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Abstract: Cucumber powdery mildew, which is caused by Podosphaera xanthii, is a major disease that
has a significant economic impact in cucumber greenhouse production. It is necessary to develop a
non-invasive fast detection system for that disease. Such a system will use multispectral imagery
acquired at a close range with a camera attached to a mobile cart’s mechanic extension. This study
evaluated three image registration methods applied to non-georeferenced multispectral images
acquired at close range over greenhouse cucumber plants with a MicaSense® RedEdge camera. The
detection of matching points was performed using Speeded-Up Robust Features (SURF), and outliers
matching points were removed using the M-estimator Sample Consensus (MSAC) algorithm. Three
geometric transformations (affine, similarity, and projective) were considered in the registration
process. For each transformation, we mapped the matching points of the blue, green, red, and NIR
band images into the red-edge band space and computed the root mean square error (RMSE in pixel)
to estimate the accuracy of each image registration. Our results achieved an RMSE of less than 1
pixel with the similarity and affine transformations and of less than 2 pixels with the projective
transformation, whatever the band image. We determined that the best image registration method
corresponded to the affine transformation because the RMSE is less than 1 pixel and the RMSEs have
a Gaussian distribution for all of the bands, but the blue band.

Keywords: Image Alignment; Speeded-Up Robust Features (SURF); feature extraction; MicaSense
camera; Multispectral Image; Moving Image; Fixed Image

1. Introduction

In Canada, there are close to 16.9 million m2 greenhouses [1], about 25% (4.3 mil-
lion m2) being dedicated to cucumber (Cucumis sativus L.) production [1], which led to a
total cucumber production of 206,228 metric tons in 2017 [1]. However, even with many
greenhouse crops, cucumber production might be subject to fungal diseases, which are
a major limiting factor in the production system [2]. One of them is powdery mildew,
which is caused by the fungus Podosphaera xanthii. This disease may lead to yield losses
between 30 and 50% of the total production [3]. The pathogen is biotrophic, i.e., it interacts
with the host without killing the host cells to obtain nutrients [4]. Powdery mildew grows
haustorium that causes internal structural damage of colonized cell walls of leaves, petioles,
and stems, establishing a close connection with the lying beneath the host cells [5,6]. Such
changes in the cell walls should be better detected using near-infrared imagery [7]. With
the development of the disease, the infected plants are subjected to chemical changes,
inducing chlorophyll degradation, which can be detected in the visible region of the elec-
tromagnetic spectrum [8,9]. Acquiring imagery in the visible and near-infrared regions
of the electromagnetic spectrum requires the use of multispectral cameras. Most of the
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studies that use multispectral cameras to detect crop diseases were performed using either
airborne, satellite, or UAV imagery in field conditions [10,11]. For greenhouse conditions,
studies on the detection of cucumber powdery mildew mainly used RGB images acquired
over single leaves having visible symptoms [12–15]. RGB cameras have the advantage
of being made of a single sensor that uses filters to produce the red, green, and blue
image. As a result, the three images automatically well align. However, multispectral
cameras are made of more than one sensor, and the distance between the sensors makes
the images not aligned (Figure 1). Such an alignment is easy to perform when the images
are georeferenced such as for airborne, satellite, or UAV imagery. However, in the case
of imagery acquired with a robot in a greenhouse, the imagery is not georeferenced, and
there is a need to develop an image registration method for properly aligning the band
images. In this case, the images that need to be registered (known as the moving images)
are registered as a function of a reference image (known as the fixed image) [16]. The
registration process involves the detection of features through a feature detector algorithm
and their location on the moving and fixed images to geometrically transform the moving
image into the fixed image space [17,18]. The feature detector algorithm should be such
that it has high repeatability, i.e., it needs to detect the same interest points or key points
under different viewing conditions. The detector must also be robust to noise, detection
errors, and geometric and photometric deformations [19,20]. Finally, it needs to have a
short computation time as possible [21].

Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 27 
 

 

the electromagnetic spectrum requires the use of multispectral cameras. Most of the stud-
ies that use multispectral cameras to detect crop diseases were performed using either 
airborne, satellite, or UAV imagery in field conditions [10,11]. For greenhouse conditions, 
studies on the detection of cucumber powdery mildew mainly used RGB images acquired 
over single leaves having visible symptoms [12–15]. RGB cameras have the advantage of 
being made of a single sensor that uses filters to produce the red, green, and blue image. 
As a result, the three images automatically well align. However, multispectral cameras 
are made of more than one sensor, and the distance between the sensors makes the images 
not aligned (Figure 1). Such an alignment is easy to perform when the images are georef-
erenced such as for airborne, satellite, or UAV imagery. However, in the case of imagery 
acquired with a robot in a greenhouse, the imagery is not georeferenced, and there is a 
need to develop an image registration method for properly aligning the band images. In 
this case, the images that need to be registered (known as the moving images) are regis-
tered as a function of a reference image (known as the fixed image) [16]. The registration 
process involves the detection of features through a feature detector algorithm and their 
location on the moving and fixed images to geometrically transform the moving image 
into the fixed image space [17,18]. The feature detector algorithm should be such that it 
has high repeatability, i.e., it needs to detect the same interest points or key points under 
different viewing conditions. The detector must also be robust to noise, detection errors, 
and geometric and photometric deformations [19,20]. Finally, it needs to have a short com-
putation time as possible [21]. 

