5]. During cultivation, from an agronomic point of view,
different yield components significantly affect grain yield through effects at different
growing stages, from sowing to harvest [6,7]. Grain yield in durum wheat can be analyzed
in terms of the number of spikes per square meter, number of kernels per spike, and
kernel weight, which appear sequentially, with later-developing components under the
control of earlier-developing ones [5,8]. Detection of the spatial and temporal variability of
the primary components of grain yield during the crop cycle can ameliorate agronomic
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strategies for improving the environmental, economic, and practical impact of durum wheat
cultivation [4,9]. Information regarding crop development is important for monitoring,
managing, and predicting grain yield. The high-resolution images can aid in within-season
farm management decisions, but also can improve the understanding of the evolution of
crop yield [10–12]. Recent advances in remote sensing techniques, such as satellite and
unmanned aerial vehicle (UAV) images, have meant that a large number of plots can be
screened effectively and rapidly [13,14].

The formulation of different vegetation indices derived from multispectral and hy-
perspectral sensors and cameras is well established, and their application to measure the
most important wheat crop parameters is well known [15–17]. Spectral vegetation indices
derived by remote sensing imagery can be a fast and cost-efficient tool [18,19]. Indeed, the
main problem for the utilization of this technique is related to high environmental and
crop reflectance variability, which is not well identified by vegetation indices in cases of
a lack of agronomic crop sampling (ground truth data). Furthermore, the VIs’ response
to plant stresses and agronomic constraints change due to phenological stages (time) and
field variability (space) [20]. Since the 2000s, strategies to delineate areas within fields to
which management can be tailored have been developed using the clustering algorithm
(fuzzy c-means) for assigning field information into potential management zones [21]. In
subsequent years, many researches used clustering methods (k-means, partition around
mediods, fuzzy c-means), starting from ground data for variable rate application of N
fertilizers [22], for estimating wheat biomass, combining a camera sensor and a sensor
able to measure crop height [23]. Song et al. [24] studied the delineation of site-specific
management zones by Quickbird imagery and the Optimized Soil-Adjusted Vegetation
Index (OSAVI). They used a fuzzy k-means clustering algorithm to define management
zones and considering the consistent relationship between the crop nutrients, wheat yield,
and the wheat spectral parameters. Reza et al. [25] estimated rice yield using RGB images
collected by a low-altitude UAV, performing image clustering with graph-cut segmentation
(K-means). In a study on winter wheat, the ability of cluster analysis performed on three
different vegetation indices (VIs) at anthesis to detect agronomic traits variability of ten
cultivars [26] in an open-field experiment was explored. Most of the identified clusters are
based on a combination of ground data and satellite or UAV image.

Karnieli et al. [27] highlighted the difficulty in knowing a priori which is the best
vegetation index in a given environment. NDVI is widely accepted to characterize canopy
growth under different growing conditions. However, NDVI is sensitive to the effects
of soil brightness, soil colour, atmosphere, cloud shadow, and leaf canopy shadow, and
can fail to distinguish changes in soil cover and plant density from changes in vegetation
colour mostly at an early stage of crop development (before tillering), crucial for precision
agriculture purposes [28–30]. The Soil-Adjusted Vegetation Index (SAVI) was developed
as a modification of the NDVI to correct the brightness incidence of the soil, although it
was shown to become more sensitive to soil background with the development of crop
canopy [31]. The Optimized Soil-Adjusted Vegetation Index (OSAVI) does not depend
on the soil line and can eliminate the influence of the soil background effectively [32,33].
OSAVI has been used successfully in wheat for the calculation of aboveground biomass,
leaf nitrogen content, and chlorophyll content [4,33,34]. The selection of specific parts of
spectral information (e.g., vegetation indices) with a strong correlation with crop proprieties
is one way to achieve an affordable and easily implemented instrument in remote sensing
for use in the field [35].

The availability of low-cost and high-resolution UAV images allows for the development
of more precise and sophisticated methods of image segmentation. Accurate plot segmen-
tation results enabled the extraction of several canopy features associated with biomass
yield [36]. Given the importance of monitoring the crop condition, the study reported a
novel VI image segmentation method for the precise estimation of agronomic yield traits
(yield, biomass, spike number and weight, thousand kernel weight, harvest index) during
the most important crop phenological stages. Furthermore, the VI image segmentation was
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based on the combination of three VI images to improve the VIs’ sensitivity in the detection
of dynamic monitoring and classification of wheat yield and yield crop traits.

The present study analysed a classification technique based on spectral information to
separate remote sensing data into different groups, using a unsupervised technique such
as k-means clustering. The research was performed on seven durum wheat cultivars. Data
of three VIs (NDVI, SAVI and OSAVI) collected by a high-resolution UAV were clustered
(Ward’s minimum variance approach) at different crop stages (seedling, tillering, and
flowering) for delineating clusters area with homogeneous VI values. UAV imagery data
were clustered, combining data for three VIs for evaluating a new study approach on
remote sensing images in precision agriculture with the aim of improving k-means cluster
and completely limit the needs of field data. Agronomic traits (yield and yield components)
collected during the crop cycle were used to validate the VI cluster findings and analyze
the agronomic crop growth dynamic and classification at every single stage. Furthermore,
identified VI clusters at seedling, tillering, and flowering were related to the agronomic
yield data collected at harvest. Crop trait dynamics and variability were analyzed. The
study aimed to analyze the ability of the cluster method applied to high-resolution UAV VI
data to detect yield and yield component dynamics during the crop cycle.

