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Abstract: Remote sensing images contain complex backgrounds and multi-scale objects, which pose
a challenging task for scene classification. The performance is highly dependent on the capacity
of the scene representation as well as the discriminability of the classifier. Although multiple
models possess better properties than a single model on these aspects, the fusion strategy for these
models is a key component to maximize the final accuracy. In this paper, we construct a novel dual-
model architecture with a grouping-attention-fusion strategy to improve the performance of scene
classification. Specifically, the model employs two different convolutional neural networks (CNNs)
for feature extraction, where the grouping-attention-fusion strategy is used to fuse the features of the
CNNs in a fine and multi-scale manner. In this way, the resultant feature representation of the scene
is enhanced. Moreover, to address the issue of similar appearances between different scenes, we
develop a loss function which encourages small intra-class diversities and large inter-class distances.
Extensive experiments are conducted on four scene classification datasets include the UCM land-use
dataset, the WHU-RS19 dataset, the AID dataset, and the OPTIMAL-31 dataset. The experimental
results demonstrate the superiority of the proposed method in comparison with the state-of-the-arts.

Keywords: remote sensing; dual-model architecture; grouping-attention-fusion; scene classification

1. Introduction

The rapid development of satellites enables the acquisition of high-resolution re-
mote sensing images which are consistently increasing in number. Compared with the
low-resolution remote sensing images, the high-resolution images offer rich and detailed
geographic information which is valuable in the fields of agriculture, military, geology,
and atmosphere. At the same time, this advantage posts the requirement of scene under-
standing which is to label the images with semantic tags based on the image content and
then facilitate the automatic analysis of remote sensing images. Targeting at this, scene
classification [1–5] has already been a popular research topic and has witnessed successful
deployment in related applications.

A remote sensing image typically covers a large range of lands, in which many kinds
of objects exist, such as bridge, car, pond, forest, and grassland, as shown in Figure 1.
This increases the difficulty of scene classification since the label of the scene could be
ambiguous with respect to the primary object and the secondary objects. Hence, the
feature representation of the image is the key factor that determines the performance of
remote sensing scene classification. In an ideal case, the feature representation is expected
to be highly correlated with the primary object, and less correlated with the secondary
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objects. Conventionally, hand-crafted features have been well studied to improve the
classification accuracy, including global features (e.g., colors, textures, and GIST) and
local features (e.g., SIFT, BovW, and LDA). However, these features do not have sufficient
representation capacity and could not be adapted to kinds of scenes, which seriously limit
the performance of scene classification. With the development of parallel computing, this
bottleneck has been broken by the deep learning tools. The convolutional neural network
(CNN) is a powerful model for analyzing image contents, which provides strong ability of
hierarchical feature extraction. The deep CNN models including AlexNet [6], VGG-Net [7],
ResNet [8], and DenseNet [9] have achieved impressive results on different vision tasks
such as image classification and object detection. Benefiting from the advantages of CNN,
the performance of scene classification is also improved by integrating the deep features
and the remote sensing characteristics [10,11].

forest
car

bridge

houses

river

grassland

Figure 1. The scene of a remote sensing image contains many kinds of objects.

Considering that the remote sensing images are captured at different distances and
the objects on lands have different sizes, the scales of the objects in the scene vary greatly.
For example, as shown in Figure 2, the scenes of these two images are both labeled as
“plane”, whereas the sizes of the planes in these figures are clearly different. It is expected
that the feature representation of a model is robust on such a scale variation, such that
the resultant features of the planes are similar to each other. Although the CNN models
produce feature maps with different receptive field sizes, the features in shallow layers
have strong discrimination ability for small objects and those in deep layers have strong
discrimination ability for large objects. Unfortunately, most of existing methods only count
on a single-level layer which is generally the last layer of the CNN model. This may result
in the loss of the features of small objects, and hence is not suitable for the classification of
multi-scale objects.

In the feature modelling process by CNN, the features of all channels in a layer
have a complex heterogeneous distribution expressing similar concepts between different
objects, such as appearance, shape, color, and semantics. This increases the difficulty of
classification since the resultant features may be indistinguishable in the feature space. To
alleviate this issue, the feature representation could be elaborated on different channels
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such that the feature space can be well constrained. Meanwhile, in scene classification,
the label is mainly determined by the primary object in the scene. Hence, it is necessary
to correlate the model features with the primary object and suppress the influence of the
features of the secondary objects and the backgrounds.

(a) (b)

Figure 2. Two remote sensing scene images labeled as “plane”. (a) The image contains “large planes”.
(b) The image contains many “small planes”.