 
Figure 1. Figure showing the distance between the five sensors of the MicaSense® RedEdge camera 
(adapted from www.dronenerds.com). 
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which was attached to a mechanic extension of a mobile cart. The three methods use the 
blue, green, red, and NIR bands as moving images and the red-edge band as the fixed 
reference image because the related sensor has a central position on the camera (Figure 1). 
In the three methods, we detected and extracted features with the Speeded-Up Robust 
Features (SURF) algorithm, which is a scale and rotation invariant detector and descriptor 
developed by Bay et al. [19]. The main advantages of the SURF algorithm over other well-
known detectors such as the Scale-Invariant Feature Transform (SIFT) [22] is its lower 
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Figure 1. Figure showing the distance between the five sensors of the MicaSense® RedEdge camera
(adapted from www.dronenerds.com).

This study aims to evaluate three methods of image registration in the case of non-
georeferenced multispectral images acquired at close range over greenhouse cucumber
plants with a MicaSense® RedEdge camera (MicaSense, Inc., Seattle, Washington, USA),
which was attached to a mechanic extension of a mobile cart. The three methods use
the blue, green, red, and NIR bands as moving images and the red-edge band as the
fixed reference image because the related sensor has a central position on the camera
(Figure 1). In the three methods, we detected and extracted features with the Speeded-Up
Robust Features (SURF) algorithm, which is a scale and rotation invariant detector and
descriptor developed by Bay et al. [19]. The main advantages of the SURF algorithm over
other well-known detectors such as the Scale-Invariant Feature Transform (SIFT) [22] is
its lower computational cost and faster performance [19–21,23]. Computation time is a
critical criterion when developing an automated system to capture and register images
inside a commercial greenhouse for disease detection. Moreover, the SURF algorithm
is less sensitive to noise [19,20]. Outliers matching points were removed using the M-
estimator Sample Consensus (MSAC) algorithm [24]. The images were then subjected to
three geometric transformations (affine, similarity and projective). For each transformation,
we mapped the matching points of the blue, green, red, and NIR bands into the red-edge
band space and computed the corresponding root mean square error (RMSE in pixel) to
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estimate the accuracy of each image registration method. Finally, an RGB composite image
was constructed by using the registered band images. The results of this study will be used
in future image segmentation and classification to develop an image-based method that
will allow detecting cucumber powdery mildew at the plant level.

2. Materials and Methods
2.1. Image Acquisition

Forty-five multispectral images were collected with a MicaSense® RedEdge cam-
era over healthy and infected cucumber plants located in a greenhouse that belongs to
Great Lakes Greenhouses Inc., a horticultural company, which is in Leamington, Canada
(42◦04′27′ ′ N 82◦35′15′ ′ W). The MicaSense® RedEdge camera has five bands (Table 1)
and a horizontal and vertical field of view of 0.82 radian (47.2◦) and 0.62 radian (35.4◦),
respectively. The camera was attached to a metal structure that was on a cart, which has
wheels to facilitate its movement inside the greenhouse aisles (Figure 2).

Table 1. Spectral information of each band from the MicaSense® RedEdge camera.

Band # Spectral Region Central Wavelength (nm) Bandwidth (nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 NIR 840 40
5 Red-edge 717 10
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Figure 2. Mobile cart and adjustable metallic extension indicating the point where the MicaSense®

RedEdge camera was placed to collect multispectral images over cucumber plants inside a greenhouse.

The images were collected under greenhouse light without the use of artificial light.
The height of the camera position was at close range (1.5 m) from the top of the cucumber
plants. The images dimensions were 1280 × 960 pixels, and the pixel size was estimated
being 0.10 cm, according to Equation (1):

pixsize =
2 ∗ H ∗ tan(FOVh/2)

1280
× 100, (1)

where,
pixsize = dimensions of the pixel size on each band image (cm);
H = camera position height (=1.5 m);
FOVh = horizontal field of view of the MicaSense® RedEdge camera (0.82).
In order to cover the studied greenhouse area, more than one image had to be acquired

over each row of plants. After capturing one image, the cart moved forward by a distance
D to collect an image of a new section of the plant row. The process was repeated until all
of the greenhouse area was surveyed. The distance (D) between two adjacent images on
each row was computed according to Equation (2) as follows:

D = (1 − P) ∗ 2 ∗ H ∗ tan(vFOV/2), (2)
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where

• D = camera displacement to image a new section of the plants row(m);
• P = overlap between images (10%);
• H = camera position height (m);
• vFOV = vertical field of view of the MicaSense® RedEdge camera (0.62).