2. Materials and Methods
2.1. Study Area

On-farm research was carried out in the 2016 crop season in the Marche Region
(Central Italy—411135.31E, 4730500.51N; UTM-WGS84 zone 33N Italy). Seven durum
wheat cultivars (Odisseo, Monastir, Ramirez, Ariosto, Clovis, Pigreco, and Zetae) were
cultivated in an area of about 6 ha, with each cultivar covering 800 m2 with plot dimensions
of 25 m × 32 m (Figure 1). Minimum tillage was used to prepare a suitable seedbed, and
seeding was performed with 220 kg of seeds per hectare in October 2015. The cultivars
were harvested in July 2016. Phosphorous was incorporated at sowing (220 kg ha−1—P2O5
(27%)), Nitrogen was spread at sowing, tillering, and stem elongation with 40, 160, and
160 kg ha−1, respectively, of N (36%) SO3 (23%)). The pest control scouting and weed
control were carried out with chemical pesticides during the crop cycle.

Figure 1. Left image: Study area (NDVI image). Middle image: Durum wheat cultivars (RGB image at harvest). Right
image: Sixty-five georeferenced ground truth areas collected at harvest.
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The meteorological conditions were typical of Mediterranean countries, with low
temperature and high precipitation in the period October –March (minimum temperature
−2 ◦C, precipitation 450 mm), while higher temperatures and low precipitation were
recorded in April–July (maximum temperature 34 ◦C, precipitation 210 mm).

2.2. Field Measurements

The phenological stages of the wheat crops were periodically recorded according to the
Zadoks cereal-growth-staging scale (ZS) [37]. At each crop stage, 65 georeferenced areas of
0.5 m2 were hand cut. Whole plant dry mass (g m−2) was determined after oven drying the
fresh plant material at 65 ◦C for 48 h. Furthermore, crop yield (t ha−1), spike number, spike
weight (g m−2), thousand kernel weight, and harvest index (H index = yield/biomass)
were analyzed at harvest (99 ZS, July 14). Crop yield was expressed as t ha−1 according to
crop harvest data (1 t ha−1 = 100 g m−2). Ground truth data were georeferenced with GPS
Leica model Viva GS15 (Leica Geosystems AG, Heerbrugg, Switzerland) horizontal and
vertical accuracy of 25 and 35 mm, respectively.

2.3. UAV System

The crop was monitored with the high-resolution eBee UAV system (senseFly,
Cheseaux-sur-Lausanne, Switzerland) (Figure 2). Flight missions were performed at three
stages: seedling growth (13 ZS, 26 February), at tillering (25 ZS, 3 April), and at flowering
(65 ZS, 18 May). Remote sensing data were collected using two cameras, Canon Powershot
S110 and Canon Powershot S110 NIR camera (0.7 kg weight, 12 million pixels resolution,
5.58 × 7.44 mm2 sensor size, 1.33 µm pixel pitch, RAW JPEG format images). The S110 was
used for collecting RGB images and visible spectrum images, while the S110 NIR Camera was
used for collecting data related to near infra-red (850 nm), red (625 nm), and green (520 nm).

Figure 2. Pictures of the experimental field at seedling (a), tillering, (b) and harvest (c).

2.4. Flight Missions

The UAV campaign was conducted between 12:00 and 14:00 local time. Flights were
carried out on a total surface of about 8 hectares, at a flight altitude of 100 m above ground
level (AGL) in stable ambient light conditions, with high visibility and wind below 5 m s−1.
Forty-four overlapping pictures from each camera were used to obtain an 80% frontal
overlap and an 80% side to avoid geometric distortion for mosaicking to produce an
ortho-image. The autopilot analyzes (continuously) the inertial measurement unit (IMU)
and onboard GPS data to control every aspect of the eBee’s flight. The integration of the
UAV and sensors with GPS and IMU enables obtaining direct georeferencing imaging
after image processing. Across the field, ten calibrated reflectance panels (CRP) were used
to apply radiometric calibration to the acquired images (fixed targets). The CRP were
distributed at the beginning of the season to obtain at each flight the photogrammetric
imagery with uniform horizontal and vertical accuracy, and to overlay the measurements
from multiple dates.
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2.5. Data Processing

Ortho-mosaicking of acquired images was elaborated with the Pix4D software pack-
age, which incorporates a scale-invariant feature transform (SIFT) algorithm to match
key points across multiple images [38]. The multiple overlapped images were stitched
together and ortho-rectified. The data processing started with initial processing (camera
internals and externals, automated aerial triangulation, bundle block adjustment); the
second step was the point cloud densification, and finally the ortho-mosaic generation.
Ortho-rectification by aero-triangulation and mosaicking were elaborated. A certificate of
the calibration of Canon cameras was uploaded in the software to optimize internal camera
parameters (focal length, principal points, lens distortions). The ortho-rectification starts
from the exterior position and orientation parameters provided by the UAV system (pitch,
roll, yaw angles) and CRP. The geometric resolution on the ground (GSD) of the acquired
images was 2 cm pixel−1. The final output was one RGB and one false-color orthophoto
with an NIR band in the GeoTIFF format with a resolution of 5 cm2 pixels (georeferenced
to UTM-WGS84 zone 33N Italy). Starting from the GeoTIFF images, vegetation indices
were calculated by the index calculator function of Pix4D. The Normalized Difference
Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the Optimized
Soil-Adjusted Vegetation Index (OSAVI) layers were generated in a raster calculator from
extracted red (R) and near infra-red (NIR) channels. The ten CRP with a known albedo
were used to calibrate the NIR camera. GeoTIFF images and georeferenced sampling data
were processed for agronomic purposes with QGIS [39].