Moreover, the characteristics of remote sensing images state that the scenes have large
intra-class diversity and large inter-class similarity. From Figure 3a, it can be seen that the
school and the park have similar appearance, whereas from Figure 3b, both centers exhibit
different building architectures in visualization. Although deep learning could greatly
improve the classification performance by involving large amounts of training data, it has
insufficient distinguishing ability for the remote sensing data with the above characteristics.
This motivates us to explicitly constrain the intra-class diversity and inter-class similarity
in the training objective by using, such as metric learning [12].

Based on the above idea, in this paper, we propose a novel dual-model architecture
for the scene classification of remote sensing images. Specifically, we advocate that a single
CNN model has limited feature representation capacity and hence, employ a dual-model
architecture that integrates two different CNN models such that the advantages of two
models can be exploited and fused. In the fusion process of two models, we develop a novel
grouping-attention-fusion strategy, which implements a channel grouping mechanism
followed by a spatial attention mechanism. This strategy is conducted on different feature
levels of the two models, including low-level, middle-level, and high-level feature maps.
The resultant features of the models in different scales are then fused using an elaborated
schema. To improve the discrimination ability of the model, we improve the training loss
by minimizing the intra-class diversities and maximizing inter-class distances. Extensive
experiments are conducted on public datasets, and the results demonstrate the superiority
of the proposed model compared with the state-of-the-arts. The contributions of this paper
are summarized as follows:

• We propose a novel dual-model architecture to boost the performance of remote
sensing scene classification, which compensates for the deficiency of a single CNN
model in feature extraction.

• An improved loss function is proposed for training, which can alleviate the issue of
high intra-class diversity and high inter-class similarity in remote sensing data.

• Extensive experimental results demonstrate the state-of-the-art performance of the
proposed model.
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The remainder of the paper is organized as follows. Related work is reviewed in
Section 2, followed by the detailed presentation of the proposed method in Section 3.
Experiments and discussions are presented in Section 4, with the conclusion drawn in
Section 5.

(a1) school (a2) park

(b1) center (b2) center

Figure 3. The examples of high intra-class diversity and inter-class similarity. The images in (a1,a2)
have similar appearances which, however, are labeled as different classes, i.e., “school” v.s. “park”.
The images in (b1,b2) have the same label of “center” but have variant appearances.

2. Related Work

In this section, we briefly review the related work of remote sensing scene classification.
The existing methods could be divided into two categories: the hand-crafted methods [1,13–20]
and the deep learning-based methods [3,21–32].

2.1. The Hand-Crafted Methods

The hand-crafted feature extraction is a conventional way for representing the remote
sensing images in scene classification. The global features [1,4,9,13,16–18] including the
spectral characters, the color moment, the textures, and the shape descriptors, represent
the image statistics from a whole view of the scene. However, the resultant statistics
cannot reveal the local details of the scene, resulting in misclassification when the scenes
have similar appearances. Instead, the local features such as SIFT [33] and HOG [1,17,18],
describe the image in each local region, and mid-level descriptors are needed to compute
the statistics of these local features. As for the requirement of performance improvement,
the design of the hand-crafted features is getting more sophisticated, for example, com-
bining different features to general a powerful one [19,34,35]. Zhu et al. [35] proposed
the local-global feature as a visual bag of words for scene representation, which could
fuse multiple features at histogram-level. Although multiple features can compensate the
shortage of each individual feature, how to make an effective fusion by different types of
features is still an open issue. Although the hand-crafted features do not rely on large-scale
data and have low computation cost, the representation capacity is limited and cannot
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provide sufficient discrimination ability for the complex scenes, hence generally leading to
unsatisfactory performance.

2.2. The Deep Learning-Based Methods

Benefiting from the development of high-performance computers and the availability
of large-scale training data [36,37], deep learning-based approaches [38–41] have attracted
more and more attention. Among the typical deep architectures, CNN provides a strong
ability of feature extraction and yield significant performance improvement on scene
classification. There have already been several attempts to use deep CNN features for
classifying the remote sensing images [3–5,21,42–47]. Wang et al. [26] employed CaffeNet
with the soft-max layer for scene classification. AlexNet incorporated with the extreme
learning machine (ELM) classifier was used in [44]. To improve the feature representation,
the attention mechanism is also integrated into CNN. Guo et al. [48] proposed a global-
local attention network (GLANet) to obtain both global and local feature presentation for
aerial scene classification. Wang et al. [49] proposed a residual attention network (RAN) by
stacking various attention modules to capture attention perception features. Xiong et al. [50]
proposed a novel attention module that could be integrated with the last feature layer of
any pre-trained CNN model, such that the dominant features were enhanced through both
spatial and channel attention. Zhao et al. [51] developed a multitask learning framework
that improved the discrimination ability of the model features by taking advantage of
different tasks. Kalajdjieski et al. [41] applied a series of deep CNNs together with other
sensor data for the classification of air pollution.

