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Abstract: Airborne laser scanning (ALS) point cloud has been widely used in the fields of ground
powerline surveying, forest monitoring, urban modeling, and so on because of the great convenience
it brings to people’s daily life. However, the sparsity and uneven distribution of point clouds
increases the difficulty of setting uniform parameters for semantic classification. The PointNet++
network is an end-to-end learning network for irregular point data and highly robust to small
perturbations of input points along with corruption. It eliminates the need to calculate costly
handcrafted features and provides a new paradigm for 3D understanding. However, each local region
in the output is abstracted by its centroid and local feature that encodes the centroid’s neighborhood.
The feature learned on the centroid point may not contain relevant information of itself for random
sampling, especially in large-scale neighborhood balls. Moreover, the centroid point’s global-level
information in each sample layer is also not marked. Therefore, this study proposed a modified
PointNet++ network architecture which concentrates the point-level and global features on the
centroid point towards the local features to facilitate classification. The proposed approach also
utilizes a modified Focal Loss function to solve the extremely uneven category distribution on ALS
point clouds. An elevation- and distance-based interpolation method is also proposed for the objects
in ALS point clouds which exhibit discrepancies in elevation distributions. The experiments on the
Vaihingen dataset of the International Society for Photogrammetry and Remote Sensing and the
GML(B) 3D dataset demonstrate that the proposed method which provides additional contextual
information to support classification achieves high accuracy with simple discriminative models and
new state-of-the-art performance in power line categories.

Keywords: PointNet++ network; point-level and global information on centroid point; modified
focal loss function; elevation- and distance-based interpolation; ALS point clouds

1. Introduction

The innovations in dense stereo- or multiview photogrammetry, Light Detection and
Ranging (LiDAR), synthetic aperture radar, and structure from motion have broadened
the availability of 3D point cloud data, which are widely used in many fields, including
automatic navigation [1], 3D city management [2] and 3D building reconstruction [3].
Collected images of real 3D scenes may be occluded and are thus complex. Compare
with 2D images which lose depth information and relative positions between two or more
objects in the real world, 3D point cloud provides an opportunity for a better understanding
of the surrounding environment for machines. Point cloud data contain rich semantic
information and have high density and high precision. Hence, they have become one of
the main data types used in 3D object recognition research. Point cloud data can enrich
the understanding and analysis of complex 3D scenes. 3D laser scanners can measure
objects without touching them and quickly obtain massive point cloud data, which include
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spatial coordinates and the color and reflection intensity of objects. These devices operate
under any weather condition and achieve high precision, density, and efficiency. These
unique advantages of 3D laser scanners provide 3D point cloud data with great application
prospects and increase their market demand.

As a new surveying and mapping technology, airborne LiDAR technology can rapidly
acquire large-scale and high-density ground information with relatively high precision;
it has also been used in high-precision mapping, digital city reconstruction [4], forest
monitoring [5], cultural heritage protection [6], natural disaster monitoring, and other
fields [7].

Airborne laser scanning (ALS) point clouds have followed three characteristics: (1) Ob-
jects present large-scale variations between different categories, ranging from small spatial
neighborhoods (cars, power lines) to large ones (buildings), such variations entail high re-
quirements for data processing. (2) Many categories have evidence of geometric properties,
e.g., tracts of roof and façade. (3) The objects in ALS point clouds exhibit discrepancies in
elevation distributions [8]. The ALS point cloud classification is a difficult problem due to
terrain complexity, scene’s clutter, overlapping in the vertical direction, and nonuniformity
density distribution.

In 3D classification, the point cloud is divided into groups and then a label is assigned
according to their type. This step is an important part of laser point cloud data processing.
In one method for ALS point cloud classification, each point in a point set is regarded as
an independent entity, and only a single-point local feature is used in classification [9].
However, single-point local feature classification is unstable for cases with a nonuniform
point cloud density distribution, especially those involving complex scenes [10]. Another
classification method introduces contextual information for ALS point cloud classification
on the basis of single-point local features [11,12]. The method using handcrafted features
and classifiers require the manual extraction of context features in advance, which need
manual intervention in data processing, and consumes 70–80% of the whole processing
time [13]. Meanwhile, low-dimensional handcrafted features have weak representation
ability, and automated interpretation and knowledge discovery from 3D point cloud data
remains challenging.

The recent research into 3D laser point cloud has already broken through traditional
technical methods and has gradually been integrated into multiple disciplines (such as
machine learning) [1,14,15]. With the outstanding performance of deep learning technology
in target recognition, researchers have also extended it to 3D target recognition to improve
the level of automation and intelligence. Convolutional neural networks (CNNs) have
achieved great success on 2D image recognition tasks; however, input point sets are
different from CNN inputs, which refer to data defined on regular grids with uniform
constant density. Many studies have attempted to generate feature images for point
clouds and then apply them to 2D CNNs for ALS point cloud classification. However,
transforming unstructured 3D point sets into regular representation inevitability causes
spatial information loss.