2.6. Vegetation Indices

The Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation
Index (SAVI), and the Optimized Soil Adjusted Vegetation Index (OSAVI) were calculated
according to the formula reported in Table 1.

Table 1. Vegetation indices abbreviation, name, formula, and references.

Index Name Formula References

NDVI Normalized Difference Vegetation Index (NIR − RED)/(NIR + RED) [40]
SAVI Soil-Adjusted Vegetation Index (1 + L) (NIR − RED)/(NIR + RED + L) [41]

OSAVI Optimized Soil-Adjusted Vegetation Index (NIR − RED)/(NIR + RED + 0.16) [42]

The NDVI values for vegetation range from 0 to 1, and positive values are related to
increasing greenness. NDVI has some weaknesses linked to the possibility of reaching
saturation, in particular in later growth stages [43,44]. The OSAVI index was proposed by
using bidirectional reflectance in the near-infrared and red bands. OSAVI does not depend
on the soil line and can eliminate the influence of the soil background effectively [28].
The soil adjustment coefficient (0.16) was selected as the optimal value to minimize the
variation with the soil background. The soil-adjustment factor L in the SAVI equation
varies from 0 to 1 according to the canopy density. L decreases with increases in vegetation
amount. According to the above-cited papers, L value was set at 0.5 for the seedling stage,
at 0.30 for the tillering stage, and 0.20 for the anthesis stage [19,45,46].

2.7. Statistical Analysis

The NDVI, OSAVI, and SAVI data recorded at each crop stage (seedling, tillering,
flowering) were statistically processed using cluster analysis (Ward’s minimum variance
approach) [47]. The procedure was described in Marino et al. [39]. The statistical VI
median values, standard deviations, and analysis of variance between and within the
clusters are reported in Table 3 (seedling stage), in Table 4 (tillering stage), and Table 5
(flowering stage). Statistical tests were used to verify the dependence conditioning of the
different variables (a posteriori). The scree plot to identify the significant number of clusters
was used (Appendix A, Figure A1) [48]. Non-parametric ANOVA by the Kruskal–Wallis
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test [49] was used when the measurement variable does not meet the normality assumption,
while ANOVA was used when the variable met the normality assumption. OriginPRO 8
(Origin Lab Corporation, Northampton, MA 01060, USA) and STATISTICA (Stat Soft., Inc.,
Oklahoma, OK, USA) were used for statistical analysis.

3. Results

In the present paper, three flight missions were carried out at the seedling, tillering, and
flowering stages. Cluster analysis (Ward’s minimum variance approach) of the three VIs’
data were elaborated. Cluster areas with homogeneous VI values were identified at each
crop stage. Yield and yield components collected during the crop cycle were used to validate
the VI cluster findings. The identified VI clusters at seedling, tillering, and flowering were
related to the agronomic yield data collected at harvest to evaluate the crop trait dynamics
and the ability to identify different crop areas during the crop cycle. The yield data of the
whole field at harvest were for cv. Ariosto, 6.7 t ha−1, for cv. Ramirez, 6.2 t ha−1, Monastir,
5.9 t ha−1, Odisseo and Clovis, 5.6 t ha−1, Pigreco, 5.1 t ha−1 and Zetae, 5 t ha−1.

Figure 3 reports the images of the three VIs at three different growth stages. At
seedling, the NDVI value ranged from a minimum value of 0.12 for the cultivars Zetae and
Ramirez to a maximum value of 0.69 for the cultivars Odisseo, Ariosto, and Pigreco. The
SAVI and OSAVI showed the same trend, with lower values of 0.2 and 0.14 and maximum
values of 0.88 and 0.76 for SAVI and OSAVI, respectively. At the tillering stage, the
minimum value for NDVI was recorded by cv. Pigreco (0.13) and maximum by cv. Ariosto
(0.91), while SAVI and OSAVI showed a minimum value for the same cultivars with values
of 0.2 and 0.18, respectively, and the highest values of 1.0 and 0.96. The cultivars with the
lower and higher values were the same. At the flowering stage, the NDVI value ranged
from 0.17 to 0.94, SAVI from 0.22 to 1.06, and OSAVI from 0.19 to 1.02. The lowest value
was recorded for the cultivar Zetae, and the highest for the cultivar Ariosto.

Table 2 shows the statistical parameters of the seven durum varieties and data dis-
tribution to analyze the pixel frequency trend, useful for detecting differences between
cultivars. NDVI data of pixel frequency distribution related to the cultivars were reported,
SAVI and OSAVI pixel frequency distribution show a similar trend (data not shown). The
pixel frequency distribution of NDVI for each cultivar at seedling stage showed that the
highest median data recorded for the cv. Ariosto, followed by cv. Clovis and cv. Odisseo
(Table 2). The cultivars Ramirez, Pigreco, and Monastir showed a lower median value (by
about −12%) compared to Ariosto. Zetae showed the lowest median value (−36%) com-
pared to Ariosto. At tillering, the median value of cv. Ariosto and Clovis, followed by cv.
Pigreco as a close second, showed the greatest distribution of NDVI values towards higher
values. The cv. Odisseo, Monastir, and Ramirez showed median values and population
distribution towards lower NDVI values (by about −6%), and the cv. Zetae showed lower
NDVI values than all other cultivars, with median pixel frequency distribution values 15%
lower than cv. Ariosto and Clovis. At flowering, the cultivars Ariosto, Monastir, Ramirez,
and Clovis showed a high median value while, on the contrary, the cultivars Zetae, Pigreco,
and Odisseo showed the lowest median value.