More recently, multifeature fusion is considered in the design of CNN architectures
to generate robust feature representation, which could yield performance improve-
ment [1,13,14,23,31,52–54]. Drawing the thoughts of BovW, Huang et al. [14] proposed a
CNN-based BovW feature for scene classification, which fused the features of the convolu-
tional layers by BovW. Cheng et al. [1] extracted two features from CaffeNet and VGGNet,
respectively, by fusing the features of the convolutional layer and the fully connected
layer, which are then linearly combined for feature fusion. Shao et al. [53] explored two
convolutional neural networks for feature extraction, which are fused. Cheng et al. [12] pro-
posed the D-CNN model optimized by a new discriminative loss function which enforced
the model to be more discriminative via a metric learning regularization. Yu et al. [55]
designed a two-stream architecture for aerial scene classification. A feature fusion strategy
based on multiple well pre-trained models was proposed by Petrovska et al. [56], which
applied the principal component analysis on different layers of different models to produce
multiple features that were then used for classification. He et al. [57] proposed a multilayer
stacked covariance pooling method (MSCP) for scene classification, which computed the
second-order features of the stacked feature maps extracted from multiple layers of a CNN
model. The covariance pooling features could capture the fine-grained distortions among
the small-scale objects in remote sensing images, thus producing improved performance. A
similar technique was proposed by Akodad et al. [58], which assembled the second-order
local and global features computed by covariance pooling. Zhang et al. [59] employed
a fusion network for combining the shallow and deep features of CNN in the task of
ship detection.

Although the models mentioned above have achieved great success in scene classifi-
cation and other remote sensing tasks, they usually operate on the whole feature channel
which has a complex inhomogeneous distribution. An elaborate passway and feature
selection among the features could further improve the performance, which is the target of
this paper.

3. The Proposed Method

In this section, we propose a novel and efficient dual-model architecture with deep
feature fusion for remote sensing scene classification. Specifically, the whole model is
composed of three components including a dual-model architecture for feature extrac-
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tion, a grouping-attention-fusion strategy, and a metric learning-based loss function for
optimization, which are introduced in the following.

3.1. The Dual-Model Architecture

Different network architectures prefer to extract different types of features from the
input image. Although those features may have redundant information, the complementary
property of the features could be a key to improve the performance. At this regard, we
propose a dual-model architecture to compensate the deficiency of a single model, which
is illustrated in Figure 4. In each model of the dual models, features are extracted from
multi-level layers including low-level, middle-level, and high-level features. The features
of the corresponding layers are fused based on a grouping-attention-fusion strategy, which
enhances the representation discrimination of the multi-scale objects in remote sensing
images. The fused features of three levels are combined to yield the final multi-level feature,
which is then fed to a loss function that enforces constraints on both intra-class diversity
and inter-class similarity.

Label

Feature Extraction

Data

Model 2 

Model 1 

Feature Extraction

Feature Fusion
Classification Prediction

int raL

int erL

Classifier

Grouping

Attention Mechanism

Grouping
Attention

Attention Mechanism

Fusion

Fusion

Feature Fusion

Low-level
feature

Middle-level
feature

High-level
feature

High-level
feature

Middle-level
feature

Low-level
feature

Figure 4. The overall architecture of our proposed method.

Regarding the dual models, we select two popular CNN models: ResNet [8] and
DenseNet [9], for feature extraction, and each model is described in the following.

• ResNet
ResNet [8] is the most popular CNN for feature extraction, which solves the problem
that the classification accuracy decreases by deepening the number of layers in some
common CNNs. The lowest layer cannot only obtain the input from the middle layer,
but also can obtain the input from the top layer through shortcut connection, which
has the benefit of avoiding gradient vanishing. Although the network has an increased
depth, it can easily enjoy accuracy gains. In our work, ResNet-50 is used for feature
extraction, where we select the conv-2 layer for low-level feature extraction, the conv-3
layer for middle-level feature extraction, and the conv-4 layer for high-level feature
extraction. These three layers produce features of 128 dimensions, 128 dimensions,
and 128 dimensions, respectively.

• DenseNet
Compared with other networks, DenseNet [9] alleviates gradient vanishing, strength-
ens feature propagation, encourages feature reusing, and reduces the number of pa-
rameters. A novel connectivity is proposed by DenseNet to make the information
flow from low-level layers to high-level layers. Each layer obtains the input from all
preceding layers and the resultant features are then transferred to subsequent layers.
Consequently, both the low-level features and the high-level semantic features are used
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for final decision. In our architecture, we use DenseNet-121 as the feature extractor
by extracting multi-level features from the conv-2 layer as the low-level feature with
128 dimensions, from the conv-3 layer as the middle-level feature with 128 dimensions,
and from the conv-4 layer as the high-level feature with 128 dimensions.