Qi proposed a deep learning framework called PointNet that consumes unordered
and unstructured point clouds directly [16]. PointNet++ network was later developed to
enable multiscale point feature learning [17]. Following the great success of PointNet and
PointNet++ network, many PointNet-like architectures have been proposed; they include
PointCNN [18], PointSift [19], D-FCN [20], PointLK [21], KPConv [22], PV-RCNN [23] and
so on. PointNet++ has been used in 3D object classification, 3D part segmentation, and 3D
scene segmentation and has a broad market.

Although PointNet++ has a higher generalization ability than PointNet, its usage in
the classification of large-scale airborne point clouds in complex scenes is still challenging.
The objects on ALS point clouds cannot be present in CAD models such as ModelNet40,
which are small man-made objects containing fixed information and are free from occlusion
and noise [17]. In module training, the process of splitting and sampling is inevitable
on ALS point clouds. As ALS point clouds have their own characteristics listed above,
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a universal point cloud multitarget recognition method should be established, and the
need for costly calculations in ALS point cloud classification should be eliminated.

Inspired by the success of PointNet++ network, we proposed a method which fully
utilizes point clouds in an end-to-end manner. The proposed method allows us to identify
unordered point sets with varying densities without needing us to design complicated
handcrafted features. The main contributions of this work are summarized as follows:

1. The point-level and global information on the centroid point in the sample layer in
the PointNet++ network is added to the local feature at multiple scales to extract other
useful informative features to solve the uneven distribution of point clouds problem.

2. One modified loss function based on focal loss function is proposed to solve the
extremely uneven category distribution problem.

3. The elevation- and distance-based interpolation method is proposed for objects in
ALS point clouds that exhibit discrepancies in elevation distributions.

4. In addition to a theoretical analysis, experimental evaluations are conducted using the
Vaihingen 3D dataset of the International Society for Photogrammetry and Remote
Sensing (ISPRS) and the GML(B) dataset.

2. Related Work
2.1. Using Handcrafted Features and Classifiers

Traditional point cloud classification methods are related to the estimation of single-
point local features. In one strategy, only local geometry features are used, and each point in
a point set is regarded as an independent entity. Antonarakis et al. used the 3D coordinates,
elevation, and intensity of point clouds to classify forest and ground types on the basis
of a supervised object-orientated approach [24]. Zhang et al. calculated the 13 features of
3D point clouds in terms of geometry, radiometry, topology, and echo characteristics and
then utilized a support vector machine (SVM) to classify ALS point clouds [9]. However,
classification methods that use single-point local features are unstable in cases involving
nonuniform point cloud density distributions as they are influenced by classification noises
and label inconsistencies [10].

Another strategy involves the derivation of suitable 3D descriptors, such as spin
image descriptors [25], point feature histograms [26] and the signature of histograms of
orientations [27]. Several approaches to 3D point cloud classification rely on 3D structure
tensors, hence the proposal of the eigenvalue analysis method [28], which may derive a
set of local 3D shape features. These methods usually need to calculate additional local
geometry features, such as planarity, sphericity, and roughness, to use the local structural
information in the original 3D space. When the scene is complex, this process is usually
time-consuming and results in a high computation cost.

Mallet [29] classified full-waveform LiDAR data by using a pointwise multiclass SVM.
Horvat designed three contextual filters for detecting overgrowing vegetation, small objects
attached to planar surfaces, and small objects that do not belong to vegetation according
to the nonlinear distribution characteristics on vegetation points [11,12]. Chehata used
random forests for feature detection and classification of urban scenes collected by airborne
laser scanning [30]. Niemeyer proposed a contextual classification method on the basis of
conditional random field (CRF) [31]. This classification model was later extended, and the
spatial and semantic contexts were incorporated into a hierarchical, high-order, two-layer
CRF [12].

These existing methods are generally applied to specific scenes. They also have weak
representation ability, and they require manual intervention. In complex ALS point cloud
semantic classification, these methods are laborious, and their robustness is unsatisfactory.
The automated, machine-assisted solutions are needed amidst the increasing volume,
variety, and velocity of digital data.
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2.2. Using Deep Features and Neural Networks

The development of computer vision research in the past decade has broadened the
availability of 3D point cloud data. The unprecedented volume, variety, and velocity of
digital data overwhelm the existing capacities to manage and translate data into actionable
information. Traditional point cloud classification methods are almost always focused on
the design of handcrafted features and use machine learning-based classification models
to conduct classification [12]. Recently, deep learning methods have attracted increasing
attention. Driven by the improvement of CNNs, available large-scale datasets, and high-
performance computing resources, deep learning has enjoyed unprecedented popularity in
recent years. The success of 2D CNNs in various image recognition tasks, such as image
labeling, semantic segmentation, object detection, and target tracking, has also encouraged
the application of these frameworks to 3D semantic classification. The straightforward
extension of 2D CNNs to 3D classification is hampered when dealing with nonuniform
and irregular point cloud features. In such a case, the process requires the transformation
of input data into views or volumes so as to meet the requirements of image-based CNNs.
Therefore, many deep learning approaches involve the transformation of 3D data into
regular 2D images, and then back-projection of 2D labels to 3D point clouds; Therefore, the
3D semantic classification labels were generated [32].