3.1. Seedling: VI Cluster Map

The cluster map, elaborated starting from NDVI, OSAVI and SAVI indices taken at
seedling, is reported in Figure 4. Four clusters were identified, the highest values are
represented by cluster 1. The median value, standard deviation, and analysis of variance of
each VI cluster’s data are reported in Table 3. NDVI and OSAVI ranged from 0.43 for cluster
1 to 0.24 for cluster 4. The SAVI values appeared more spaced apart (0.66 for cluster 1;
0.37 for cluster 4). The differences recorded among the mean value of each cluster showed
the same trend for all the VIs.
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 Figure 3. RGB, Soil-Adjusted Vegetation Index (SAVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), and Normalized

Difference Vegetation Index (NDVI) maps at different crop stages: seedling, tillering, and flowering growth stage. Maps
were elaborated by Pix4D and QGis software.
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Table 2. NDVI pixel frequency distribution of the durum wheat cultivars at seedling, tillering, and flowering (mean, median,
standard deviation, variance, minimum, maximum, median absolute deviation (MAD) and pixel count).

NDVI—Seedling
Mean Median ±S.D. Variance MAD Pixels (counts)

Odisseo 0.374 0.368 0.145 0.021 0.057 1,886,102
Monastir 0.359 0.342 0.110 0.012 0.039 1,764,527
Ramirez 0.337 0.323 0.100 0.010 0.039 1,847,735
Ariosto 0.381 0.383 0.104 0.011 0.053 2,088,600
Clovis 0.359 0.367 0.086 0.007 0.042 1,756,755
Pigreco 0.343 0.336 0.115 0.013 0.060 1,673,669
Zetae 0.295 0.244 0.147 0.022 0.029 1,700,103

NDVI—Tillering
Mean Median ±S.D. Variance MAD Pixels (counts)

Odisseo 0.578 0.620 0.177 0.031 0.087 1,905,155
Monastir 0.604 0.613 0.106 0.011 0.063 1,782,352
Ramirez 0.591 0.610 0.121 0.015 0.061 1,866,399
Ariosto 0.624 0.649 0.129 0.017 0.061 2,109,698
Clovis 0.623 0.653 0.119 0.014 0.054 1,774,500
Pigreco 0.616 0.642 0.122 0.015 0.069 1,690,576
Zetae 0.553 0.553 0.130 0.017 0.082 1,717,277

NDVI—Flowering
Mean Median ±S.D. Variance MAD Pixels (counts)

Odisseo 0.644 0.75 0.259 0.067 0.072 1,861,454
Monastir 0.764 0.808 0.129 0.017 0.0313 1,741,741
Ramirez 0.770 0.820 0.151 0.023 0.031 1,821,739
Ariosto 0.779 0.831 0.152 0.023 0.033 2,060,405
Clovis 0.747 0.801 0.154 0.024 0.047 1,733,979
Pigreco 0.707 0.748 0.136 0.018 0.057 1,650,808
Zetae 0.679 0.713 0.123 0.015 0.057 1,675,799

Figure 4. Map of the Vis’ spatial variability of the seven cultivars clustered by Ward’s method at
seedling. Cluster 1 indicates the highest VI values, while cluster 4 indicates the lowest.
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Table 3. Vegetation indices’ (VIs) median values, standard deviations, and analysis of variance of
clusters identified by Ward’s cluster method at seedling stage. The median values are assumed as a
measure of central tendency in case of not symmetrical data distribution.

Vegetation Indices

SAVI OSAVI NDVI

Clusters Median ±S.D. Median ±S.D. Median ±S.D.

1 0.66 (0.053) 0.44 (0.036) 0.43 (0.032)
2 0.57 (0.025) 0.38 (0.017) 0.37 (0.025)
3 0.48 (0.029) 0.32 (0.019) 0.31 (0.022)
4 0.37 (0.034) 0.24 (0.022) 0.24 (0.021)

Analysis of variance Cluster

Between df within df F value p value
SAVI 0.59 3 0.075 61 160.0372 0.000000

OSAVI 0.26 3 0.033 61 160.0379 0.000000
NDVI 0.24 3 0.038 61 126.5673 0.000000

VI Cluster Map at Seedling and Agronomic Traits Dynamic Analysis

Agronomic traits data collected at seedling stages were used to analyze and evaluate
the ability of the VI cluster map to provide crop yield information at the time of sampling
and the evolution during the season up to harvest. As expected, differences in biomass
at seedling were low, ranging from 130.8 g m−2 for Ramirez and to 90.9 g m−2 for Clovis:
statistical analysis showed no significant differences among cultivars (data not shown).