3.2. Grouping-Attention-Fusion

The features extracted by the above CNN models are suitable for general purpose
of image analysis, whereas scene classification focuses on the primary object in the scene.
Considering this, the features could be further improved to enhance the discrimination
ability. Here, we propose a grouping-attention-fusion (GAP) strategy to fuse the multi-level
features of the dual models to generate a more powerful representation.

Specifically, the features of a certain level in one model are enhanced by a grouping
step and an attention step. The grouping produces several subgroups along the channel
dimension, and the attention is performed on each subgroup. This operation is conducted
on each level, yielding the enhanced features of low-level, middle-level, and high-level,
which are then fused by summation of the corresponding subgroup features. The fused
features from the dual models are then added to generate the dual-model deep feature.

3.2.1. Grouping

The intuition of channel grouping is from the “Divide-and-Conquer” idea, which
means that a set of subgroups can be solved more easily and efficiently than a whole group.
Before fusing the multi-level features, each level feature is grouped into subgroups along
the channel dimension to reduce the feature complexity. Specifically, grouping makes use
of the new dimension, namely “cardinality” (noted as C), i.e., the feature channels are
grouped into C subgroups, as shown in Figure 5. For example, considering the low-level
features with 128 dimensions, when C = 32, the features are grouped into 32 subgroups,
which are denoted as

{
G1

L, . . . , Gi
L, . . . , G32

L
}

, where Gi
L is the ith subgroup of the low-level

features. The size of each subgroup is h× w× 4, where h is the height of the map and w is
the width of the map. Likewise, the middle-level and high-level features are divided into
subgroups, denoted as

{
G1

M, G2
M, . . . , G32

M
}

and
{

G1
H , G2

H , . . . , G32
H
}

, respectively.
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Figure 5. The grouping-attention-fusion strategy.
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3.2.2. Attention

To pay attention to the key position of the scene, an explainable attention network [38]
is introduced to our proposed strategy, as shown in Figure 6. The input is the subgroup
feature map, denoted as F, the size of which is 4× h× w. The feature map is convoluted
by a C × 1× 1 convolutional layer, generating C feature maps, followed by a 1× 1× 1
convolution layer to generate a 1× h×w feature map. Then, the feature map is normalized
by the sigmoid function, yielding the attention map A. The attention mechanism states that:

A′ = (1 + A) · F, (1)

where A′ is the output of this mechanism.

G
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1 
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C
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1 
×

1 
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Si
gm

oi
d

Feature map

Figure 6. The feature attention module.

3.2.3. Fusion

After grouping and attention, the feature maps are added for fusion, according to the
rule that the corresponding subgroups from three levels are added together. For instance,
Ai′

L is the ith feature map of Gi
L in the low-level, after the manipulations of grouping and

attention. The feature maps of middle-level and high-level are denoted as Ai′
M and Ai′

H ,
respectively. Then, Ai′

L, Ai′
M, and Ai′

H are fused via summation, producing the fused sub-
feature map of the ith subgroup. The fused feature map F′ are generated by the summation
of all the 32 sub-feature maps. The final fused feature map of the dual-model architecture
is produced by concatenating the feature map F of each single model.

3.3. Classification with Metric Learning

The characteristics of remote sensing images bring the challenge of high intra-class
diversity and inter-class similarity. This motivates us to develop a training objective that
balances the intra-class and inter-class diversity during learning, which is also the target of
metric learning. Intuitively, we propose a loss function, denoted as

Lfinal = (1− λ)Lintra + λLinter, (2)

where Lintra is the intra-class loss function for controlling the intra-class diversity, Linter is
the inter-class loss function for controlling the inter-class similarity, and λ is the balance
parameter. Clearly, minimizing Lfinal would result in the solution having low intra-class
diversity and high inter-class diversity. To realize the above idea, we implement Lintra as
the center loss [60]:

Lintra =
1
2

m

∑
i=1

∥∥xi − cyi
∥∥2

2, (3)

where cyi ∈ Rd represents the center of the yith category, xi denotes the feature of the ith
sample, and m denotes the batch size of samples of the yith category. As seen, we constrain
the samples of each category to be close to each other within the category, in which way
the intra-class diversity could be minimized. To maximize the inter-class distance, Linter is
implemented as the focal loss [61]:
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Linter = −

1− log
eWT

yixi+byi

n
∑

j=1
eWT

j xi+bj


γ

m

∑
i=1

log
eWT

yixi+byi

n
∑

j=1
eWT

j xi+bj
, (4)

where xi ∈ Rd denotes the feature of the ith sample, Wj ∈ Rn denotes the weights for
classifying the jth category in the fully connected layer, bj is the bias term for the jth
category, m denotes the batch size of samples of the yith category, and n is the number of
categories. The small inter-class distances between different classes are caused by hard
examples. Regarding this, the focal loss can encourage the optimization to focus on the
hard examples, i.e., the hard examples would contribute more on the gradients during
back-propagation than the easy examples. Specifically, the value in the bracket reveals that
how far the predicted label is from the ground-truth, i.e., the value being large when the
prediction is incorrect (hard examples) and small otherwise (easy examples). According
to the characteristics of the exponential function, when gamma > 1, the influence of easy
examples will be suppressed more than the hard examples. Hence, this loss could address
the issue of inter-class diversity, yielding improved performance.