Qi et al. combined two distinct network architectures of the multiview approach with
volumetric methods to improve the classification results; in their work, the 3D object was
rotated to generate different 3D orientations, and each individual orientation was processed
individually by the same network to generate 2D representations [33]. Su et al. utilized
different virtual cameras to recognize 3D shapes from a collection of their rendered views
on 2D images and employed a multiview CNN to feed these images and thereby obtain
the predicted categories [34]. Boulch et al. proposed a framework which feeds multiple
2D image views (or snapshots) of point clouds into a fully convolutional network; in this
framework, point cloud labels are obtained through back-projection [35].

However, the convolution applied to regular data (image or volumeter) is not invari-
ant to the permutation of input data. Nonetheless, these transformations of input data
into views or volumes suffer from model complexity, computation cost and high space
requirements as the storage and computation cost grows cubically with the grid resolution.
Pictures may easily be affected by weather conditions, lighting, shooting angle, and images
only have plane features and thus lack spatial information. Hence, one cannot realize real
3D scene classification, and exploring the efficient used CNNs in 3D data is still needed.

2.3. PointNet and PointNet++ Network

The PointNet network serves as the foundation of point-based classification methods
and has thus become a hotspot for point cloud classification. The PointNet network is an
end-to-end learning network for irregular point data that is highly robust to small input
point perturbations along with corruption. This network eliminates the need to calculate
costly handcrafted features and thereby provides a new paradigm for 3D understanding.
The PointNet network also has the potential to train point clouds without requiring pa-
rameters that are specific to objects in ALS data; hence, it achieves high efficiency and
effectiveness [13]. Relative to volumetric models, the PointNet model reduces computation
costs and memory by over 88% and 80%, respectively. Hence, it is widely preferred in
portable and mobile devices.

PointNet has shown encouraging results for the automatic classification of ALS data,
and many PointNet-like architectures have been proposed. PointNet only uses local and
global information and thus lacks local context information [36]. Therefore, many scholars
have proposed improved algorithms.

PointNet++ is a hierarchical neural network based on PointNet. Features at different
scales are concatenated, and multiscale features are formed. The three key layers in
PointNet++ are the sampling layer, grouping layer, and PointNet layer. The sampling layer
uses farthest point sampling (FPS) to select a set of points from the input points which
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defines the centroids of local regions. Local region sets are constructed in the grouping layer
by finding “neighboring” points around the centroids. Then, a mini- PointNet abstracts
the sets of local points or features into higher-level representations. Several state-of-the-art
techniques have been proposed to improve the performance of the PointNet++ network.
These techniques can be divided into two types: multiscale grouping (MSG) methods and
multiresolution grouping (MRG) methods. MSG methods apply grouping layers with
different scales to capture multiscale patterns. The features learned at different scales are
concatenated for subsequent processing. MSG methods are computationally expensive
because they run PointNet for every centroid point at a large scale and select many centroid
points at the lowest level; therefore, the time cost is significant. MRG methods are more
computationally efficient than MSG methods because they avoid feature extraction in
large-scale neighborhoods at the lowest levels.

Although PointNet++ achieves satisfactory performance in many tasks, its drawbacks
still require the development of appropriate solutions. For the feature aggregation of local
regions, the max pooling operation is implemented in the PointNet++ network, but this
method is heuristic and insufficient without learnable parameters [33,37]. To address the
above problems, Wang et al. put forward the dynamic graph CNN(DGCNN) which incor-
porates local neighborhood information by concatenating the centroid points features with
the feature difference between their k-nearest neighbors and then followed by multilayer
perceptron (MLP) and max pooling operation. However, this method only considers the
relationship between centroid points and the neighbors’ points, and the information it
collects is still limited because of the use of a simple mas pooling operation [38]. Zhao et al.
proposed the adaptive feature adjustment module in the PointWeb network to connect and
explore all pairs of points in a region [39]. PointCNN sorts the points into a potentially
canonical order and applies convolution to the points. To use the orientation information
of neighborhood points, scholars proposed a directionally constrained fully convolutional
neural network (D-FCN), which searches the nearest neighborhood points in each of the
eight evenly divided directions [20]. In sum, the method does not consider individual
point-level and global information, and it does not embed the characteristics of ALS point
clouds to further improve performance. In this work, the point-level and global information
of centroid point is added to support classification, and the characteristics of ALS point
cloud which exhibit discrepancies in elevation distributions is also used. We also proposed
a modified focal loss function and conducted an experiment on two datasets. The proposed
method is shown in the following section.