The agronomic data collected at harvest on the 65 georeferenced points used for cluster
analysis were grouped in a box plot (Figure 5) according to the identified clusters of the
seedling clusters map. All yield components showed significant differences among clusters,
except thousand-kernel weight and harvest index (H index). The yield median value of
the cluster 1 was 5.82 t ha−1, while cluster 2 showed a median value of 5.62 t ha−1, cluster
3 had a median value of 4.62 t ha−1 and cluster 4 had a mean value of 4.22 t ha−1. The
trend was confirmed by yield component data, with the highest value for aboveground
dry biomass, spike weight, and spikes per square meter recorded by cluster 1 followed by
cluster 2 (−5 to 15%), by cluster 3 (−20 to 27%), and by cluster 4, with a crop trait value
reduction of 32–35%. H index and spike weight showed an opposite trend, as expected. In
the first cluster, cv. Ariosto was the most represented (50% of samples), which confirmed
the higher index value even if some samples showed low average values (even 4 t ha−1).
In the second cluster, there was a greater presence of all cultivars. Cluster 2 showed yield
values that were much higher than the related spectroradiometric values for some areas
of cv. Monastir and Clovis (about 7.7 t ha−1). In the third cluster, there was a greater
representation of all cultivars with higher yield value for some areas of Ramirez (7.5 t ha−1)
and lower yield value (lower than 4 t ha−1) for some samples of cv. Odisseo, Monastir,
Ramirez, Clovis, and Pigreco. In cluster 4, 50% of all samples belonged to the Zetae cultivar,
with yield values not always being among the lowest (average value of 5 t ha−1) and one
value being close to 7 t ha−1.

3.2. Tillering: VI Cluster Map

The map, elaborated starting from NDVI, OSAVI, and SAVI indices at the tillering stage,
with the four identified clusters, is reported in Figure 6. The median values of VI clusters
identified at tillering are reported in Table 4; values ranged from 0.72 for cluster 1 to 0.40 for
cluster 4 (NDVI). The SAVI and OSAVI values are even more differentiated (0.87–0.84 for
cluster 1; 0.48–0.46 for cluster 4, respectively). The trend was the same for all VIs.

VI Cluster Map at Tillering and Agronomic Traits Dynamic Analysis

At the tillering stage, the aboveground dry biomass showed the highest value for the
cultivars Ariosto, Clovis, and Pigreco (about 370 g m−2) followed by Zetae (−5%) and by
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Odisseo, Monastir, and Ramirez (−10%). The number of spikes per square meter showed
the highest value for Ariosto (mean values of 428) and the lowest for Clovis (354). The dry
weight and spikes per square meter data showed similar ranges (data not shown).

The cultivars Ariosto, Clovis, and Pigreco showed an important area in cluster 1 The
cultivars Ramirez, Monastir, Odisseo, and Zetae showed high numbers of ground data
classified in the lower cluster and an important surface classified as clusters 3 and 4 and a
high frequency of pixels with values included in clusters 3 and 4.

Figure 5. Box plot of agronomic traits collected at harvest: yield (a), biomass (b), spike weight (c), spike number (d),
thousand-kernel weight (e) and harvest index (f) of the seven durum wheat cultivars grouped according to the 4 identified
VI clusters at seedling. All the components showed a significant difference among clusters, and thousand kernel weight
showed no significant differences among clusters (Kruskal–Wallis test).
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Figure 6. Map of the VIs’ spatial variability of the seven cultivars clustered by Ward’s method at
tillering. Cluster 1 indicates the highest VI values, while cluster 4 indicates the lowest.

Table 4. Vegetation indices’ (VIs) median values, standard deviations, and analysis of variance of
clusters identified by Ward’s cluster method at tillering stage. The median values are assumed as a
measure of central tendency in the case of asymmetrical data distribution.

Vegetation Indices—Tillering

SAVI OSAVI NDVI

Clusters Median ±S.D. Median ±S.D. Median ±S.D.

1 0.87 (0.043) 0.84 (0.041) 0.72 (0.032)
2 0.76 (0.034) 0.73 (0.033) 0.63 (0.031)
3 0.63 (0.033) 0.61 (0.032) 0.53 (0.027)
4 0.48 (0.046) 0.46 (0.044) 0.40 (0.040)

Analysis of variance Cluster

Between df within df F value p value
SAVI 1.109 3 0.089 61 253 0.000000

OSAVI 1.037 3 0.083 61 253 0.000000
NDVI 0.746 3 0.062 61 246 0.000000

The agronomic data collected at harvest, classified according to the identified clusters
at tillering, are reported in Figure 7. All of the yield components showed significant
differences among clusters, except for the thousand kernel weight. Yield data of ground
points that fall back into the cluster 1 at tillering showed higher values of all agronomic
parameters collected at harvest compared to the other three clusters. The median value
of the yield calculated by grouping the samples falling into cluster 1 was 5.66 t ha−1,
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cluster 2 showed a median value of 4.74 t ha−1, cluster 3 showed a median value of
4.31 t ha−1, cluster 4 had a mean value of 4.66 t ha−1. The trend was confirmed by yield
components data, with the highest value for biomass, spike weight, and spikes per square
meter recorded by cluster 1 followed by cluster 2 (−25 %), cluster 3 (from −26 to −29%),
and cluster 4, with a crop trait value reduction by 28-33%. H index and spike weight
showed an opposite trend, as expected.

Figure 7. Box plot of agronomic traits collected at harvest: yield (a), biomass (b), spike weight (c), spike numbers (d),
thousand-kernel weight (e) and H index (f) of the seven durum wheat cultivars grouped according to the four identified
VI clusters at tillering. All the components showed a significant difference among clusters, and thousand kernel weight
showed no significant differences among clusters (Kruskal–Wallis test).

3.3. Flowering: VI Cluster Map

The map, elaborated starting from NDVI, OSAVI and SAVI indices at the flowering
stage, with four identified clusters, is reported in Figure 8, while the median values of the
VI clusters identified at flowering are reported in Table 5. Identified clusters showed a
median value for NDVI of 0.86 for cluster 1, 0.81 for cluster 2, 0.74 for cluster 3, and 0.59 for
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cluster 4. The SAVI and OSAVI values are even more differentiated (1.06–1.02 for cluster 1;
0.71–0.68 for cluster 4, respectively). The differences recorded between the mean values of
each cluster showed the same trend for all the VIs.