4. Experiments

In this section, we conduct a series of experiments to validate the effectiveness of the
proposed method.

4.1. Datasets

We employ four public datasets in experiments, which are detailed as follows.

• UC Merced Land-Use Dataset [39]: This dataset contains land-use scenes, which
has been widely used in remote sensing scene classification. It consists of 21 scene
categories and each category has 100 images with the size of 256× 256. The ground
sampling distance is 1 inch per pixel. This dataset is challenging because of high
inter-class similarity, such as dense residential and sparse residential.

• WHU-RS19 Dataset [40]: The images of this dataset are collected from Google Earth,
containing in total 950 images with the size of 600× 600. The ground sampling distance
is 0.5 m per pixel. There are 19 categories with great variation, such as commercial
area, pond, football field, and desert, imposing great difficulty for classification.

• Aerial Image Dataset (AID) [42]: It is a large-scale dataset collected from Google
Earth, containing 30 classes and 10000 images with the size of 600× 600. The ground
sampling distance ranges from 0.5 m per pixel to 8 m per pixel. The characteristic
of this dataset is high intra-class diversity, since the same scene is captured under
different imaging conditions and at different time, generating the images with the
same content but different appearances.

• OPTIMAL-31 Dataset [43]: The dataset has 31 categories with each category collecting
60 images with the size of 256× 256.

4.2. Evaluation Metrics

To assess the effectiveness of the proposed method, we use the widely used evaluation
metrics including the overall accuracy (OA) and the confusion matrix (CM), which are
described below.

• Overall accuracy (OA) is computed as the ratio of the correctly classified images to all
images.

• Confusion matrix (CM) is constructed as the relation between the ground-truth label
(in each row) and the predicted label (in each column). CM illustrates which category
is easily confused with other categories in a visual way.
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4.3. Experimental Settings

The proposed model is trained by stochastic gradient descent (SGD) with the momen-
tum as 0.9, the initial learning rate as 0.001, and the weight decay penalty as 0.009. The
learning rate is reduced by 10 times after 100 epochs. The training process of the proposed
model is terminated after 150 epochs. All experiments are implemented with Python 3.6.5
and conducted under the environment of NVIDIA 2080Ti GPU.

Data augmentation is employed during training to improve the generalization perfor-
mance, including rotation, flip, scaling, and translation. The dual model used in our work,
i.e., ResNet and DenseNet, are initialized as the pre-trained models on ImageNet. The
parameters of the layers that do not exist in the pre-trained models are initialized randomly.

4.4. Ablation Study
4.4.1. Discussion on Cardinality

The cardinality is an important parameter in our proposed grouping-attention-fusion
strategy, which influences the feature flow in the architecture as well as the final classifica-
tion accuracy. In Table 1, we present the performance of the model when using different
values of cardinality. The experiments are conducted on the OPTIMAL-31 dataset, which
contains more classes and fewer images among the other datasets and thus is more chal-
lenging. The effectiveness of the proposed method can be well examined under different
parameter settings, which would comprehensively show the generalization ability. From
Table 1, we see that as the value goes up, the accuracy increases, while the highest preci-
sion is obtained when cardinality is 32. Hence, in the following experiments, we setup
cardinality as 32 to achieve the best performance.

Table 1. Investigation of cardinality.

Cardinality OA(%)

1 94.62
4 94.09
8 94.62

16 95.70
32 96.24
64 93.28

4.4.2. Discussion on γ

In the format of the inter-class loss Linter, the parameter γ is used to mine the hard
samples during learning. Hence, a proper value of γ helps to enlarge the distances between
different classes, or specifically, the hard samples of different classes. The effect of γ is
investigated on the OPTIMAL-31 dataset and the results are illustrated in Table 2. As
seen, when γ = 0, Linter is the original cross entropy loss. As γ increases, the accuracy is
improved. In our experiments, we set γ = 2 to improve the performance in comparison.

Table 2. Investigation of γ.

γ OA (%)

γ = 0 94.09
γ = 1 95.16
γ = 2 95.70

4.4.3. Discussion on λ

Recall that the proposed loss function Lfinal is consisted of Linter and Lintra, which are
balanced using the parameter λ. Different values of λ are investigated in Table 3, from
which we see that the best performance is achieved when λ = 0.0005. Hence, we set
λ = 0.0005 in the following experiments.
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Table 3. Investigation of λ.