3. Materials and Methods
3.1. Point-Level and Global Information

The PointNet++ network uses iterative FPS to choose a subset of points. Each local
region in an output is abstracted by its centroid and local feature that encodes the centroid’s
neighborhoods. However, when analyzing the learned information carefully, the feature
learned on the centroid point may not contain relevant information, especially in large-scale
neighborhood balls. The airborne point cloud density distribution is uneven, especially in
the intersect band. Besides, sampling all points in neighborhood balls is not realistic as it
wastes memory and is inefficient. This defect presents a challenge in setting the radius size
in the PointNet++ network. Figure 1 demonstrates PointNet++ in which MSG is used on
the features learned on the centroid points.
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1 
 

 
  

Figure 1. Feature learning with (Multi-scale grouping) MSG methods. The yellow point represents the centroid point whilst
the blue, orange and green points represent the sample points in radius r1, r2, and r3, respectively. The rectangle represents
the feature vector concatenated at different scales for future processing.

As shown in Figure 1, the centroid point is not selected. Hence, the feature vector in
each radius does not contain centroid point information itself. Figure 2 demonstrates the
same situation in which MRG is applied.

 

2 

 
  

Figure 2. Feature learning with multi-resolution grouping (MRG) method. (a) Sketch of MRG, with each cone representing
feature learning. (b) Feature learning in the original PointNet++. (c) Feature learning with proposed method.
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Figure 2b shows that the spatial or spectral attributes of the centroid point itself are
lost. The global information of the centroid points is also lost. As shown in Figure 2c, the
individual point-level and global features of the centroid point are concatenated to the
local features to extract information further.

The absence of point-level and global information may result in incorrect semantic
classification. Therefore, the current study proposes a method that merges the point-level
and global information of centroids and the local information in the PointNet++ network.
The Vaihingen dataset processing is used as an example to illustrate the proposed network.
The architecture of the proposed network is shown in Figure 3.

 

2 

 
  Figure 3. Illustration of proposed network architecture. The network adds additional features to local features. The input

point clouds on the left are colored by elevation, and the output is the classification result.

As shown in Figure 3, the MLP layer size number is larger for ALS point cloud
classification than for other tasks, such as object classification, part segmentation, and
indoor segmentation. ALS point cloud classification is complex and requires the collection
of rich information. In Figure 3, the orange box shown with parameters G1, G2, G3, and G4
on top represent the point-level and global information, which is concatenated to the local
features to capture useful information. The interpolated feature at each level is concatenated
along with skip-linked features from the abstraction level, and fully connection and ReLU
layers are adopted to capture each point feature vector, and a fully connected layer is used
on the last upsampling layer.

All the points in the test can be inputted directly into the model without any prepro-
cessing because of the fully convolutional nature of the proposed model. As for the addition
of point-level and global information, the method could reduce the adverse influence on
the nonuniformity of point cloud density distribution. The architecture can also revert to
the PointNet++ network when the orange block is removed in Figure 3.

3.2. Modified Focal Loss Function

Category distribution is extremely uneven in ALS point clouds, as deduced from the
number of points in each category. The training efficiency is low when most locations easily
become negative, in which case useful learning signals are not provided. The negative
values in turn overwhelm the training process and lead to model degradation. In the
effort to avoid oversampling and undersampling, the common method is to increase the
sampling rate in small category data so as to improve performance. Another approach is to
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reset the weight so that the algorithm pays close attention to small categories. The focal loss
function aims to solve the uneven category issue. This function prevents the vast number
of easy negatives from overwhelming the detector during training, and it has been widely
used in image feature recognition and seldom on 3D point clouds processing. The focal
loss function is modified from the cross-entropy function and is written as

FL(pt) = −αt(1 − pt)
γ log(pt) (1)

where − log(pt) is the cross-entropy function. αt is the category weight coefficient which
balances the importance of positive/negative values. Although α can balance the impor-
tance of positive/negative values, it cannot distinguish simple is easy or hard. Therefore,
the modulating factor (1 − pt)

γ is produced. Here, γ is the focusing parameter, and pt is
the module’s estimated probability. This strategy is designed to encourage the model to
pay attention to the points in minority categories.

In focal loss function, parameter αt is set as follows:

αt =

{
α y = 1
1 − α otherwise

(2)

The category weight coefficient αt in the Focal Loss function is a fixed value, which
may be treated as a hyperparameter or be set by inverse class frequency [40]. However, the
category distribution in ALS point clouds is extremely uneven, and the module trained on
weight factors and uses the inverse class frequency method is influenced largely by the
minority categories which have extremely large weights. Meanwhile, the hyperparam-
eter method is not always effective in minority categories which cannot be identified in
many cases.