2.2. Image Processing

The workflow of the steps from the image acquisition to the computation of the root
mean square error (RMSE) of registered images is presented in Figure 3. All data were
processed using MATLAB R2020a (MathWorks, Inc., Natick, MA, USA). The information
related to the MATLAB R2020a functions used in this study and their related parameters
was obtained from www.mathworks.com. The collected images and their respective bands
were imported into the MATLAB workspace and converted from uint16 to uint8 file formats
using the im2uint8 function. Then, the first 700 columns were removed from each band
because this image region was related to the aisle of the greenhouse. The images were then
subjected to the image registration process which includes (i) SURF features detection and
matching; (ii) geometric transformation; (iii) image wrapping; and (iv) computation of
the RMSEs (in pixel) of the positions of the inliers matching points between the fixed and
transformed moving images. In the study, we used the raw DN images without converting
in reflectance values.
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2.2.1. SURF Features
Point Detection

The first step of the image registration involves the detection of common features
between the moving and fixed images. During this step, the blue, green, red, and NIR
band images were used as moving images and the RedEdge band image as the reference
(fixed) image because of its central location on the camera. We applied to the images the
detectSURFFeatures function that is based on the SURF algorithm [25]. As detailed in
Bay et al. [20], a Speeded-Up Robust Features (SURF) feature is an interest or key point in an
image that has been detected and its neighborhood been described using the Speeded-Up
Robust Features algorithm. The SURF feature corresponds to a blob-like structure as shown
in Figure 4 for the blue, green, red, red-edge, and NIR band images.
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The SURF algorithm detects the interest points using the Hessian matrix and it is why
the point detection step of the SURF algorithm is also known as being the Fast-Hessian
step. Specifically, the SURF algorithm detects blob-like structures at locations where the
determinant of the Hessian matrix is maximum. Given a point x = (x, y) in an image I, the
Hessian matrixH (x, σ) in x at scale σ is defined as [20]:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
, (3)

where, Lxx(x,σ), Lxy(x,σ), Lyx(x,σ), and Lyy(x,σ) are the convolutions of the Gaussian
second-order derivative ∂2

∂x2 g(σ) with the image I in point x.
The second-order Gaussian derivative is approximated using box filters that reduce

computational time. Since the interest points need to be found at different scales, scale
spaces need to be considered. They are usually implemented as an image pyramid. When
the SURF algorithm is detecting interest points, the images are repeatedly smoothed with
the Gaussian second-order derivatives that are approximated using box filters and then
sub-sampled to achieve higher levels of the pyramid. The scale-space is analyzed by
upscaling the box filter rather than iteratively reducing the image size. The scale space
is divided into octaves. An octave represents a series of filter response maps obtained by
convolving the same input image with a filter of increasing size. Each octave is subdivided
into a constant number of scale levels. The construction of the scale space starts with the
9*9 filter, which calculates the blob response of the image for the smallest scale. Then, filters
with sizes 15*15, 21*21, and 27*27 are applied. For each new octave, the filter size is doubled
(i.e., from 6-12 to 24-48). At the same time, the sampling intervals for the extraction of the
interest points can be doubled as well for every new octave. This reduces the computation
time and the loss in accuracy. Finally, to localize interest points in the image, the algorithm
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applies a non-maximum suppression in a 3*3*3 neighborhood, corresponding to a fast
variant of the efficient non-maximum suppression method of [26]. The maxima of the
determinant of the Hessian matrix are then interpolated in scale and image space with the
method proposed by [27].

The detectSURFFeatures function parameters were modified from their default values
to obtain the highest possible number of blobs (Table 2). The first function parameter is
the MetricThreshold, which is a non-negative scalar. The value of this threshold can be
reduced to return more blobs. The second parameter, NumOctaves (number of octaves) is
defined by a scalar equal or greater than 1. Increasing the number of octaves allows for
detecting larger blobs. The third parameter, NumScaleLevels (number of scale levels per
octave), allows the detection of more blobs at finer scale increments if the parameter is
equal or greater than 3.

Table 2. Default and applied values of the parameters of the detectSURFFeatures function used in
the registration of the images acquired with the MicaSense® RedEdge camera.

Parameter Default Value Applied Value

MetricThreshold 1000 1
NumOctaves 3 4

NumScaleLevels 4 6

Feature Extraction

Once the SURF features were obtained, we extracted feature descriptors and their
corresponding locations on the moving and fixed images using the extractFeatures function.
A feature descriptor is a feature vector describing the distribution of the intensity within
the interest point neighborhood [28]. It depends on the orientation assignment and the
sum of Haar wavelet responses. During the orientation assignment, the derivation of the
descriptor is based on the distribution of the first order Haar wavelet responses in x and y
directions within a radius of 6s around the interest point, where s is the scale at which the
interest point was detected. This approach reduces the time for feature computation and
matching, at the same time increasing the detector robustness. The dominant orientation is
estimated by the sum of all responses within a sliding orientation window of size π

3 . The
horizontal and vertical responses within the window are summed. The resulting summed
responses yield a local orientation vector. For extracting the descriptor, first, a square region
centered on the interest point is constructed. The size of the square region is defined by 20s.
This square region is divided into 4 × 4 subregions. For each sub-region, the algorithm
computes the Haar wavelet responses at 5*5 regularly spaced sample points. The horizontal
and vertical wavelet responses are summed up over each sub-region and form the first set
of entries in the feature descriptor. To add information about the polarity of the intensity
changes, the sum of absolute values of the horizontal and vertical wavelet responses are
extracted. A descriptor vector having a specific length is achieved by concatenating the
sum of horizontal and vertical wavelet responses and the sum of absolute values of the
horizontal and vertical for all of the 4*4 sub-regions, as shown in Equation (4):

v = (∑ dx, ∑|dx|, ∑ dy, ∑|dy|) (4)

where

• ∑ dx = the sum of horizontal the wavelet responses values for all of the 4*4
sub-regions;