λ OA (%)

0.0001 93.28
0.0005 95.16
0.005 94.62
0.01 94.09
0.05 93.55

4.5. Comparison with State-of-the-Arts

We compare the proposed method with the state-of-the-arts on the four datasets. To
make a fair comparison, each experiment is repeated ten times, and the final performance
is computed by averaging the results.

• UC Merced Land-Use Dataset:

In this dataset, we first setup two training settings including the training ratio of 80%
and 50%, which means that the partition of training data is 80% and 50% of the whole
dataset, respectively. The selected competitors and the results are shown in Table 4. The
comparison indicates that the proposed model performs better than other methods in
almost all cases. Similar methods to ours include ResNet-TP-50 [11] which adopts two-path
ResNet as backbone, and Two-Stream Fusion [10] which extracts two-stream features from
CNN models for fusion. The results show that both methods perform better than other
single model-based methods under both training settings, demonstrating the superiority
of the dual-model architecture over the single model architecture. The method of [12]
introduces metric learning to the D-CNN model, but the accuracy is 1.22% lower than our
method. This indicates that the proposed loss function is helpful to improve the accuracy.

Table 4. The OA(%) of different methods on UC Merced Land-Use Dataset. The “w.r.t. baseline” column lists the
improvements of the corresponding methods with respect to the baseline GoogLeNet.

Methods 80% Images
for Training

w.r.t.
Baseline (80%)

50% Images
for Training

w.r.t.
Baseline (50%)

ARCNet-VGG16 [43] 99.12 ± 0.40 +4.81 96.81 ± 0.14 +4.11
Combing Scenarios I and II [3] 98.49 +4.18
D-CNN with VGGNet-16 [12] 98.93 ± 0.10 +4.62

Fusion by Addition [21] 97.42 ± 1.79 +3.11
ResNet-TP-50 [11] 98.56 ± 0.53 +4.25 97.68 ± 0.26 +4.98

Two-Stream Fusion [10] 98.02 ± 1.03 +3.71 96.97 ± 0.75 +4.27
CNN-NN [44] 97.19 +2.88

Fine-tuning GoogLeNet [52] 97.10 +2.79
GoogLeNet [42] 94.31 ± 0.89 0 92.70 ± 0.60 0

CaffeNet [42] 95.02 ± 0.81 +0.71 93.98 ± 0.67 +1.28
Overfeat [31] 90.91 ± 1.19 −3.4

VGG-VD-16 [42] 95.21 ± 1.20 +0.9 94.14 ± 0.69 +1.44
MS-CLBP+FV [14] 93.00 ± 1.20 −1.31 88.76 ± 0.76 −3.94

Gradient Boosting Random CNNS [23] 94.53 +0.22
SalM3LBPCLM [13] 95.75 ± 0.80 +1.44 94.21 ± 0.75 +1.51

Partlets-based [1] 91.33 ± 1.11 −2.98
Multifeature Concatenation [53] 92.38 ± 0.62 −1.93
Pyramid of Spatial Relations [54] 89.10 −5.21

Saliency-guided Feature Learning [62] 82.72 ± 1.18 −11.59
Unsupervised Feature Learning [63] 82.67 ± 1.23 −11.64

BoVW [64] 76.81 −17.5
BiMobileNet (MobileNetv2) [52] 99.03 ± 0.28 +4.72 98.45 ± 0.27 +5.75

DDRL-AM [65] 99.05 ± 0.08 +4.74
AlexNet+MSCP [57] 97.29 ± 0.63 +2.98

AlexNet+MSCP+MRA [57] 97.32 ± 0.52 +3.01
VGG-VD16+MSCP [57] 98.36 ± 0.58 +4.05

VGG-VD16+MSCP+MRA [57] 98.40 ± 0.34 +4.09
Ours 99.52 ± 0.23 +5.21 98.19 ± 0.39 +5.49
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To make comparison on a more challenging condition, we conduct a series of exper-
iments by using the training ratio of 20% on this dataset. The results are presented in
Table 5, which indicates that the proposed method achieves the best performance in this
challenging case.

To inspect the class-wise performance of our method, confusion matrix (CM) is
adopted, as shown in Figure 7. The error occurs when the dense residential is misclassified
as the mobile home park and the sparse residential is misclassified as the mobile home park.
This illustrates the confusing categories including mobile home park, dense residential,
and sparse residential.

The above experimental results verify that the feature fusion mechanism and the
metric learning-based loss could be beneficial to the scene classification.

Table 5. A challenging comparison on UC Merced Land-Use Dataset. The “w.r.t. baseline” column
lists the improvements of the corresponding methods with respect to the baseline GoogLeNet.