Therefore, we propose a new method which performs calculations on the basis of the
number in each category to obtain αt. Each category’s weight coefficient is calculated by
the exponential function of the inverse percentage to the maximum to increase the values
for the minority categories. The tanh function is used to normalize the weights:

αt =
ect − e−ct

ect + e−ct
where ct =

(
max(P)

Pt

) 1
3
t = 1, 2, · · · , N (3)

where P1, P2, · · · , Pt is the percentage of each category, ct refers to the weight of the tth
category, αt is the weight after normalization and N denotes the total number of categories.
The expression in the modified focal loss function is shown as follows.

FL(pt) = − ect − e−ct

ect + e−ct
(1 − pt)

γ log(pt) (4)

3.3. Elevation and Distance-Based Interpolation Method

The PointNet++ network adopts propagated features from subsampled points to
obtain point features for all original points. A hierarchical propagation strategy with
distance-based interpolation is also used with across-level skip links. This strategy performs
well in many tasks, but how to propagate features from one set to another in ALS point
data processing is still a question with regard to object discrepancy distribution along the
elevation. ALS point cloud data vary in elevation; for example, a façade connected to a
roof and lower it, which can be fully utilized. Compare with indoor scenes, the objects in
ALS point clouds usually have distinct geometric properties.

This work increases the proportion of elevation information to classification. A hierar-
chical propagation strategy with elevation and distance-based interpolation is proposed.
In doing so, the feature is propagated from input points Nl−1 to output points Nl by
interpolating the feature values of level l. The equation is written as
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f (j)(x) =
∑k

i=1 wi(x) f (j)
i

∑k
i=1 wi(x)

, j = 1, 2, . . . , 5 (5)

where wi(x) = 1
(k1∗d(x,xi))

2+(k2∗z(x,xi))
2 . k1, k2 are fixed numbers, which is discussed in

Section 4.2. This process is repeated until the original set of points have propagated features.

4. Experimental Results and Analysis

To evaluate the performance of the proposed method, we conduct experiments on
two ALS datasets: the ISPRS benchmark dataset of Vaihingen [31], which is a city in
Germany (Figure 4), and the GML(B) dataset. The ISPRS benchmark dataset’s point density
is approximately 4–7 points/m2. As shown in Figure 4, it belongs to the cross-flight belt
(the overlap in scene I is in the middle whilst the overlap in scene II is at both ends), thus
indicating that the point in this dataset is uneven.

 

3 

 
  

Figure 4. Scene I show the data for training and validation. Scene II is the test set. The following nine classes are discerned:
power line, low vegetation, impervious surfaces, car, fence/hedge, roof, façade, shrub and tree.

The number of points in the training set is 753,876, and that in the test set is 411,722.
The proportion in different categories is shown in Table 1. The proportion of power line
is the lowest in the experiment, accounting for only 0.07%. Meanwhile, the proportion of
impervious surfaces is the highest, accounting for 25.70%, which is 367 times that of the
power line.

Table 1. The percent of different categories in ISPRS dataset (in %).

Categories In Training In Test Categories In Training In Test

Powerline 0.07 0.15 Roof 20.17 26.48
Low vegetation 23.99 23.97 Facade 3.61 2.72

Impervious surfaces 25.70 24.77 Shrub 6.31 6.03
Car 0.61 0.90 Tree 17.9 13.17

Fence/Hedge 1.60 1.80
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The evaluation metrics of precision, recall, F1 score, overall accuracy (OA), and mean
intersection over union (MIoU) are applied to evaluate the performance of the proposed
method according to the standard convention of the ISPRS 3D labelling contest.

precision =
TP

FP + TP
(6)

recall =
TP

TP + FN
(7)

F1 =
2 ∗ precision ∗ recall

precision + recall
(8)

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(9)

where TP denotes true positive, FP denotes false positive and FN denotes false negative.
Average precision (AvgP), average recall (AvgR), OA, and average F1 score (AvgF1) are
utilized to assess the performance for the whole test dataset.

We train our module by using the PyTorch framework and conduct the experiment on
aN NVIDIA Tesla V100 GPU of the Supercomputing Center of WHU. The training set is
moved 500 m in the x direction for data augmentation.

The initial input vector is six columns: x, y, z, intensive, return number, and number
of returns. After coordinate normalization, three columns are added. The region of a
40 m × 40 m block is selected randomly in the horizontal direction, and the weight on each
category is determined. The block is discarded when the number in the block is smaller
than 1024. In module training, the training parameters are set as follows: the training epoch
is 64, the batch size is 3, the Adam optimizer is used, and the other parameters are the
same as those in the literature [17]. The training parameters are saved in every 5 epochs.
A validation set is used to monitor the performance of the proposed model during training.
For convenience, the validation set is the same as the training set. In module validation,
the MIoU parameter is used to select the best mode. The highest MIoU value module is
then chosen to investigate the performance of the test set. In the module testing stage, each
region in the test dataset is segmented into 40 m × 40 m blocks in the horizontal direction,
and the stride is set to 20 m. The voting method is adopted, and the number is set to 10.
The highest score is selected as the final result.