• ∑|dx| = the sum of absolute horizontal wavelet responses values for all of the
4*4 sub-regions;

• ∑ dx = the sum of the vertical wavelet responses values for all of the 4*4 sub-regions;
• ∑|dx| = the sum of the absolute vertical wavelet responses for all of the 4*4 sub-regions.
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One extractFeatures function parameter, the FeatureSize parameter, which defines the
length of the feature vector, was modified from 64 (default) to 128. According to Lowe [22]
and Hassaballah et al. [23], high dimension feature vectors are more distinctive because
features can be more correctly matched against a large set of features. Therefore, setting the
FeatureSize parameter to 128 increases the accuracy of correctly matching interest points.
To create a vector of length 128, the sums of dx and |dx| are computed separately for dy < 0
and dy ≥ 0. Then, the sums of dy and |dy| are split up according to the sign of dx, thereby
doubling the number of features.

Matching Features

During the matching stage, the descriptor vectors are matched between the moving
and fixed images. The matching is based on a distance between the vectors. The dimension
of the descriptor has a direct impact on the time this step takes, and a low dimension is
desirable for fast matching of interest points. Such matching features was performed with
the matchFeatures function. The function has three parameters (Table 3). The first one is the
MatchThreshold parameter that represents the percent of the distance from a perfect match.
Two feature vectors match when the distance between them is less than the threshold set
by the MatchThreshold parameter. The function rejects a match when the distance between
the features is greater than the value of MatchThreshold. The second parameter is the
MaxRatio parameter, which is a ratio threshold that allows rejecting ambiguous matches.
The default values of this parameter allow detecting less than 500 matching points. To
increase this number to 1100, the MaxRatio was set to 0.9 for the blue, red, and NIR bands
and 0.75 for the green band. The third parameter is the Unique parameter that was set as
true to perform a forward–backwards match that selects a unique match by keeping the
best match between the features of the moving and fixed images.

Table 3. Default and applied values of the parameters of the matchFeatures function used to register
the MicaSense® RedEdge images.

Parameter Band Default Value Applied Value

MatchThreshold All bands 10 50

MaxRatio
Blue–Red–NIR 0.60 0.90

Green 0.60 0.75
Unique All bands false true

2.2.2. Geometric Transformations

The image registration process involves a geometric transformation that allows trans-
forming the moving image into the red-edge band space. It is based on the matching
points of the moving and fixed images. Such transformation corrects the image distortions
and allows band alignment. The ideal geometric transformation will remove only the
spatial distortions between images [29]. The geometric transformation was done as follows.
First, the M-estimator Sample Consensus (MSAC) algorithm embedded in the estimateGe-
ometricTransform function was used to exclude outliers matching points [24]. The MSAC
algorithm is a faster variant of the Random Sample Consensus (RANSAC) algorithm [30].
Removing outliers matching points allows reducing the percentage of alignment errors
present in the total number of matching points to achieve a more accurate alignment. The
MSAC algorithm is controlled by two function parameters. The MaxNumTrials (maximum
random trials) parameter defines the maximum number of random trials for finding the
inliers matching points. Increasing the MaxNumTrials value improves the MSAC algorithm
fitting. Its default value was increased to 10,000 (Table 4). The second function parameter
is the Confidence parameter, which determines the confidence of finding the maximum
number of inliers. We used its default value of 99. Once the outliers are removed, the
estimateGeometricTransform function creates a two-dimensional (2D) geometric trans-
form object containing the geometric transformation matrix that defines the geometric
transformation type through the TransformType parameter. We considered in this study
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all three available geometric transformations, i.e., affine, similarity, and projective. The
similarity transformation is one of the simplest models and consists of rotation, scaling, and
translation of the moving image [31,32]. The affine transformation is slightly more general
than the similarity transformation and assumes that the distance of the camera to the scene
is large in comparison to the size of the scanned area. The affine transformation matrix
is defined by three non-collinear matching points and should be applied when shapes
in the moving image exhibit shearing distortions [32]. The projective transformation is
recommended when images are obtained at different view directions from the scene [33]
or if the condition on the distance of the camera from the scene is not satisfied [32]. The
geometric transformation is also controlled by the MaxDistance (maximum distance from a
point to projection) parameter, which defines the maximum distance in pixels from a point
to the projection of its corresponding point. We used the default value of 1.5 for the affine
and similarity projections, but the value changed to 3.0 for the projective transformation
that requires a higher distance to perform (Table 4).

Table 4. Default and applied values of two parameters of the estimateGeometricTransform function
used in this study.