Methods 20% Images
for Training

w.r.t.
Baseline

AlexNet [43] 88.35 ± 0.85 −0.84
CaffeNet [43] 90.48 ± 0.78 +1.29

GoogLeNet [43] 89.19 ± 1.19 0
VGG-16 [42] 90.70 ± 0.68 +1.51
VGG-19 [43] 89.76 ± 0.69 +0.57

ResNet-50 [43] 91.93 ± 0.61 +2.74
ResNet-152 [43] 92.47 ± 0.43 +3.28

Ours 95.60 ± 0.39 +6.41
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Figure 7. CM on UCM Land-Use dataset under the training ratio of 80%.

• WHU-RS19 Dataset:
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This dataset has the characteristics that the image quantity of each category is quite
small, and the resolution of each image is high. We setup two training settings including
the training ratio of 60% and 40%. The comparison results are illustrated in Table 6, which
shows that the performance of our method exceeds that of most methods. The accuracy
of ARCNet-VGG16 is 0.8% higher than that of our method at 60% training ratio, but our
method surpasses at lower training ratio.

The CM of our method is shown in Figure 8, illustrating the confusing cases between
forest and mountain, between meadow and forest, between river and park, and between
commercial and part.

• Aerial Image Dataset (AID):

Table 6. The OA(%) of different methods on WHU-RS19 Dataset. The “w.r.t. baseline” column lists the improvements of the
corresponding methods with respect to the baseline GoogLeNet.

Methods 60% Images
for Training

w.r.t.
Baseline (60%)

40% Images
for Training

w.r.t.
Baseline (40%)

ARCNet-VGG16 [43] 99.75 ± 0.25 +5.04 97.50 ± 0.49 +4.38
Combing Scenarios I and II [3] 98.89 +4.18

Fusion by Addition [21] 98.65 ± 0.43 +3.94
Two-Stream Fusion [10] 98.92 ± 0.52 +4.21 98.23 ± 0.56 +5.11

VGG-VD-16 [42] 96.05 ± 0.91 +1.34 95.44 ± 0.60 +2.32
CaffeNet [42] 96.24 ± 0.56 +1.53 95.11 ± 1.20 +1.99

GoogLeNet [42] 94.71 ± 1.33 0 93.12 ± 0.82 0
SalM3LBPCLM [13] 96.38 ± 0.82 +1.67 95.35 ± 0.76 +2.23

Multifeature Concatenation [53] 94.53 ± 1.01 -0.18
MS-CLBP+FV [14] 94.32 ± 1.02 −0.39

MS-CLBP+BoVW [14] 89.29 ± 1.30 −5.42
Bag of SIFT [62] 85.52 ± 1.23 −9.19

Ours 98.96 ± 0.78 +4.25 97.98 ± 0.84 +4.86
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Figure 8. CM on WHU RS19 dataset under the training ratio of 60%.
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This dataset is a large one consisting of 10000 images. We setup two training settings
including the training ratio of 50% and 20%. In both settings, our method performs better
than all the competitors, as shown in Table 7. For example, our method has increased 3.02%
over ARCNet-VGG16 [43] when the training ratio is 50%, and increased 5.3% when the
training ratio is 20%. The results indicate that the proposed method perform well on large
datasets, even when the available training data is limited. CM is shown in Figure 9, from
which we observe very small possibility between confusing categories.

Table 7. The OA(%) of different methods on Aerial Image Dataset(AID). The “w.r.t. baseline” column
lists the improvements of the corresponding methods with respect to the baseline GoogLeNet.

Methods 50% Images
for Training

w.r.t.
Baseline (50%)

20% Images
for Training

w.r.t.
Baseline (20%)

ARCNet-VGG16 [43] 93.10 ± 0.55 +6.71 88.75 ± 0.40 +5.31
Fusion by Addition [21] 91.87 ± 0.36 +5.48
Two-Stream Fusion [10] 94.58 ± 0.25 +8.19 92.32 ± 0.41 +8.88

D-CNN with AlexNet [12] 94.47 ± 0.12 +8.08 85.62 ± 0.10 +2.18
VGG-VD-16 [42] 89.64 ± 0.36 +3.25 86.59 ± 0.29 +3.15

CaffeNet [42] 89.53 ± 0.31 +3.14 86.86 ± 0.47 +3.42
GoogLeNet [42] 86.39 ± 0.55 0 83.44 ± 0.40 0

AlexNet+MSCP [57] 92.36 ± 0.21 +8.92 88.99 ± 0.38 +2.6
AlexNet+MSCP+MRA [57] 94.11 ± 0.15 +10.67 90.65 ± 0.19 +4.26

VGG-VD16+MSCP [57] 94.42 ± 0.17 +10.98 91.52 ± 0.21 +5.13
VGG-VD16+MSCP+MRA [57] 96.56 ± 0.18 +13.12 92.21 ± 0.17 +5.82

Ours 96.12 ± 0.14 +9.73 94.05 ± 0.10 +10.61
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Figure 9. CM on AID under the training ratio of 50%.