Figure 8. Map of the VIs’ spatial variability of the seven cultivars clustered by Ward’s method at
flowering. Cluster 1 indicates the highest VI values, cluster 4 indicates the lowest.

Table 5. Vegetation indices’ (VIs) median values, standard deviations and analysis of variance of
clusters identified by Ward’s cluster method at flowering stage. The median values are assumed as a
measure of central tendency in the case of asymmetrical data distribution.

Vegetation Indices—Flowering

SAVI OSAVI NDVI

Clusters Median ±S.D. Median ±S.D. Median ±S.D.

1 1.06 (0.024) 1.02 (0.023) 0.86 (0.018)
2 0.98 (0.023) 0.95 (0.022) 0.81 (0.025)
3 0.89 (0.038) 0.86 (0.036) 0.74 (0.035)
4 0.71 (0.081) 0.68 (0.078) 0.59 (0.068)

Analysis of variance Cluster

Between df within df F value p value
SAVI 0.89 3 0.102618 61 176.5940 0.000000

OSAVI 0.83 3 0.095892 61 176.5936 0.000000
NDVI 0.55 3 0.081657 61 138.1191 0.000000
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VI Cluster Map at Flowering and Agronomic Trait Dynamics Analysis

At flowering stage, the aboveground dry biomass had the highest value for the
cultivars Ariosto, Clovis, and Pigreco (970 g m−2), followed by Zetae (−5%), and then by
Odiseo, Monastir, and Ramirez (−12%). The number of spikes per square meter showed
the highest value for Ariosto (mean of 450) and the lowest for Clovis (mean of 372). The
cultivar Zetae showed a different spectroradiometric response and VI values. The cultivars
Ariosto, Clovis, Pigreco, and Monastir showed a high number of data in cluster 1 identified
by the VI cluster map and confirmed by the high values of VI pixel frequency distribution.
On the other hand, the cultivars Zetae, Ramirez, and Odisseo showed a high number of
ground data classified in the lower cluster.

The agronomic data collected at harvest, classified according to the identified clusters,
are reported in Figure 9. Yield data of ground points that fall into cluster 1 identified at
flowering showed a high value of all agronomic parameters collected at harvest compared
to the other clusters. The median value of the yield calculated by grouping the samples
falling in cluster 1 was 6.44 t ha−1, while cluster 2 showed a median value of 5.6 t ha−1,
cluster 3 had a median value of 4.31 t ha−1, and cluster 4 had a mean value of 3.85 t ha−1.
The trend was confirmed by yield component data, with the highest values for the above-
ground dry biomass, spike weight, and spike for square meters recorded by cluster 1,
followed by cluster 2 (−14 to −25 %), cluster 3 (−27 to −34%) and cluster 4, with a crop
trait value reduction of −40 to −50%. H index and spike weight showed an opposite trend,
as expected, and thousand kernel weight showed no significant differences among clusters.

Figure 9. Cont.
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Figure 9. Box plot of Agronomic traits collected at harvest: yield (a), biomass (b), spike weight (c), spike numbers (d),
thousand-kernels weight (e) and harvest index (f) of the seven durum wheat cultivars grouped according to the 4 identified
VI clusters at flowering. All the components showed a significative difference among clusters, while thousand kernel weight
showed no significant differences among cluster (Kruskal–Wallis test).

4. Discussion

Wheat yield is the result of crop genetic characteristics, environmental conditions,
and agronomic management strategies. Yield components are a snapshot of the final
composition of yield [50]; however, a dynamic view of the generation of yield components
is crucial for the application of precision agriculture. As reported by Schirrmann et al. [51],
during the crop cycle, at a single stage, a UAV flight mission can provide high-resolution
vegetation indices data useful for agronomic field management. The agronomic crop field
management strategies can be related both to crop and environmental needs, aiming at
improving crop yield and sustainability and reducing the intensive use of energy.

Simple VIs combining visible and NIR bands have significantly improved the sen-
sitivity of the detection of green vegetation. Each VI has its specific expression of green
vegetation, its suitability for specific uses, and some limiting factors [28,52]. Moreover,
simple, fast and effective systems that can use the information produced by the VIs with
an agronomic sense still need to be developed.

Xue and Su [28] pointed out, for practical applications, that the choice of a specific
VI needs to be made with caution by comprehensively considering and analyzing the
advantages and limitations of existing VIs and then combine them to be applied in a
specific environment.

Accurate plot segmentation results allow the extraction of several canopy features
associated with biomass yield [36]. The contribution of this study to precision agriculture
is to show that an image segmentation technique (Ward’s method) combined with multiple
VI images collected by high-resolution UAV at different growing stages can improve Vis’
sensitivity, allowing more accurate wheat dynamic monitoring.

The three indices derived from the same wavelengths with different sensitivity (NDVI,
SAVI and OSAVI) were clustered to analyze the ability of cluster methods to group VI data
of seven wheat cultivars according to the agronomic yield and yield components spatial
and temporal variability. The validation process was made through direct correlations
between obtained VIs and the vegetation characteristics of interest measured at the same
time of flight and harvest.