4.1. Test of Loss Function

To test the performance of different loss functions in ALS point clouds for the classifi-
cation task, we select the loss function relative to cross-entropy, focal loss, and the modified
focal loss. Two parameters α, β in focal loss (1) are equal to 0.25 and 2, respectively [41];
and the category weight coefficient αt in focal loss (2) is set by inverse class frequency. The
results are shown in Table 2.

Table 2. The comparison on different loss function module.

Loss Function AvgP AvgR AvgF1 OA Eval Loss Eval Accuracy

Cross entropy 0.719 0.696 0.690 0.812 0.200 0.934
Focal loss (1) 0.767 0.651 0.686 0.825 0.044 0.940
Focal loss (2) 0.602 0.722 0.634 0.782 1.177 0.869

Modified Focal Loss 0.742 0.689 0.705 0.820 0.061 0.928

The OA in cross-entropy is consistent with that in the PointNet++ network on the
Vaihingen dataset [20]; hence, the strategy setting the radius size, batch size, and other
parameters in the current work is feasible. In focal loss (1), the OA is 82.5, which is the
highest value. Moreover, the loss function in estimation is 0.044, which is one-fourth of
the cross-entropy; this result indicates that the focal loss has a low loss value. However,
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the F1 score is small in focal Loss (1), which indicates that parameter α is unsuitable.
When the reverse percentage weight is used in focal loss (2), the small category power
line is recognized in the first epoch. However, the OA does not improve later. The
power line weight is 1380 in focal loss (2), whereas that of the impervious surfaces is 3.8,
which is far from the weight of the former. The experiment in focal loss (2) indicates
that an incorrect weight makes the model mainly focus on minority categories whilst
ignoring other categories completely. This condition leads to incorrect classification. The
modified focal Loss method obtains the highest F1 scores, thus indicating that the category
weight coefficient α is set correctly. Therefore, the modified focal loss is used in the
following operation.

4.2. Test of Interpolation Method

A hierarchical propagation strategy with elevation- and distance-based interpolation
is set as follows:

f (j)(x) =
∑k

i=1 wi(x) f (j)
i

∑k
i=1 wi(x)

where wi(x) = 1
(k1∗d(x,xi))

2+(k2∗z(x,xi))
2 , k = 3.

The d(x, xi) denotes the distance from the centroid to the xi point and z(x, xi) de-
notes the corresponding elevation difference. To test whether the interpolation method is
effective, parameters k1 = 0.5, 1, k2 = 0, 0.5, 1 are set. The results are shown in Table 3.

Table 3. The comparison of elevation information at different proportions on interpolation.

Method Parameter AvgP AvgR AvgF1 OA Eval
Loss

Eval
Accuracy

(a) k1 = 1,
k2 = 0 0.742 0.689 0.705 0.820 0.061 0.928

(b) k1 = 1,
k2 = 0.5 0.742 0.696 0.707 0.826 0.057 0.935

(c) k1 = 1,
k2 = 1 0.752 0.686 0.707 0.827 0.062 0.931

(d) k1 = 0.5,
k2 = 1 0.749 0.683 0.703 0.823 0.056 0.934

Through the comparison of the four models, we find that the OA of method (a) is
the lowest and that the F1 scores on the roof, façade, shrub, and tree are also the lowest.
These categories have high elevation and large inherent differences. Hence, the sole use
of distance-based interpolation is not conducive to the improvement of accuracy for high
objects. The F1 scores of method (d) for the power line, low vegetation, impervious
surfaces, and fence are the lowest. The AvgF1 score is also the lowest, thus indicating
that distance information is more useful than elevation information in areas with gentle
change. Therefore, elevation information proportions should not be larger than those of
distant information. Methods (b) and (c) achieve satisfactory performance, and their AvgF1
score and OA are large. We chose method (c) as our final interpolation module to capture
geometry features at different scales for the highest OA. Figure 5 shows the performance
of different interpolation methods in some areas. The roof is easily misjudged as a tree in
method (a) because the elevation information is not calculated separately. The auxiliary
calculation of elevation information can help capture geometry features at different scales.
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  Figure 5. The performance of different proportions elevation information on interpolation.

4.3. Test of Point-Level and Global Information

The individual point-level features include location information, intensive information,
return number, and so on. These features are useful for semantic classification. Relevant
experiments are conducted to test whether adding point-level information and global
information is conducive to improving accuracy and to select the appropriate parameters.

The size of MLP layers is of great importance in deep learning. A large layer size
results in models that are difficult to converge and in issues such as overfitting and high
computation complexity. Meanwhile, a small layer size result in underfitting. Therefore,
selecting a suitable layer size is vital for classification tasks. Different layer sizes number is
selected in Table 4 to test their performance.