• OPTIMAL-31 Dataset:
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This dataset is recently published, and the performance of several states of the art are
available. The results are presented in Table 8, which shows that our method outperforms
the state-of-art methods in all cases. Regarding the CM shown in Figure 10, we observe
very limited cases of confusing categories.

Table 8. The OA(%) of different methods on OPTIMAL-31 Dataset. The “w.r.t. baseline” column lists
the improvements of the corresponding methods with respect to the baseline GoogLeNet.

Methods 80% Images
for Training

w.r.t.
Baseline

ARCNet-VGGNet16 [43] 92.70 ± 0.35 +10.13
ARCNet-ResNet34 [43] 91.28 ± 0.45 +8.71
ARCNet-Alexnet [43] 85.75 ± 0.35 +3.18

VGG-VD-16 [42] 89.12 ± 0.35 +6.55
Fine-tuning VGGNet16 [43] 87.45 ± 0.45 +4.88
Fine-tuning GoogLeNet [43] 82.57 ± 0.12 0

Fine-tuning AlexNet [43] 81.22 ± 0.19 −1.35
Ours 96.24 ± 1.10 +13.67
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Figure 10. CM on OPTIMAL-31 under the training ratio of 80%.



Remote Sens. 2021, 13, 433 16 of 19

4.6. Discussions

In this section, we give a brief discussion on why the proposed method could improve
the performance compared with the competitors. The proposed method is closely related
to [10] which introduces a two-stream architecture that extracts features from both an
original remote sensing image and a pre-processed image via saliency detection, yielding
very competitive performance in comparison (see Tables 4, 6 and 7). It is demonstrated
that the fusion of multi-stream information is effective in scene classification. We refer
the two-stream idea and propose a dual-CNN architecture which, however, differs in that
the features of multiple hierarchical levels (i.e., low-level, medium-level, and high-level)
of two CNNs are exploited. In this way, the extracted features are complementary with
each other and hence, the fusion produces a more comprehensive feature representation.
This is especially beneficial for multi-scale object analyses. Moreover, we elaborate the
fusion process by dividing the channels into small groups. The attention operation in
each small group could excavate fine-grained saliency information, which is empirically
shown effective.

We also compare with a related method DDRL-AM [65] (see Table 4) which enhances
the feature representation by integrating the attention map with the center loss-based
discriminative learning. By contrast, we improve the center loss by adding a factor γ > 0
in the measurement of inter-class loss, such that the learning process could suppress the
losses of easy samples and focus on the hard samples. This is similar to the focal loss used
in object detection [61]. The comparison validates the superiority of the proposed method
over DDRL-AM [65].

The recently published second-order feature-based methods could produce pleasing
performance on fine-grained classification tasks including remote sensing scene classifica-
tion, e.g., [57]. Typically, the multilayer stacked covariance pooling (MSCP) method [57]
exploits the covariance pooling operation among the multilayer feature maps of a CNN
model, which is indeed a kind of feature fusion scheme. Such a second-order feature
representation reveals the fine distortions of the objects in images. Although this method
produces comparable results to the state-of-the-arts in Tables 4 and 7, it is a post-processing
method and does not benefit from the end-to-end learning. Instead, the proposed method
yields a fusion process which is optimized in conjunction with the whole model learning
and hence, produces improved performance in most cases.

5. Conclusions

Remote sensing scene classification is a challenging task that brings the difficulties
of complex background, various imaging conditions, multi-scale objects, and similar
appearances. Targeting on these issues, on this work, we propose a novel dual-model
architecture with deep feature fusion. The dual-model architecture could compensate the
deficiency of a single model, especially by improving the representation capacity of the
model. A grouping-attention-fusion strategy is developed to enhance the discrimination
ability of the extracted features and fuse the multi-scale information coming from two
models. The resultant feature representation has a more comprehensive information than
the feature of a single model. To encourage small intra-class diversity and large inter-class
distance, we propose a novel loss function to reduce the confusion between different
classes, which yields better performance in scene classification. Extensive experiments
are conducted on four challenging datasets. The results demonstrate that the dual-model
architecture is more effective than one single model, and the proposed feature fusion
strategy provides more elaborative features to improve classification accuracy. Moreover,
the metric learning-based loss function is well-suited for the scene-classification problem of
high intra-class diversity and inter-class similarity. The comparison verifies the superiority
of the proposed model over the state-of-the-arts.
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