Parameter Projection Default Value Applied Value

MaxNumTrials Affine, similarity, and projective 1000 10,000
MaxDistance Affine and similarity 1.5 1.5

Projective 1.5 3.0

To apply the geometric transformation to each moving image (blue, green, red, and
NIR bands), we used the imwarp function with the respective T matrix computed with the
estimateGeometricTransform function. The imwarp function returns the moving image
transformed into the red-edge band space. The procedure was done for each transformation
type (affine, similarity, projective).

2.2.3. RMSE Computation

The inliers matching point positions on both the fixed and transformed moving images
were used to compute a root mean square error (RMSE) to assess the registration accuracy
quantitatively. First, we used the transformPointsForward function to determine the pixel
coordinates (in image rows and columns) of each inlier matching point on both images.
The resulting coordinates were then plotted to visualize the displacement of the inliers
matching points between the fixed and moving images for each transformation type. The
RMSE (in pixels) between the positions of the inliers matching points on both the fixed and
transformed moving images was then computed as follows (Equation (5)):

RMSE =

√√√√ n

∑
i=1

(x̂i − xi)
2 + (ŷi − yi)

2

n
(5)

where
x̂i = column number of the inlier matching point in the fixed (red-edge) image;
xi = column number of the inlier matching point in the moving image (blue, green,

red, and NIR images);
ŷi = row number of the inlier matching point in the fixed (red-edge) image;
yi = row number of the inlier matching point in the moving image (blue, green, red,

and NIR images);
RMSE= root mean square error for all of the inliers matching points of the moving

image (in pixels).
The resulting RMSEs were then plotted using boxplots to compare the performance

of each transformation. We also plotted the RMSEs distribution because according to
Chai and Draxler [34], the RMSEs should have a Gaussian distribution rather than a
uniform distribution.



Remote Sens. 2021, 13, 396 9 of 21

3. Results
3.1. SURF Features

Figure 5 presents a comparison of the total number of matching points between the
blue, green, red, and NIR bands (moving images) and the red-edge band (fixed image)
for the 45 multispectral images acquired with the MicaSense® RedEdge camera over the
cucumber plants. The related descriptive statistics are given in Table 5. In general, the green
band image (Figure 5) had a higher number of matching points with a mean matching
points value of 1708.20 (Table 5), followed by the NIR band image (Figure 5) with a mean
number of matching points of 1579.80 (Table 5). Both the blue and red band images
(Figure 5) had similar mean values of the number of matching points, (1415.80 and 1457.40,
respectively) (Table 5). However, the blue band image (Figure 5) had a lower standard
deviation, and a lower standard error compares to the red band image (Table 5). Among
all of the images, the green band image number 30 had the lowest number of matching
points (Figure 5), with a value of 1125 (Table 5).
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Figure 5. Variation as a function of the image number of the total number of matching points between
the MicaSense® RedEdge blue, green, red, or NIR band images and the red-edge band image. The
points were extracted using the Speeded-Up Robust Features (SURF) features algorithm.

Table 5. Descriptive statistics as a function of the band for the number of matching points obtained
using the SURF features method over the blue, green, red, and NIR band images (moving images)
and the red-edge band images (fixed image) of 45 multispectral images acquired with the MicaSense®

RedEdge camera.

Band Minimum Maximum Mean Standard
Deviation

Standard
Error

Blue 1250 1599 1415.80 72.35 10.78
Green 1125 2089 1708.20 216.96 32.34
Red 1314 1670 1457.40 79.13 11.79
NIR 1383 1770 1579.80 96.38 14.36

It is important to attempt reaching the higher possible number of matching points,
before the geometric transformation, even if this increases the standard deviation. Indeed,
we are registering images acquired in different wavelengths, therefore, we need to be
able to match points across the whole moving and fixed band images. Even if a lower
number of matching points with a lower standard deviation could produce better accuracy,
this could lead to not detecting inliers matching points when the MSAC algorithm is
applied, therefore, leading to a poor or null estimation of the T matrix that is used in the
geometric transformation.
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3.2. Geometric Transformation

Table 6 compares the descriptive statistics for the number of inliers matching points
obtained after the feature detection, extraction, and matching using SURF features in the
case of the three transformation methods. The projective transformation had a higher
mean number of inliers matching points for all bands than the two other transformations.
(Table 6). For all of the transformations, the highest mean number of inliers matching
points was obtained for the green band image followed by the NIR band image. The mean
number of inliers for the blue band and red band images were the lowest. The affine and
similarity transformations presented similar statistics (Table 6). However, the magnitudes
of the statistics for the affine transformation were slightly higher than those computed for
the similarity transformation.

Table 6. Descriptive statistics as a function of the band for the number of inliers matching points obtained using the SURF
features and three geometric transformations over the blue, green, red, and NIR band images (moving images) and the
red-edge band images (fixed image) in the case of 45 multispectral images acquired with the MicaSense® RedEdge camera.