Table 4. Different layer sizes number on each layer for individual point-level and global information
collection.

Item Method (1) Method (2) Method (3) Method (4)

adding
information P G P G P G P G

First layer 64 0 64 0 64 64 64 128
Second layer 64 0 128 0 64 64 128 256
Third layer 64 0 192 0 64 64 256 512

Fourth layer 64 0 256 0 64 64 512 1024
Note: The alphabet P represent the MLP size number in point-level information and alphabet G represent
global information.

In the individual point level test, methods (1) and (2) are used to test whether the
layer sizes should be the same across different layers. Methods (3) and (4) are used to test
the global feature characters. The result is shown in Table 5.
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Table 5. The result of different layer sizes number on point-level and global-level.

AvgP AvgR AvgF1 OA Eval Loss Eval Accuracy

Method (1) 0.758 0.675 0.703 0.826 0.054 0.937
Method (2) 0.744 0.685 0.708 0.831 0.059 0.932
Method (3) 0.751 0.697 0.709 0.829 0.059 0.932
Method (4) 0.743 0.697 0.712 0.832 0.059 0.932

In Table 5, method (1) has the lowest accuracy, which is even smaller than that of
method (c) in Table 4. This result indicates that the layer size’s number is unsuitable for the
point level. The same can be inferred from the comparison involving method (2), which
has large layer sizes number on high layers. This result is consistent with the situation in
which a high receptive field needs further information and sizes should be large. The same
conclusion can be drawn from the comparison of methods (3) and (4) which have different
layer sizes number at the global level. The comparison of methods (2) and (4) shows that
adding global information also improves model accuracy. Figure 6 shows the classification
result and error map of method (4), and Table 6 shows a confusion matrix of the per-class
accuracy of our proposed method.

In Figure 6, many points are classified correctly, and errors are mainly distributed
over object edges. In Table 6, the best performance is impervious surfaces and roof, and
the worst is fence/hedge and shrub due to the confusion between closely-related classes.
From the confusion matrix, the powerline is mainly confused with roof. Likewise, the
classification accuracy on impervious surfaces is affected by low vegetation for the similar
topological and spectral characteristics. Fence/hedge is confused with shrub and tree for
the similar spectral characteristics. The classification accuracy on shrub is easily affected by
the low vegetation and tree for the overlap in the vertical direction. We also compare this
confusion matrix with the one handled by pointnet++ network, and find that the proportion
on powerline misclassified as roof is reduced by 17%. and the tree misclassified as roof
reduced by 8.6%. the pointnet++ network does not work as well as proposed network.

 

5 

 
  Figure 6. (a) The classification results for method (4), and (b) the error map.
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Table 6. The confusion matrix of our proposed method with per-class precision on the Vaihingen 3D test set.

Class Powerline Low_veg Imp_surf Car Fence_hedge Roof Façade Shrub Tree

Powerline 0.741 0.000 0.000 0.000 0.000 0.219 0.010 0.010 0.021
Low_veg 0.000 0.840 0.062 0.001 0.007 0.016 0.009 0.053 0.011
Imp_surf 0.000 0.097 0.892 0.003 0.003 0.001 0.001 0.003 0.000

Car 0.000 0.051 0.007 0.851 0.007 0.001 0.010 0.057 0.018
Fence_hedge 0.000 0.053 0.001 0.018 0.612 0.013 0.008 0.167 0.128

Roof 0.001 0.010 0.002 0.001 0.002 0.951 0.016 0.008 0.010
Façade 0.000 0.026 0.006 0.012 0.010 0.197 0.619 0.050 0.081
Shrub 0.000 0.196 0.005 0.016 0.097 0.044 0.056 0.411 0.176
tree 0.001 0.018 0.000 0.001 0.019 0.098 0.017 0.094 0.753

precision 0.778 0.811 0.937 0.701 0.295 0.899 0.521 0.470 0.846
recall 0.741 0.840 0.892 0.851 0.612 0.951 0.619 0.411 0.753

F1 score 0.759 0.825 0.914 0.769 0.398 0.924 0.566 0.438 0.797

5. Discussion

In this section, we compare our model with other point-based models on the ISPRS
benchmark dataset. And the generalization capability of the proposed method is also
discussed in Section 5.2 on GML(B) dataset classification experiment.

5.1. Comparisons with Other Methods

In sum, Figure 6 shows that the proposed method generates the correct label predic-
tions for most point clouds. We also compare the proposed method with other point-based
models. The results are shown in Table 7.

Table 7. Quantitative comparisons between our propose method and our point cloud-based models on the ISPRS benchmark
dataset, all cells except the last two columns show the F1 score.