VI data of SAVI, OSAVI and NDVI showed the same trend: SAVI showed values
higher than OSAVI and NDVI, respectively. The range of SAVI and OSAVI was higher
than NDVI, especially at seedling stage (NDVI −34% related to SAVI) but also to tillering
and flowering (NDVI −18 and −23%, respectively, related to SAVI). The results of the
experiment agree with studies on winter wheat [26]. The pixel frequency distribution of
VIs showed a difference among cultivars, with high values for cv. Ariosto, Clovis, and
Monastir and lower values for Pigreco and Zetae.
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Data of NDVI, OSAVI and SAVI were clustered according to Ward’s minimum variance
method for identifying significant homogeneous VI area. The scree plot analysis was used
to contrast the distances against the number of clusters for detecting the distinctive break
(elbow), which indicates the number of clusters to retain [53]. The number of identified
clusters at seedling, tillering and flowering was four. At each growing stage, clustered
images and harvested yield data, grouped according to VIs identified cluster, were analyzed
a posteriori. Furthermore, cultivars’ agronomic traits dynamically collected at a single crop
stage were compared to VI clustered images to validate the results. The high values of
the indices were in most cases, but not always, correlated to high values of the agronomic
parameters, confirming VIs as a valuable tool for wheat genotype yield assessment, as well
as the importance of the spectral response of every single variety for the understanding
of remote sensing data [54]. In the open field experiments, the cv. Ariosto, Ramirez, and
Monastir were the most productive at harvest, followed by cv. Odisseo and Clovis (about
15%) and Pigreco and Zetae (about −23%).

4.1. Seedling: VI Cluster Map and Agronomic Traits Dynamic Analysis

The VI cluster map at seedling showed significant differences among clusters. Related
to the first cluster, the mean differences were −14% for cluster 2, −37% for the third
cluster, and −44% for the fourth cluster. The agronomic biomass data collected at seedling
showed no significant differences among cultivars related to the low biomass values. Many
references and papers highlighted the problem related to the early stage identification
and detection of spatial variation on biomass and the difficulty of identifying regression
among VIs and agronomic data [55]. Despite data meaning, the cultivars Zetae showed a
high number of biomass values classified in the lower cluster, confirming the VI cluster
images (Figure 4). The different spectroradiometric response (especially for the cultivar
Zetae and in some cases the c.v. Ariosto) confirms the results of Kipp et al. [56], who tested
the suitability of spectral reflectance for the evaluation of the early plant vigor of winter
wheat cultivars. The authors observed a significant correlation between pixel analysis and
vegetation index (EPVI Adj. R2 = 0.55), and at the same time, they could observe that the
plant vigor is a cultivar-specific trait.

The agronomic data collected at harvest and grouped in a box plot according to the
identified clusters showed a clear identification of the most productive areas at harvest.

Cluster 2 showed close values to cluster 1; cluster 3 and 4 were closer (−21% and −27%
related to cluster 1, respectively). The trend was confirmed by yield component data.

The cultivar with the highest production at harvest showed the highest number of
samples in cluster 1. Cluster 2 showed yield values that were much higher than the related
spectroradiometric values due to some areas of cv. Monastir and Clovis. In the third cluster,
there was a greater representation of all cultivars. Cultivar Zetae, with yield values not
always among the lowest, showed a big area in cluster 4.

From an agronomic point of view, the yield-determining physiological processes such
as adaptation to environments with a broad range of climatic and edaphic variation, diver-
sity in plant traits, and plasticity in source–sink relationships are well known [57]. Yield
data confirm that, at the seedling stage, the identified cluster significantly distinguishes
the more productive areas from the less productive ones. Despite the fact that the low
biomass collected at seedling makes it difficult to find significant correlations, VI clusters
identified areas with potentially fewer limiting factors. The study reported by Rasmussen
et al. [58] showed that VIs based on UAV imagery have the same ability to quantify crop
responses to experimental treatments as ground-based recordings with cameras and ad-
vanced sensors, excluding problems related to sensor accuracy. Moreover, as reported by
different researchers, OSAVI and SAVI excel in regions with sparse vegetation where the
soil is visible through the plants [59]. Consequently, the present study confirms that the
utilization of a VI that corrects for soil interference, such as SAVI and OSAVI, worked the
best when wheat leaf area was at its lowest and bare soil was at its greatest out of all of the
sampling times [19,26].
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The combination of the three indices to define clusters starting from remote sensing
data proved that measurements at an early growing date, while the plants are still seedlings,
are optimal for the assessment of the future yield.

4.2. Tillering: VI Cluster Map and Agronomic Traits Dynamic Analysis

The map elaborated at tillering stage showed a significant difference among the
clusters. Related to the first cluster, the median differences were −12.5% for cluster 2, −27%
for the third cluster, and −44.5% for the fourth cluster.

The cultivars Ariosto, Clovis, and Pigreco showed the highest values of agronomic
parameters collected at tillering, the highest numbers of agronomic ground data in cluster 1,
and the highest frequency of high VI values. Besides the cultivar Zetae, the cultivars
Ramirez, Monastir and Odisseo also showed high numbers of ground data classified in the
lower cluster, confirming the VIs’ ability to detect real-time plant status.

Comparing harvest data to the identified cluster, although statistical analysis has been
able to distinguish different cultivars, an important overlap was found between clusters
3 and 4 for many agronomic parameters. VI data at tillering were not able to identify
areas that were more productive at harvest than expected. Many papers reported the weak
relationship between VIs and yield at tillering. Chandel et al. [60] in an experiment at
four different phenological stages (tillering, booting, heading, and milking) found a lower
value of correlation coefficient and coefficient of determination at tillering (NDVI = 0.6).
Fu et al. [34], in an experiment with UAV and multi-spectral cameras on a wheat canopy at
key growth stages, found that the yield estimation (predicted yield) based on UAV images
at the tillering stage was poor.