Geometric
Transformation Band Min Max Mean Standard

Deviation
Standard

Error
Mean Percentage

(%) (1)

Similarity

Blue 78 282 162.40 45.27 6.74 11.39
Green 318 1295 777.02 219 32.64 44.74
Red 88 280 169.95 43.17 6.43 11.59
NIR 124 413 210.26 54.95 8.19 13.22

Affine

Blue 73 274 171.06 46.75 6.96 11.99
Green 347 1242 808.57 224.22 33.42 46.58
Red 89 291 183.62 46.46 6.92 12.50
NIR 130 367 225.95 57.77 8.61 14.21

Projective

Blue 136 444 292.20 64.78 9.65 20.52
Green 622 1692 1273.50 245.95 36.66 73.97
Red 165 457 320.84 67.05 9.99 21.89
NIR 249 672 414.17 94.57 14.19 26.05

(1) With respect to the total number of matching points.

Figure 6 presents the percentage of inliers matching points with respect to the total
number of matching points. The MSAC algorithm reduced the total number (percentage)
of matching points for the blue band, by 1244 (87.91%) and 1253 (88.53%) for the affine
and similarity transformations, respectively, for the green band, by 899 (52.66 %) and 931
(54.51%) for the affine and similarity transformations, respectively, for the red band, by
1273 (87.40%) and 1287 (88.33%) for the affine and similarity transformations, respectively,
and for the NIR band, by 1353 (85.69%) and 1369 (86.69%) for the affine and similarity
transformations, respectively (Figure 6). However, when applying the MSAC algorithm
with the projective transformation, the number of total matching points for the blue, green,
red, and NIR bands was reduced approximately by 1123 (79.36%), 434 (25.44%), 1136
(77.98%), and 1165 (73.78%), respectively (Figure 6).
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Figure 6. Variation as a function of the image number of the percentage of inliers matching points
with respect to the total number of matching points for the MicaSense® RedEdge blue, green, red,
and NIR band images that were subjected to the following geometric transformations: similarity,
affine, and projective.

A visual comparison of the distribution of the total number of matching points and
the new set of inliers matching points between the moving images and the fixed image is
presented in Figures 7–10 for the blue, green, red, and NIR bands, respectively. For the
blue band image (Figure 7), the points are distributed over the whole area of the image
(Figure 7). The projective transformation over the blue band showing a better distribution
of the matching points by keeping the points at the right edge of the image and a few in
the left bottom corner (Figure 7). However, for the similarity and affine transformations,
the number of inliers matching points for the blue band is reduced in the right edge and
in the lower-left corner of the image (Figure 7). In the green band, all of the matching
points are well distributed over the image (Figure 8). Both the similarity and projective
transformations presented a good distribution of the inliers matching points over the edges
and center of the images. However, the affine transformation missed to include matching
points in the left bottom corner of the image (Figure 8). The red band image presented a
different distribution for the three transformations (Figure 9). Ideally, the matching points
should be well distributed. However, the similarity transformation (Figure 9) failed to
determine matching points in the right top corner and near the right edge of the image. It
is also noticed that the similarity transformation did not find inliers matching points in
the left central side of the image (Figure 9). The results for the affine transformation in
the red band image were like the ones of the similarity transformation (Figure 9), which
missed matching points in the right edge of the image. However, the affine transformation
included a higher number of matching points distributed in the left central area of the image,
including one in the left bottom corner. With the projective transformation (Figure 9), the
inliers matching points had a better spatial distribution over the image. It is also possible to
observe a few matching points in the top right area of the image and on the right edge. The
projective transformation also has a higher number and distribution of matching points in
the left-center area of the images (Figure 9).
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Figure 7. Comparison between the distribution of the total number of matching points and the inliers
matching points for the MicaSense® RedEdge blue and red-edge band images in the case of the
following geometric transformations: no registration (a), similarity (b), affine (c), and projective (d).
Outliers matching points were detected using the M-estimator Sample Consensus (MSAC) algorithm.
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Figure 8. Comparison between the distribution of the total number of matching points and the inliers
matching points for the MicaSense® RedEdge green and red-edge band images in the case of the
following geometric transformations: no registration (a), similarity (b), affine (c), and projective (d).
Outliers matching points were detected using the M-estimator Sample Consensus (MSAC) algorithm.
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mation, some matching points were kept in the nearest location to the left edge of the 
image, but failed to keep matching points in the left bottom corner of the image (Figure 

Figure 9. Comparison between the distribution of the total number of matching points and the
inliers matching points for the MicaSense® RedEdge red and red-edge band images in the case of the
following geometric transformations: no registration (a), similarity (b), affine (c), and projective (d).
Outliers matching points were detected using the M-estimator Sample Consensus (MSAC) algorithm.

Finally, for the NIR band image (Figure 10) it is possible to observe that most of the
original matching points located in the edges were removed when the similarity transfor-
mation was applied (Figure 10). The affine transformation presented a similar matching
point distribution as the similarity transformation (Figure 10). With the affine transforma-
tion, some matching points were kept in the nearest location to the left edge of the image,
but failed to keep matching points in the left bottom corner of the image (Figure 10). The
projective transformation improved slightly the distribution of the matching points by
including the left bottom corner of the image and placing some matching points near to
the left and right edges of the images (Figure 10). However, the projective transformation
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missed points in the top right corner of the image (Figure 10). The resulting RGB composite
images after applying the imwarp function are presented in Figure 11. All three transfor-
mation types produce good alignment, but some blurry regions can be observed in the left
lower corner of each image (Figure 11).
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Figure 10. Comparison between the distribution of the total number of matching points and the
inliers matching points for the MicaSense® RedEdge near-infrared and red-edge band images in the
case of the following geometric transformations: no registration (a), similarity (b), affine (c), and
projective (d). Outliers matching points were detected using the M-estimator Sample Consensus
(MSAC) algorithm.
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Figure 11. Comparison of the RGB composite created with the MicaSense® RedEdge blue, green, and red band images
acquired at close range over cucumber plants. The image registration was achieved using the following geometric
transformation (a) no registration, (b) similarity, (c) affine, (d) projective.