Method Powerline Low_veg Imp_surf Car Fence Hedge Roof Façade Shrub tree OA AvgF1

PointNet 0.526 0.700 0.832 0.112 0.075 0.748 0.078 0.246 0.454 0.657 0.419
PointNet++ 0.579 0.796 0.906 0.661 0.315 0.916 0.543 0.416 0.770 0.812 0.656

PointSift 0.557 0.807 0.909 0.778 0.305 0.925 0.569 0.444 0.796 0.822 0.677
D-FCN 0.704 0.802 0.914 0.781 0.370 0.930 0.605 0.460 0.794 0.822 0.707

PointCNN 0.615 0.827 0.918 0.758 0.359 0.927 0.578 0.491 0.781 0.833 0.695
KPConv 0.631 0.823 0.914 0.725 0.252 0.944 0.603 0.449 0.812 0.837 0.684

GADH-Net 0.668 0.825 0.915 0.783 0.350 0.946 0.633 0.498 0.839 0.850 0.717
our 0.770 0.827 0.914 0.769 0.396 0.924 0.568 0.442 0.798 0.832 0.712

In Table 7, the accuracy on PointNet network is the lowest. The reason may be
attributed to the small amount of collected information, which is not enough to represent
the complex features on ALS point clouds. Moreover, the PointNet network lacks neighbor
information, and therefore, the model’s learning ability is poor and needs to be improved.
Relative to the baseline model (PointNet++ network), the proposed model shows a 2%
increase in accuracy and a 4.5% increase in F1 scores. This result implies that the modified
strategies based on PointNet++ are feasible. Our module also achieves state-of-the-art
performance in the power line category. Hence, the proposed method can be used in
the recognition of some objects which are easily ignored in certain areas. This automatic
identification method can be used in power line surveying.

Table 7 shows that our proposed module is closer to the ground truth than most of the
models in point cloud-based methods. In terms of training time, the network GADH-Net
with the elevation attention method takes 7 h, whereas our proposed module takes only 2 h.
The proposed method can significantly reduce processing time and memory consumption.
Moreover, the proposed method does not require the extraction of digital terrain models,
which is a tedious and time-consuming process for the initial classification of ground
point calculation.
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5.2. Validation of Generalisation Ability

We conduct a generalization experiment on the GML(B) dataset [41] to further investi-
gate the versatility of our classification method. The GML(B) dataset is also an ALS point
cloud dataset which uses the airborne laser scanning system ALTM 2050 (Optech, Toronto,
ON, Canada). In this dataset, four semantic classes are predefined (ground, building, tree,
and low vegetation) with 3D coordinates on each point. A region of a 48 m × 48 m block
is selected randomly in the horizontal direction for training. The other training hyperpa-
rameters are the same as those used in the previous dataset. To show the advantage of
the proposed method, we compare it with the PointNet++ network, which also serves as
the baseline. The classification accuracy is given in Table 8, and the result in a selected
area is shown in Figure 7. Relative to that of the PointNet++ network, the accuracy of the
proposed method improves by 1% whilst the AvgF1 score improves by 5.2%.

Table 8. Quantitative comparisons between our proposed method and PointNet++ network. The first five columns show the F1 scores
for each category. the boldface text indicates the best performance in each item.

Modules Ground Building Tree Low_veg OA AvgF1 AvgP AvgR

PointNet++ 0.980 0.635 0.768 0.298 0.933 0.670 0.673 0.677
Method (1) 0.979 0.709 0.784 0.373 0.939 0.711 0.727 0.722
Method (2) 0.982 0.735 0.775 0.388 0.942 0.720 0.724 0.730
Method (3) 0.981 0.712 0.747 0.425 0.938 0.716 0.725 0.735
Method (4) 0.985 0.714 0.764 0.426 0.943 0.722 0.746 0.728
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Figure 7. The classification results of the PointNet++ and our proposed method in a selected area.

Figure 7b shows that the roofs can easily be mistaken for trees in the PointNet++
network. Relative to the PointNet++ network, the proposed method is close to the ground
truth and thus demonstrates effectiveness.
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6. Conclusions

In this work, we modified the PointNet++ network according to the characteristics
of ALS point clouds for semantic classification. First, the modified focal loss function
is proposed to deal with extremely uneven category distributions on ALS point clouds.
Second, the elevation- and distance-based interpolation method is proposed for the objects
in ALS point clouds which exhibit discrepancies in elevation distributions. Finally, the
point-level and global information of the centroid points is concatenated to the local
features to collect additional contextual information for supporting the classification of
variable densities at different areas in ALS point clouds. The experiments on the ISPRS
3D labeling benchmark dataset demonstrate that our module is good at ALS point cloud
classification, especially that for minority categories. The proposed method also achieves
a new state-of-the-art performance for powerline categories. The proposed method can
also reduce the errors in distinguishing between trees and roofs for it utilizes the elevation
information separately. The proposed method has the advantage in terms of computation
time. Meanwhile, the GML(B) dataset is used to validate the generalization ability of the
proposed method. In sum, the proposed method is relatively efficient and effective, thus
can be widely used in ALS point cloud classification.
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