The yield variability differences recorded at harvest by cluster 1 and the other clusters
were related to the number of spikes per m2. The results are in accordance with Slafer
et al. [50], who reported the number of spikes as the main responsible factor for coarse
regulations driven by environmental factors. Although the VIs detected a radiometric
difference among cluster 2, 3 and 4, the lower yield differences recorded at harvest can
be explained by the ability of any yield component to act as a fine-tuning mechanism,
so the plasticity of the yield components can accommodate changes in yield and by the
sudden change in the structure of the plant, which can have different times in different
cultivars [61]. Furthermore, it is well known that the different tillering capability (at the
tillering stage) in the various genotypes has been recognized as the main plasticity trait
in response to different environmental conditions (soil characteristics, water and nitrogen
availability) [62]. An important difference found in this experiment is that at tillering, the
largest range of VI values was recorded. Areas with VI values comparable to the values of
seedling and other areas comparable to the values recorded at flowering were detected.
This variability in the spectroradiometric response, combined with the statements above,
can justify the difficulties in detecting crop trait dynamics.

4.3. Flowering: VI Cluster Map and Agronomic Traits Dynamic Analysis

The differences recorded among the mean value of each cluster at the flowering stage
showed, related to the first cluster, mean differences of −6.5% for cluster 2, −15% for the
third cluster, and −33% for the fourth cluster.

The cultivars Ariosto and Monastir showed the highest number of data in cluster 1
identified by the VI cluster map and confirmed by the high values of VI pixel frequency
distribution. On the other hand, the cultivars Zetae, Ramirez, and Odisseo showed the
highest number of ground data classified in the lower cluster, confirming the VI cluster
map that showed an important surface classified as clusters 3 and 4 and a high frequency
of pixels with values included in clusters 3 and 4 (Table 2). The flowering stage is the one
that best identifies the relationships between yield traits and the VI cluster map spatial
distribution. The yield traits collected at harvest showed that the most important traits
related to the low yield difference are the combination of spike number and spike weight
and thousand kernel weight. Many papers have reported the high relationship between
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VIs and yield at flowering. Duan et al. [63] found a strong correlation between image NDVI
around flowering time and final yield (R2 = 0.82). Yue et al. [64] found a high correlation
between aboveground biomass and yield estimation. Chandel et al. [60] found that yield
can be estimated well even in the heading stage, and a rough estimate of grain yield can
be made after the booting stage (R2 = 82, 0.89 and 0.94). These data were confirmed by
Fu et al. [34], who reported that the vegetation indices of the booting stage, flowering stage,
and filling stage were well fitted to the data. Gracia-Romero et al. [13] confirmed that
during the phases of ear emergence and flowering, the highest correlations with GY (for
the three conditions) were obtained with indexes that were associated with the assessment
of vegetation cover. In a paper on winter wheat cultivars [39], yield and yield components
grouped according to VI clusters showed significant yield and yield trait differences at
flowering. In this growing stage, the high correspondence between the VI values and the
final crop yield values is confirmed. Even the cultivars that, during the growth phase,
showed some inconsistent data between VIs and yield values were well identified by the
clusters at flowering.

5. Conclusions

This study deals with the analysis of the processing method for quantifying yield-
limiting factors in wheat. The study aimed to analyze the spatial and temporal variability of
seven durum wheat cultivars by Ward’s cluster method. Since constant field monitoring of
wheat using remote sensing methods is important for the assessment of the plant condition
during the growing season [65,66], three UAV flights were carried out at the seedling,
tillering, and flowering stages to acquire high-resolution GeoTIFF images. Three VIs, with
different sensitivities of green-vegetation detection, were calculated (NDVI, SAVI and
OSAVI). The image segmentation technique combined with multiple VI images collected
by a high-resolution UAV at different growing stages allowed the extraction of relevant
features associated with yield and yield components.

Four clusters were identified and georeferenced; the yield and yield component
samples collected were used as ground truth data for validation.

In this study, the major findings show that the performance of the remote sensing
indices was influenced considerably across the growing stage and cultivars. Furthermore,
the most productive areas were always well identified compared to the less productive ones.

At the seedling stage, VI clusters led to an identification of areas with greater or less
yield potential at harvest, but a lack of a significant relationship with the data collected in
this single-stage due to the very small difference between the agronomic yield components.

Tillering was the most difficult stage to link VI data to agronomic traits. The widest
range of VI values is derived from the crop plasticity and adaptability of wheat.

At the flowering stage, VI clusters showed the highest ability to group areas with
different agronomic traits and yield.

The most productive cultivars were identified by VIs compared to the less productive
ones. Some cultivars showed specific spectroradiometric reflectance responses that led to VIs
with higher values not related to yield (e.g., Clovis). Some cultivars showed a slight increase
in the VI values (and pixel frequency distribution) from seedling to flowering compared to
other cultivars (e.g., Odisseo), while others demonstrated the opposite trend (e.g., Ramirez).

The cluster method based on multiple VI data can open up a new classification ap-
proach in remote sensing data analysis, improving the sensitivity of the grouping procedure
while reducing as much as possible the dependence on truth data. The growing stage and
cultivar significantly affect the VIs’ suitability.
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Appendix A

Figure A1. Scree plot of durum wheat cultivars at seedling (a), tillering (b), and flowering (c).
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