The computation time of each of the main processes of the image registration is
presented in Table 7. The computation time to detect the SURF features was 14.18 s, the
one to extract the SURF features was 18.62 s, and the one to match the features was 114.77
s. The time to apply the estimateGeometricTransform function for obtaining the T matrix
and inliers matching points depends on the geometric transformation type. It was 144.55 s
for the affine transformation, 16.81 s for the similarity transformation, and 224.77 s for the
projective transformation. The image registration with the imwarp function was the fastest
process, lasting only 0.83 s, 0.75 s, and 1.87 s with the similarity, affine, and projective
transformations, respectively (Table 7). Overall, the fastest registration method was the
one using the similarity transformation (165.13 s) followed by the one using the affine
transformation (292.95 s) and then the one using the projective transformation (374.22 s)
(Table 7). Table 7 also gives the mean time per band for each process, given that the method
was applied to 180 moving bands, i.e., 45 blue band images, 45 green band images, 45 red
band images, and 45 NIR band images).

Table 7. Image registration computation time for each function in the case of 45 multispectral images acquired with the
MicaSense® RedEdge camera.

Function Geometric
Transformation

Time (s) Cumulative time (s) Average Time
Per Band (1)

detectSURFFeatures 14.18 14.18 0.079

extractSURFFeatures 18.62 32.80 0.182

matchFeatures 114.77 147.57 0.820

estimateGeometricTransform
Affine 144.55 292.13 1.623

Similarity 16.81 164.38 0.913
Projective 224.77 372.35 2.069

imwarp
Affine 0.83 292.95 0.005

Similarity 0.75 165.13 0.004
Projective 1.87 374.22 0.010

(1) Based on a total number of moving band images of 180.

3.3. RMSE

To provide a quantitative metric to assess the performance of each image registration,
RMSEs of the inliers matching points between the moving and reference images were
computed for each transformation and each band. The resulting RMSEs were plotted in



Remote Sens. 2021, 13, 396 17 of 21

boxplots that show that the projective transformation presented the highest RMSE for all
of the band images, with an RMSE value near 1.5 pixels (Figure 12). The corresponding
RMSEs were less than 1 pixel with the similarity and affine transformations (Figure 12).
Figure 13 presents the distribution of the RMSE as a function of the band and image
transformation. The best image registration method should be as such that the RMSEs have
a Gaussian distribution because model errors are likely to have a Gaussian distribution
rather than a uniform distribution [34]. With the affine transformation, RMSEs have a
Gaussian distribution for all of the band images, except for the blue band image.
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Figure 12. Variation of the root mean square error (RMSE in pixels) computed for the inliers matching
points as a function of the geometric transformation that was used to transform the blue (a), green
(b), red (c), and NIR (d) band moving image into the fixed (red-edge band) image space.
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Figure 13. Distribution of the root mean square error (RMSE) computed for the inliers matching
points after a forward transformation to the fixed (red-edge band) image space as a function of the
transformation. The red line represents a Gaussian distribution. In order to improve visualization,
the range of the x-axis was modified for the projective transformation.

4. Discussion

Our study aims to develop a method that allows the registration of non-georeferenced
close-range multispectral images acquired with a MicaSense® RedEdge camera over green-
house cucumber healthy and infected plants. In order to be suitable for disease detection,
the developed method should properly align the various band images in order to be able
to integrate the spectral information from the different band images to gain more complex
and detailed scene representation [32]. Image registration is generally done by registering
one image (moving image) as a function of another one (fixed image). Since there is no
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defined method to select the reference image during image registration [35], we defined the
red-edge band image as the fixed reference image in this study because the red-edge sensor
of the MicaSense® RedEdge camera is located at the center of the sensor (Figure 1). Such
definition allows keeping similar spatial misalignment among the other band images, i.e.,
the blue, green, red, and NIR band images which are here the moving images, i.e., images
to be registered.

Such image registration requires determining matching points that represent the same
features on the moving and fixed images. The detected feature sets in the moving and
fixed image must have enough common elements [32]. We applied the detectSURFFeatures
function to detect SURF features. SURF features have been designed to determine mapping
key points between two images on the assumption that corresponding key points have
a similar gradient pattern around them [36]. The parameters of the detectSURFFeatures
function were modified to obtain the highest possible number of matching points, given
that a high number of points is required with high-resolution images [37]. We observed
that the highest number of matching points were detected in the green band image (2089),
followed by the NIR band image (1770) and the blue and red band images (1599 and
1670, respectively). We cannot attribute the highest number of total matching points for
the green band to the modified parameters of the matchFeatures function, because the
highest number for the green band is also observed with the default values of the function
parameters. The highest number in the green band should also not be related to the
SURF algorithm we used. Indeed, this result was also observed by Yasir et al. [38] who
registered MicaSense® RedEdge green, red and NIR images into the RedEdge space with
a data-driven algorithm. It was also observed by Hassanpour et al. [39] who registered
MicaSense® RedEdge green, red and NIR images with a Patch-Wise and Local Window
registration method. The higher number of total matching points for the green and NIR
band images compared to the blue and red band images is probably related to the fact that
the green and NIR images are related to high DN values because they were acquired over
green vegetation that reflects the most in the green and NIR wavelengths by contrast to
the blue and red band images that correspond to the chlorophyll absorption bands which
produce low DN values.

Given that the matching points obtained from feature points are prone to be unstable
and produce many mismatches, it is necessary to remove outliers from the initial matching
point set before a geometric transformation is applied [38]. The outliers were removed
using the MSAC algorithm. The MSAC algorithm reduced the total number of matching
points by 1244 and 1253 for the affine and similarity transformations, respectively in the
case of the blue band image, by 900 and 931 for the affine and similarity transformations,
respectively in the case of the green band image, by 1274 and 1288 for the affine and
similarity transformations, respectively, in the case of the red band image and by1353 and
1369 for the affine and similarity transformations, respectively in the case of the NIR band
image. However, when applying the MSAC algorithm with the projective transformation,
the number of total matching points for the blue, green, red, and NIR band images was
reduced approximately by 1123, 473, 1137, and 1165, respectively.

Despite these reductions, whatever the geometric transformation, the resulting num-
ber of matching points was higher than those reported by Yasir et al. [38] who reported
81, 282, 195, and 134 matching points for the blue, green, red, and NIR bands respectively,
when applying a data-driven registration algorithm to images acquired with the MicaSense
RedEdge camera over greenhouse canola plants.

The resulting matching points were then used to compute the RMSE associated with
each image transformation and band image. Kerkech et al. [40] reported that a disease
detection system using multispectral images should perform better if the RMSE of the
image registration process is less than 5 pixels, given that RMSEs between 5 and 10 pixels
may reduce the accuracy of disease localization in some cases. We achieved an RMSE of
less than 1 pixel with the similarity and affine transformations and of less than 2 pixels
with the projective transformation, whatever the band image. Our RMSEs were lower
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than those (higher than 2.5 pixels) obtained by Hadaddi and Leblon [41] who performed
image registration and band alignment on the same non-georeferenced multispectral
MicaSense® RedEdge images as our study. There are several differences between our
study and Haddadi and Leblon [33]. First, Haddadi and Leblon [33] located the matching
points with the Harris corner detector [42] and the Scale Invariant Feature Transform
(SIFT) algorithm [22], while in our case, we used the SURF features detector and the
matchfeatures function of MATLAB (R2020a). Secondly, they used the green band image
as the reference image, while in our study, we selected the red-edge band image that is
more centrally located. Thirdly, a quadratic polynomial transformation was used as a
geometric transformation [43], while our study evaluated three geometric transformations
(affine, similarity, and projective). Our RMSEs were also lower than those reported by
Wang et al. [44] (0, 28.64, and 69.16 pixels) who applied three area-based registration
methods over thermal and optical RGB images. Our study used a feature-based image reg-
istration approach, while Wang et al. [43] used area-based registration methods. According
to Chai and Draxler [34], the best registration method should be such that the RMSEs have
a Gaussian distribution because model errors are likely to have a Gaussian distribution
rather than a uniform distribution. Our results showed that with the affine transformation,
all of the bands, but the blue band, the RMSEs had a Gaussian distribution.

5. Conclusions

In this study, we evaluated three methods of image registration in the case of non-
georeferenced multispectral images acquired at close range over greenhouse cucumber
plants with a MicaSense® RedEdge camera attached to a mechanic extension of a mobile
cart. The registration method includes the detection of matching points between the
moving and fixed images and the application of a geometric transformation for band
alignment. The three methods use the blue, green, red, and NIR bands as moving images
and the red-edge band as the fixed reference image because the related sensor has a central
position. In each case, the detection of matching points was performed using SURF features.
We considered three geometric transformations (affine, similarity, and projective). For each
transformation, we mapped the matching points of the blue, green, red, and NIR bands into
the red-edge band space and computed the root mean square error (RMSE in pixel) to assess
the accuracy of the image registration. Our results showed that the affine transformation is
the best approach for image registration because, the RMSEs were less than 1 pixel and
have a Gaussian distribution for all of the band images, but the blue band.

Our results were based on 45 non-georeferenced multispectral images acquired at close
range over mature cucumber plants with a MicaSense® RedEdge camera. Future research
under greenhouse conditions should investigate whether the size of the canopy and leaf
areas influence the accuracy of the image registration and band alignment, given that our
study shows that the green and NIR band images have more matching points because it
corresponds to high reflectance bands. Such tests can be done using younger cucumber
plants that have low leaf areas. While the results of this study are quite promising, they
were acquired on a limited number of images. Further work is needed to test the method
of broad sampling.
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